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Abstract: In this paper, we demonstrate the effectiveness of the (G
′

G )-expansion method by seeking more exact so-
lutions of the (2+1) dimensional Boussinesq equation and the two-dimensional Burgers equation. By the method,
the two nonlinear evolution equations are separately reduced to non-linear ordinary differential equations (ODE)
by using a simple transformation. As a result, the traveling wave solutions are obtained in three arbitrary functions
including hyperbolic function solutions, trigonometric function solutions and rational solutions. When the param-
eters are taken as special values, we also obtain the soliton solutions of the fifth-order Kdv equation. The method
appears to be easier and faster by means of a symbolic computation system.
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1 Introduction

The nonlinear phenomena exist in all the fields includ-
ing either the scientific work or engineering fields,
such as fluid mechanics, plasma physics, optical
fibers, biology, solid state physics, chemical kinemat-
ics, chemical physics, and so on. It is well known
that many non-linear evolution equations (NLEEs) are
widely used to describe these complex phenomena.
Research on solutions of NLEEs is popular. So, the
powerful and efficient methods to find analytic solu-
tions and numerical solutions of nonlinear equations
have drawn a lot of interest by a diverse group of sci-
entists. Many efficient methods have been presented
so far such as in [1-7].

In this paper, we pay attention to the analytical
method for getting the exact solution of some NLEES.
Among the possible exact solutions of NLEEs, certain
solutions for special form may depend only on a single
combination of variables such as traveling wave vari-
ables. In the literature, Also there is a wide variety
of approaches to nonlinear problems for constructing
traveling wave solutions. Some of these approaches
are the homogeneous balance method [8,9], the hy-
perbolic tangent expansion method [10,11], the trial

function method [12], the tanh-method [13-15], the
non-linear transform method [16], the inverse scatter-
ing transform [17], the Backlund transform [18,19],
the Hirotas bilinear method [20,21], the generalized
Riccati equation [22,23], the Weierstrass elliptic func-
tion method [24], the theta function method [25-27],
the sineCcosine method [28], the Jacobi elliptic func-
tion expansion [29,30], the complex hyperbolic func-
tion method [31-33], the truncated Painleve expansion
[34], the F-expansion method [35], the rank analysis
method [36], the exp-function expansion method [37]
and so on.

In [38], Mingliang Wang proposed a new method

called (G
′

G )-expansion method. Recently several au-
thors have studied some nonlinear equations by this

method [39-42]. The value of the (G
′

G )-expansion
method is that one can treat nonlinear problems by es-
sentially linear methods. The method is based on the
explicit linearization of NLEEs for traveling waves
with a certain substitution which leads to a second-
order differential equation with constant coefficients.
Moreover, it transforms a nonlinear equation to a sim-
ple algebraic computation. The main merits of the

(G
′

G )-expansion method over the other methods are
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that it gives more general solutions with some free
parameters and it handles NLEEs in a direct manner
with no requirement for initial/boundary condition or
initial trial function at the outset.

Our aim in this paper is to present an applica-

tion of the (G
′

G )-expansion method to some nonlinear
problems to be solved by this method for the first time.

The rest of the paper is organized as follows. In

Section 2, we describe the (G
′

G )-expansion method for
finding traveling wave solutions of nonlinear evolu-
tion equations, and give the main steps of the method.
In the subsequent sections, we will apply the method
to the (2+1) dimensional Boussinesq equation and
the two-dimensional Burgers equation. In section 5,

the features of the (G
′

G )-expansion method are briefly
summarized.

2 Description of the (G
′

G )-expansion
method

In this section we describe the (G
′

G )-expansion
method for finding traveling wave solutions of non-
linear evolution equations. Suppose that a nonlinear
equation, say in two independent variables x, t, is
given by

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (2.1)

or in three independent variables x, y and t, is
given by

P (u, ut, ux, uy, utt, uxt, uyt, uxx, uyy, ...) = 0,
(2.2)

where u = u(x, t) or u = u(x, y, t) is an
unknown function, P is a polynomial in u = u(x, t)
or u = u(x, y, t) and its various partial derivatives,
in which the highest order derivatives and nonlinear
terms are involved. In the following, we will give the

main steps of the (G
′

G )-expansion method.

Step 1. Suppose that

u(x, t) = u(ξ), ξ = ξ(x, t) (2.3)

or

u(x, y, t) = u(ξ), ξ = ξ(x, y, t) (2.4)

The traveling wave variable (2.3) or (2.4) per-
mits us reducing (2.1) or (2.2) to an ODE for u = u(ξ)

P (u, u′, u′′, ...) = 0. (2.5)

Step 2. Suppose that the solution of (2.5) can be

expressed by a polynomial in (G
′

G ) as follows:

u(ξ) = αm(
G′

G
)m + ... (2.6)

where G = G(ξ) satisfies the second order LODE
in the form

G′′ + λG′ + µG = 0 (2.7)

αm, ..., λ and µ are constants to be determined
later, αm 6= 0. The unwritten part in (2.6) is also a

polynomial in (G
′

G ), the degree of which is generally
equal to or less than m − 1. The positive integer m
can be determined by considering the homogeneous
balance between the highest order derivatives and
nonlinear terms appearing in (2.5).

