
Visual Microcontroller Programming Using Extended S-System Petri Nets

KOK MUN NG
Faculty of Electrical Engineering

Universiti Teknologi Mara (UiTM)
40450 Shah Alam

MALAYSIA
ngkokmun@salam.uitm.edu.my

ZAINAL ALAM HARON
Faculty of Electrical and Electronic Engineering

Universiti Tun Hussein Onn Malaysia
86400 Batu Pahat

MALAYSIA
zainalal@uthm.edu.my

Abstract: - In this paper, we present the development work on a visual microcontroller programming tool based on an
extended form of S-System Petri Nets (SSPN). By using the extended form of SSPNs we were able to describe in
visual form subroutines, interrupts, I/O operations, arithmetic operations, and other programming constructs in a
microcontroller application program. Construction of the visual programming tool included the development of a
drawing editor which utilized directed graphs as internal model for created SSPN diagrams, and a parser to check for
correct diagram and sentence syntax. The parser developed uses context-free diagram and string grammars for the
diagram and sentence syntax checking, and upon successful parsing the tool automatically translates the SSPN-
represented application program into assembly code for a target microcontroller.

Key-Words: - S-System Petri Net (SSPN), S-System Petri Net Generator (S-PNGEN), Directed Graph
Structure, Context-free Graph Grammar, Graph Transformation

1 Introduction
The ordinary Petri net (PN) of Carl Petri has been
subjected to numerous extensions to give it the
descriptive capability to visually describe control
algorithms of logic controllers and embedded systems.
Examples of such extension are Grafcet [2] and Signal
Interpreted Petri Nets (SIPN) [5][7][15] which were
used to express in graphical form application programs
for programmable logic controllers. These graphical
application programs were then compiled to generate
source code for the logic controllers.

PN extensions such as Shobi-PN [4], Coloured Petri
Net (CPN) [6][8], HPDS [9], Safe Petri Nets [16] and
Grafcet [11] were specially developed for particular
digital controller platforms. While such extensions to the
PN have increased its capability to visually express
application programs for many kinds of systems,
nevertheless, there still exist some limitations in the
descriptive capabilities of these extended PNs,
particularly in regards to the availability of some useful
features and construct suitable for microcontroller
programming. Hence, this work addresses this issue by
introducing extensions to the original S-System Petri net
(SSPN) [3] to create those missing features which
facilitate graphical microcontroller application program
writing.

The extensions added to the original SSPN allow
behavior specifications at the places and transitions in
the SSPN diagram. With these extensions, it is now
possible to associate the places and transitions with

arithmetic expressions, assignments, or Boolean
functions.

Such practical implementation and applications
called for the development of good support tools to edit,
visualize and translate the PN [4][5][6][7]. A number of
PN-based programming tools have been developed for
this purpose [5][7][10][13][17]. Nevertheless, these
tools were customized for programmable logic
controllers [5][7] and digital systems [4]. They have
limitations when used for writing microcontroller
application programs.

In this work, a visual microcontroller application
programming tool called S-PNGEN (S-System Petri Net
Generator) has been developed which utilized the
extensions added to the basic SSPNs to fully capture and
describe the logic and control algorithms of a
microcontroller application program. The S-PNGEN
environment allows on-screen drawing and editing of
SSPN diagrams, diagram and textual syntax checking,
diagram translation, and also assembly code generation.

The next section introduces SSPN and the
extensions added to allow its use as a graphical
programming language for microcontrollers. Section 3
describes S-PNGEN while section 4 explains how
application programs are expressed as SSPN diagrams in
S-PNGEN and how the SSPN diagram is parsed and
checked for correct syntax before being translated into
assembly code. Section 5 shows the parsing results and
an example of code generated while section 6 concludes
the paper.

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 573 Issue 6, Volume 9, June 2010

2 Extended SSPN
SSPN is a bipartite directed graph represented by

5-tuple, PN = (P, T, A, W, M0) where:
 P = {p1, p2, p3, ……., pn} is a finite set of places
 T = {t1, t2, t3,………., tn} is a finite set of

transitions
 A  (P x T) U (T x P) is a finite set of arcs
 W: A → 1 is the weight function attached to each

arc
 M0: P → {0,1,2,…..} is the initial marking
A defining characteristic of SSPN that differentiates

it from other PNs [5][6][7][8][9] is its restriction of
allowing only one input arc and one output arc for each
transition. Places in an SSPN, on the other hand, can
have more than one input and output arcs. While this
property seems very trivial at first sight, it is
nevertheless of fundamental consequence since its
inclusion allows the SSPN to express in a formal
manner the causality and the sequential attributes of an
asynchronous control system. Hence, the sequential
nature of SSPN can be utilized to mirror the sequential
execution of a microcontroller program.