Step 3. Substituting (2.6) into (2.5) and using
second order LODE (2.7), collecting all terms with

the same order of (G
′

G ) together, the left-hand side of

(2.5) is converted into another polynomial in (G
′

G ).
Equating each coefficient of this polynomial to zero,
yields a set of algebraic equations for αm, ..., λ and
µ.

Step 4. Assuming that the constants αm, ..., λ and
µ can be obtained by solving the algebraic equations
in Step 3. Since the general solutions of the second
order LODE (2.7) have been well known for us, then
substituting αm, ... and the general solutions of (2.7)
into (2.6) we have traveling wave solutions of the non-
linear evolution equation (2.1) or (2.2).

3 Application Of The (G
′

G )-
Expansion Method For The (2+1)
dimensional Boussinesq Equation

In the following two sections, we will apply the (G
′

G )-
expansion method for getting the exact solutions of
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some nonlinear equations. First we will consider the
(2+1) dimensional Boussinesq equation [43]:

utt − uxx − uyy − (u2)xx − uxxxx = 0 (3.1)

In order to obtain the traveling wave solutions of
Eq.(3.1), we suppose that

u(x, y, t) = u(ξ), ξ = kx + ly + mt + d (3.2)

k, l, m, d are constants that to be determined
later.

By using (3.2), (3.1) can be converted into an
ODE

(m2−k2−l2)u′′−2k2(u′2+uu′′)−k4u(4) = 0 (3.3)

Integrating the ODE (3.3) with respect to ξ once,
we obtain

(m2 − k2 − l2)u′ − 2k2(uu′)− k4u′′′ = g (3.4)

where g is the integration constant that can be
determined later.

Suppose that the solution of (3.4) can be ex-

pressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (3.5)

where ai are constants, G = G(ξ) satisfies the
second order LODE in the form:

G′′ + λG′ + µG = 0 (3.6)

where λ and µ are constants.

Balancing the order of uu′ and u′′′ in (3.4), we
have m + m + 1 = m + 3 ⇒ m = 2. So Eq.(3.5)
can be rewritten as

u(ξ) = a2(
G′

G
)2 + a1(

G′

G
) + a0, a2 6= 0 (3.7)

a2, a1, a0 are constants to be determined later.
Then it follows

u′(ξ) = −2a2(
G′

G
)3 + (−a1 − 2a2λ)(

G′

G
)2

+(−a1λ− 2a2µ)(
G′

G
)− a1µ

u′′(ξ) = 6a2(
G′

G
)4 + (2a1 + 10a2λ)(

G′

G
)3

+(8a2µ + 3a1λ + 4a2λ
2)(

G′

G
)2

+(6a2λµ + 2a1µ + a1λ
2)(

G′

G
)

+2a2µ
2 + a1λµ

u′′′(ξ) = −24a2(
G′

G
)5 + (−54a2λ− 6a1)(

G′

G
)4

+(−12a1λ− 38a2λ
2 − 40a2µ)(

G′

G
)3

+(−52a2λµ− 7a1λ
2 − 8a2λ

3 − 8a1µ)(
G′

G
)2

+(−14a2λ
2µ− a1λ

3 − 16a2µ
2 − 8a1λµ)(

G′

G
)

−a1λ
2µ− 2a1µ

2 − 6a2λµ2

Substituting Eq.(3.7) into (3.4) and collecting all

terms with the same power of (G
′

G ) together, equating
each coefficient to zero, yields a set of simultaneous
algebraic equations as follows:

(
G′

G
)0 : −m2a1µ + 2k4a1µ

2 + k2a1µ

+6k4a2λµ2 + l2a1µ + k4a1λ
2µ

−g + 2k2a0a1µ = 0
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(
G′

G
)1 : 4k2a0a2µ + 8k4a1λµ + 14k4a2λ

2µ

+2l2a2µ + 2k2a2
1µ + k2a1λ

+2k2a0a1λ + l2a1λ− 2m2a2µ

+16k4a2µ
2 + 2k2a2µ−m2a1λ

+k4a1λ
3 = 0

(
G′

G
)2 : l2a1 + 2l2a2λ−m2a1

+4k2a0a2λ + 2k2a2λ + 52k4a2λµ

+k2a1 + 2k2a0a1 + 7k4a1λ
2

+8k4a1µ− 2m2a2λ + 8k4a2λ
3

+2k2a2
1λ + 6k2a1a2µ = 0

(
G′

G
)3 : 2k2a2 + 12k4a1λ + 4k2a2

2µ

−2m2a2 + 40k4a2µ + 2k2a2
1

+2l2a2 + 6k2a1a2λ

+38k4a2λ
2 + 4k2a0a2 = 0

(
G′

G
)4 : 54k4a2λ + 4k2a2

2λ + 6k4a1

+6k2a1a2 = 0

(
G′

G
)5 : 24k4a2 + 4k2a2

2 = 0

Solving the algebraic equations above, yields:

a2 = −6k2

a1 = −6k2λ

a0 = −1
2

k2 + k4λ2 + 8k4µ−m2 + l2

k2

k = k, l = l

m = m, d = d, g = 0 (3.8)

where k, l,m, d are arbitrary constants.

Substituting (3.8) into (3.7), we get that

u(ξ) = −6k2(
G′

G
)2 − 6k2λ(

G′

G
)

−1
2

k2 + k4λ2 + 8k4µ−m2 + l2

k2

ξ = kx + ly + mt + d (3.9)

where k, l,m, d are arbitrary constants.

Substituting the general solutions of Eq.(3.6) into
(3.9), we can obtain the traveling wave solutions of
(3.1) as follows:

Case (a): when λ2 − 4µ > 0

u1(ξ) =
3
2
k2λ2 − 3

2
k2(λ2 − 4µ).C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ


2

−1
2

k2 + k4λ2 + 8k4µ−m2 + l2

k2

where

ξ = kx + ly + mt + d

k, l,m, d, C1, C2 are arbitrary constants.

In particular, if

C1 = 1, C2 = 0, µ = 0

λ = 1, k = l = m = d = 1,

then we have

u(x, y, t) =
1
2
− 3

2
[tanh

1
2
(x + y + t + 1)]2.
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Case (b): when λ2 − 4µ < 0

u2(ξ) =
3
2
k2λ2 − 3

2
k2(4µ− λ2).−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ


2

−1
2

k2 + k4λ2 + 8k4µ−m2 + l2

k2

where

ξ = kx + ly + mt + d

k, l,m, d, C1, C2 are arbitrary constants.

In particular, if

C1 = 1, C2 = 0, µ = 0

λ = 1, k = l = m = d = 1,

then

u(x, y, t) = 6[tan(x + y + t + 1)]2 − 9
2
.

Case (c): when λ2 − 4µ = 0

u3(ξ) =
3
2
k2λ2 − 6k2C2

2

(C1 + C2ξ)2

−1
2

k2 + k4λ2 + 8k4µ−m2 + l2

k2

where

ξ = kx + ly + mt + d

k, l,m, d, C1, C2 are arbitrary constants.

In particular, if

C1 = C2 = 1, µ = 1

λ = 2, k = l = m = d = 1,

then we have

u(x, y, t) = −1
2
− 6

(x + y + t + 2)2
.

4 Application Of The (G
′

G )-
Expansion Method For The Two-
Dimensional Burgers Equation

In this section, we will consider the two-dimensional
Burgers equation [44]:

ut − 2uux − uxx − uyy − 2vuy = 0 (4.1)

vt − 2uvx − vxx − vyy − 2vvy = 0 (4.2)

Supposing that

ξ = kx + ωy + st (4.3)

By (4.3), (4.1) and (4.2) are converted into ODEs

su′ − 2kuu′ − (k2 + ω2)u′′ − 2ωvu′ = 0 (4.4)

sv′ − 2kuv′ − (k2 + ω2)v′′ − 2ωvv′ = 0 (4.5)

Suppose that the solution of (4.4) and (4.5) can

be expressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (4.6)

v(ξ) =
n∑

i=0

bi(
G′

G
)i (4.7)

where ai, bi are constants, G = G(ξ) satisfies the
second order LODE in the form:
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G′′ + λG′ + µG = 0 (4.8)

where λ and µ are constants.

Balancing the order of uu′ and vu′ in Eq.(4.4), the
order of uv′ and v′′ in Eq.(4.5), then we can obtain

2m+1 = m+n+1, m+n+1 = n+2 ⇒ m = n = 1

So Eq.(4.6) and (4.7) can be rewritten as

u(ξ) = a1(
G′

G
) + a0, a1 6= 0 (4.9)

v(ξ) = b1(
G′

G
) + b0, b1 6= 0 (4.30)

a1, a0, b1, b0 are constants to be determined
later.