Together with its characteristic structure, the
following extensions are added to the SSPN to control
the information flow:

 Every transition can be associated with a
Boolean function, an arithmetic assignment or
an expression that denotes the firing condition.

 Timed transitions are used to model timing
delays in the application program.

 Every place is associated with an output function
that assigns a subset of output signals when it is
marked.

 A macro place is introduced to indicate the
execution of a subroutine or an interrupt
handling function. For each macro place, a
subnet is needed to represent the subroutine
function or an interrupt.

Together with the asynchronous characteristic of the
SSPN and the introduction of the above extensions,
programming elements such as program control
structures, I/O operations, arithmetic operations, timing
delays, subroutines and interrupts can now be precisely
and fully represented. Similar to a typical PN, the firing
process of the extended SSPN abides by the following
rules:

 A transition is enabled if all its pre-places are
marked and all its post-places unmarked.

 A transition fires immediately if it is enabled
and its firing condition is fulfilled or executed.

 A transition without any firing condition is
allowed. The transition fires immediately if it is
enabled.

2.1 An example
The extended SSPN has all the features required to
represent microcontroller application programs in visual
form. To illustrate this point, an SSPN-represented
application program for the system in Fig. 1 will be
used.

Fig. 1 shows a microcontroller-controlled mixing
process that involves mixing and rinse operation. The
mixing operation starts when push button pb1 is pressed.
This opens valves v1 and v2, causing two different
liquids to be released into the tank until the liquid level
reaches level sensor s2, whereupon valves v1 and v2
then close. Motor M1 then immediately starts spinning
to stir the mixture for a full 60 seconds. Upon
completion of the stirring step, the motor stops and valve
v4 is opened to drain the mixture out of the tank. Valve
v4 closes when liquid level falls below the level sensor
s1. The rinse operation, on the other hand is activated
when pb2 is pressed; whereupon water is then supplied
into the tank via valve v3 until the level reaches s2.
Subsequently, motor M1 starts spinning to rinse the tank
for 60 seconds. Valve v4 then opens to drain water out
of the tank and closes when the sensor s1 level is
reached.

Fig. 1 Mixing Process

The extended SSPN-represented microcontroller
application program for the system in Fig. 1 is shown in
Figs 2 and 3, respectively. The figures show how the
extended SSPN diagram is used to describe graphically
the desired control algorithm to represent I/O operations,
timing delays and subroutine in a typical microcontroller
program.

In representing I/O operations, each transition is
assigned an expression to examine the state of an input
device while places are assigned output functions to

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 574 Issue 6, Volume 9, June 2010

assign the states of output devices. This can be
illustrated for instance in place p1, transition t2 and
place p3. Place p1 is marked with a token which is also
the starting place that indicates the first line of the
application program. p1 has output functions that
deactivate valve v1, v2, v3 and v4 to bring the system to
its initial state. The marking of p1 enables transition t2
and t3 respectively. Therefore, if pb1 is pressed at this
stage, t2 fires as pressing pb1 fulfills expression
“pb1==1”. The firing of t2 activates p3 which has
output functions that activate valve v1 and v2. These
extensions, which allow expression and output functions
to be used to describe I/O operations, have proved useful
in the tool development work and their application can
be observed in other parts of the SSPN diagram in Fig. 2
and Fig. 3.

Fig. 2 SSPN diagram for mixing process

In a typical microcontroller program, a subroutine
(function, method, procedure, or subprogram) is a
portion of code within a larger program, which performs
a specific task and can be relatively independent of the
remaining code. The diagram in Fig. 2 represents a
subroutine using place p4 which is a macro place. This
macro place is further defined by a subnet in Fig. 3
which represents the tasks within the subroutine that
models the stirring operation of the system. It has an
entry place p4 which is named after the macro place that
owns it. I/O expressions and functions in the subnet
examine the states of sensors s1 and s2 (level detection)
and assign output states to valves v1, v2, v3 and the
motor M1 to start the stirring operation for 60 seconds.