Substituting (4.9) and (4.10) into (4.4) and (4.5)
and collecting all the terms with the same power

of (G
′

G ) together, equating each coefficient to zero,
yields a set of simultaneous algebraic equations as
follows:

For Eq.(4.4):

(
G′

G
)0 : 2ωa1b0µ− a1ω

2λµ− sa1µ

+2ka1a0µ− a1k
2λµ = 0

(
G′

G
)1 : −a1ω

2λ2 − sa1λ + 2ka1a0λ

−2a1k
2µ + 2ka2

1µ− a1k
2λ2

+2ωa1b1µ− 2a1ω
2µ + 2ωa1b0λ = 0

(
G′

G
)2 : −sa1 + 2ωa1b1λ− 3a1k

2λ

+2ka2
1λ + 2ωa1bo − 3a1ω

2λ

+2ka1a0 = 0

(
G′

G
)3 : 2ka2

1 − 2k2a1 − 2a1ω
2

+2a1bω1 = 0

For Eq.(4.5):

(
G′

G
)0 : −b1k

2λµ + 2kb1a0µ + 2ωb1b0µ

−sb1µ− b1ω
2λµ = 0

(
G′

G
)1 : −2b1ω

2µ− 2b1k
2µ− b1k

2λ2

+2kb1a1µ + +2kb1a1λ + 2ωb2
1µ

−b1ω
2λ2 − sb1λ + 2ωb1b0λ = 0

(
G′

G
)2 : −3b1ω

2λ + 2kb1a1λ + 2ωb1b0

+2ωb2
1λ− 3b1k

2λ + 2kb1a0 − sb1 = 0

(
G′

G
)3 : −2b1k

2 + 2ωb2
1 − 2b1ω

2 + 2kb1a1 = 0

Solving the algebraic equations above yields:

a1 =
k2 − b1ω + ω2

k

a0 = a0, b1 = b1, b0 = b0

k = k, ω = ω, s = 2ωb0−ω2λ+2ka0−k2λ (4.31)

where a0, b1, b0, k, ω are arbitrary constant, b1 6= 0.

Substituting (4.11) into (4.9) and (4.10), yields:
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u(ξ) =
k2 − b1ω + ω2

k
(
G′

G
) + a0 (4.32)

v(ξ) = b1(
G′

G
) + b0 (4.13)

where

ξ = kx + ωy + (2ωb0 − ω2λ + 2ka0 − k2λ)t.

Substituting the general solutions of (4.8) into
(4.12) and (4.13), we have three types of traveling
wave solutions of the two-dimensional Burgers equa-
tion as follows:

When λ2 − 4µ > 0

u1(ξ) = −λ(k2 − b1ω + ω2)
2k

+
(k2 − b1ω + ω2)

√
λ2 − 4µ

2k
.C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ


+a0

v1(ξ) = −b1λ

2
+

b1

√
λ2 − 4µ

2
.C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ


+b0

ξ = kx + ωy + (2ωb0 − ω2λ + 2ka0 − k2λ)t

When λ2 − 4µ < 0

u2(ξ) = −λ(k2 − b1ω + ω2)
2k

+
(k2 − b1ω + ω2)

√
4µ− λ2

2k
.

−C1 sin
1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ


+a0

v2(ξ) = −b1λ

2
+

b1

√
4µ− λ2

2
.−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ


+b0

ξ = kx + ωy + (2ωb0 − ω2λ + 2ka0 − k2λ)t

When λ2 − 4µ = 0

u3(ξ) =
(k2 − b1ω + ω2)(2C2 − C1λ− C2λξ)

2k(C1 + C2ξ)
+a0

v3(ξ) =
−b1(2C2 − C1λ− C2λξ)

2(C1 + C2ξ)
+ b0

ξ = kx + ωy + (2ωb0 − ω2λ + 2ka0 − k2λ)t

5 Conclusions
In this paper, a generalized (G

′

G )-expansion method
is used to obtain more general exact solutions of
the (2+1) dimensional Boussinesq equation and the
two-dimensional Burgers equation. As a result, ex-
act traveling wave solutions with three arbitrary func-
tions are obtained including hyperbolic function so-
lutions, trigonometric function solutions and rational
solutions. The arbitrary functions in the obtained so-
lutions imply that these solutions have rich local struc-
tures. It may be important to explain some physical
phenomena.
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The value of the (G
′

G )-expansion method is that
one can treat nonlinear problems by essentially lin-
ear methods. The method is based on the explicit lin-
earization of NLEEs for traveling waves with a cer-
tain substitution which leads to a second-order differ-
ential equation with constant coefficients. Moreover,
it transforms a nonlinear equation to a simple alge-
braic computation. Compared to the methods used
before, one can see that this method is direct, concise
and effective. As we can use the MATHEMATICA or
MAPLE to find out a useful solution of the algebraic
equations resulted, so we can also avoids tedious cal-
culations. This method can also be used to many other
nonlinear equations.
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