Transition t9 illustrates the extension added to the SSPN
to describe timing delays; specifically the 60 seconds
delay intended for this stirring operation. The tasks in
the subnet are completed when exit place p8 is marked.
Hence, the execution flow of the subnet returns to the
main net in Fig. 2. Similar rule of using macro places is
also applied to describe interrupts.

Another application of the extension added to the
original SSPN is to use it in this work to model
transitions without any firing conditions. Such
transitions are t3, t4 and t5. These transitions fire
immediately when their pre-places are marked. Non-
conditional transitions are deemed useful as they can be
used as a “no operation” command in the
microcontroller program.

Fig. 3 Subnet for macro place p4

3 S-PNGEN
S-PNGEN (see Fig. 4) is wholly written in Java. The
editor environment allows free-hand editing with PN
components. Places, transitions and arcs can be created
and deleted with the mouse. A simple layout routine in
the editor ensures that places and transitions are
“snapped” to a grid. However, the construction and
drawing of the PN representation is solely the
responsibility of the user as the layout routine neither
auto-route arcs nor does it changes the position of places
and transitions.

The editor also provides facilities for modifying the
position and size of the components. Attributes of the
places or transitions such as name and functions can be
updated easily with the editor. When a transition

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 575 Issue 6, Volume 9, June 2010

component is selected, arithmetic assignments,
expressions or Boolean functions can be added while
output functions can be added to places.

Fig. 4 Snapshot of the S-PNGEN

Fig. 5 shows the structure of S-PNGEN. It consists
of the diagram editor where the SSPN is drawn; the data
structures that store information of the spatial
relationship and attributes of places and transitions; a
parser that ensures a syntactically correct diagram and
textual input, and finally, a code generator that generates
assembly code for the target microcontroller from
intermediate representations constructed by the parser.

Fig. 5 Structure of S-PNGEN

4 Implementation

4.1 Graphs and Graph Grammar
Graphs have been widely used as internal models in
visualization and diagramming tools [18]. Graphical
tools such as DIAGEN [5][7] are based on hypergraphs
and hypergraph grammars and they used them for
syntax specification. Other graphical tools such as
PROGRES [10] and VISPRO [13] similarly use graphs
as internal models and customized graph grammars to
evaluate diagram syntax.

S-PNGEN, in contrast, adapted a regular directed
graph structure [12] as internal diagram models and
context-free graph grammar for syntax specification. PN
components (places or transitions) can be stored in the
nodes of the graph as java objects while arcs are
represented by edges that connect these nodes. The
edges link a source node to its destination node. Each
time a component such as a place or transition is
created, a corresponding java class object (element) is
instantiated and stored in the node of the directed graph
structure. An arc connecting two components, on the
other hand, is represented by an edge connecting the
nodes.

Fig. 6 shows the corresponding directed graph
structure for the SSPN diagram in Fig. 2. The nodes are
represented by ovals and the edges by thin lines.
Elements embedded into the nodes such as a place or a
transition can be updated with attributes such as a name,
Boolean functions, arithmetic assignments, expressions
and output functions.

The graph structure provides the parser (see Fig. 5) a
robust data representation to perform diagram and
textual parsing. The parsing algorithm adopts context-
free graph grammar for diagram syntax specifications
and context-free string grammar for text syntax
specification.

Context-free graph grammar syntax is described by a
set of productions of the form L::=R with L(left-hand
side) and R(right-hand side). Each production has a non-
terminal node on the left-hand side of the production and
a sequence of terminal or non-terminal nodes on the
right-hand side (see Fig. 7).

The non-terminal nodes in Fig. 7 are represented by
ovals, whereas the terminals are represented by
rectangular boxes. The productions are applied to a host
graph by applying L as a sub-graph of the host graph and
matching it with R, which is a set of terminally labeled
nodes that define syntax of the diagram.

The parser algorithm iterates through the graph’s
nodes and applies these context-free graph grammar
production rules. The productions depict that each place
node may have as many input and output edges as the
program algorithm requires, but with a minimum of

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 576 Issue 6, Volume 9, June 2010

one input and one output edge each. A transition node,
on the other hand, may only have one input edge and one
output edge each to ensure SSPN diagram characteristics
are met. With these rules in placed, the SSPN model can
be ensured of correct syntax.

Fig. 6 Directed graph data structure

Fig. 7 Context-Free Graph Grammar

4.2 Textual Parsing
Context-free string grammar is adopted in this work to
parse textual inputs at the respective places and

transitions. The context-free string grammar is a set of
production rules based on Backus-Naur Form (BNF)
where each production has non-terminal symbols on the
left-hand side of the production and a sequence of
terminals or non-terminals on the right-hand side. Non-
terminal symbols are further defined by other terminal or
non-terminal symbols, while the terminal symbols
cannot be further defined. All together, a total of 18 BNF
rules are applied to ensure correct textual syntax for the
SSPN model. Two of the rules are shown here where in
these rules, non-terminal symbols are enclosed by angle
brackets `<’ and `>’ while terminal symbols do not have
angle brackets. The symbol ::= and | in the production
rules are meta-symbols of the BNF. The meta-symbol
::= separates the left-hand side of the production rule
from its right-hand side (the definition) whereas the
meta-symbol | separates alternate forms of definitions.
The right-hand side of a production consists of a
sequence of terminals and non-terminals. Non-terminal
symbols must be further defined. For instance, the non-
terminal symbol <rel op> is further defined by terminal
symbols =<, <=, =, <>, >= and >.

Rule 5
<expression> ::= <simple expression> <rel op> <simple expression> |

port input identifier == <unsigned number>

Rule 6
<rel op> ::= < | <= | = | <> | >= | >

These production rules are implemented using the
recursive-descent method [1]. A parse tree gradually
builds up in a top-down manner starting from the root,
which is the top most non-terminal of the grammar as
the recursive parser evaluates the sentence from left to
right. Failure to construct the parse tree points to the
presence of syntax errors in the sentence. For instance,
rule 5 applies to expression “pb1 == 1” at t1 which
resemble definition port input identifier == <unsigned
number>. The parse tree for this expression is shown in
Fig. 8 where the sentence has correct syntax as all
terminals are reached.

Fig. 8 Parse tree for “pb1 == 1”

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 577 Issue 6, Volume 9, June 2010

4.3 Graph Transformations
While the parser ensures correct diagram and textual
syntax, it finally generates as output a graph
representation that models the semantics of the diagram.
The representation is simply an abstraction from the
original graph structure to hold the intermediate codes
for constructing a reduced graph structure. The
abstraction is usually carried out using graph
transformation [13][14].

Graph transformation production rules are applied
by the parser to the host graph to create the abstract
graph. Fig. 9 shows the transformation rules. The rules
in Fig. 9 find the sub-graph of the host graph that
matches the structure in the left-hand side of Fig. 9 and
replaces it with a single switch or block node (right-hand
side). Hence, the switch or block node reduces the
structure on the left-hand side into a single node. The
reduced node is further associated with attributes
necessary for proper code generation. These attributes
include the starting node object (s), the ending node
object (e), the sequential nodes’ objects (r) in between
the starting and ending nodes (if any) and the control
flow information such as the firing sequence (f) between
the objects.

Fig.5 Graph transformation rules

ACKNOWLEDGMENT

Fig. 9 Graph transformation rules

The transformation is best illustrated in Fig. 10.
The figure shows the abstract graph derived from Fig. 6
after graph transformation has taken place. Here, switch
B1 holds objects p1, t1 and t2. Block B2 holds objects
p2 and t3 while block B4 holds objects p4, t5, p5 and t6.

B1, B2, B3 and B4 are associated with attributes

defined as s, r, e and f, as mentioned earlier. Objects
from the host graph were categorized and became the
subset of s, r, e and f. Table 1 shows a summary of the
objects reduced for each node under this transformation.
These attributes provide a flexible mechanism for
transporting information for evaluation by the code
generator. For instance, f in B1 contains an ordered
subset (t1,p2) which denotes the firing of t1 passes
control flow to p2 which is the starting node object in
B2.

B1

B2 B3

B4

p1

t1

t6

p2

t3

p4

t5

p5

t2

p3

t4

Fig. 10 Abstract graph

The abstract graph serves as an intermediate
representation which lays out the semantic execution
order which should be taken by the code generator. The
semantic execution order for each node is evaluated in
the order of s - r - e. The graph also provides the
dependency information between nodes via f. Hence,
this provides necessary control flow information to aid
code generation by accessing the objects in s, r and e in
a sequential manner.

DIRECTED GRAPH ABSTRACT GRAPH

Switch

Block

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 578 Issue 6, Volume 9, June 2010

Node Attributes

B1 s = {p1}
r = {}
e = {t1, t2}
f = {(t1, p2), (t2, p3)}

B2 s = {p2}
r = {}
e = {t3}
f = {(t3, p4)}

B3 s = {p3}
r = {}
e = {t4}
f = {(t4, p4)}

B4 s = {p4}
r = (t5, p5)
e = {t6}
f = {(t6, p1)}

Table 1 Objects regionalized in abstract graph

5 Result

5.1 Parsing Result
Similar to any compiler tool, S-PNGEN reports the
parsing results to indicate to the user on the occurrence
of textual and diagram syntax errors when syntax rules
are violated during development of the SSPN model.
Both results of textual and diagram parsing in the tool
are reported in a window as shown in Fig. 11 when the
user starts the compilation via a button click.

Fig. 11 Snapshot of parsing results

Fig. 11 shows the parsing result for the SSPN
diagram for the mixing process in Fig. 2 and Fig. 3
where both textual and diagram parsing yielded no
errors and compilation was indicated as successful.

5.2 Code Generation
In the final stage, the code generator traverses the
abstract graph to generate assembly code. Like any other
type of compiler, the code generator works in a
prescribed order of execution. The following pseudo
code outlines the function call generateCode that was
utilized to execute code generation. The function
generateCode in turn call another function
emitProgramTemplate where code generation takes
place in a layout that starts with I/O and variable
declaration, followed by subroutines code, delay
subroutine and finally the main program.

Public generateCode (Portdata pd){
Generate output window
IF buffer NOT null

CALL emitProgramTemplate to generate code
ENDIF

}

Public emitProgramTemplate (){
Generate general I/O equates
Generate variable equates
Generate interrupt handling code
CALL emitSubroutine to generate subroutine

IF timer variable exists
CALL emitDelaySubroutine to generate delays

ENDIF

CALL InitializedPorts to declare I/O port directions
CALL EmitInitialValues to define initial values of variables
CALL IterateASGgraph to iterate the abstract graph

IF table is not empty
CALL emitTables to generate table data
CALL emitEEPROMcontent to generate EEPROM content

ENDIF
}

I/O ports direction is initially declared in the main
program, followed by definition of initial values which
were assigned to certain variables. The algorithm then
calls the IterateASGgraph function to access the abstract
graph in Fig. 10. IterateASGgraph contains a recursive
code generation algorithm developed to execute the code
generation process for the main part of the program,
wherein the algorithm traverses the abstract graph by
visiting each node and accesses the objects contained
within these nodes in a prescribed order. The algorithm
evaluates each phrase of the object’s sentence
sequentially and returns a sequence of assembly code
instructions automatically.

The code generator algorithm in S-PNGEN consists
of code templates and the translation is straight-forward
as it traverses the abstract graph. Fig. 12 shows the
assembly code generated for the SSPN in Fig. 2 and 3.
The code was generated according to the code layout
outlined in emitProgramTemplate.

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 579 Issue 6, Volume 9, June 2010

;WRITTEN BY: Ng Kok Mun
;DATE: 24 February 2010
:FOR PIC: 16F84
;RESONATOR:XT(4MHz)
;PURPOSE:Mixing Process

;**************GENERAL AND I/O EQUATES***********
INDF equ 0 ;counter
TMR0 equ 1 ;counter
PCL equ 2 ;program counter
STATUS equ 3 ;status register
FSR equ 4 ;file select register
PORTA equ 5
PORTB equ 6
PCLATH equ 0Ah
OPTION_REG equ 81h ; option register
TRISA equ 85h
TRISB equ 86h

LIST P=16F84

;**************VARIABLES EQUATES*****************
#Define pb2 PORTA,0
#Define M1 PORTB,3
#Define pb1 PORTA,1
#Define v5 PORTB,5
#Define v4 PORTB,4
#Define v3 PORTB,2
#Define v2 PORTB,1
#Define s2 PORTA,3
#Define v1 PORTB,0
#Define s1 PORTA,2

CBLOCK 0x00C
count, Dlay:2, Outside:2, Temp0 , Left, Right
_fsr, count2, Stack

ENDC

org 00h
goto INIT

;**************SUBROUTINES*************************

Sub1
lp1
Loop0

btfsc s1
goto Skip0
goto Loop0

Skip0
Loop1

btfsc s2
goto Skip1
goto Loop1

Skip1
bcf v1
bcf v2
bcf v3
bsf M1
call timer
goto lp2

lp2
return

;**************DELAYS OR TIMERS*******************
timer

movlw LOW 0x00258
movwf Outside
movlw HIGH 0x00258
movwf Outside+1

OuterLoop1
movlw LOW 0x04F20
movwf Dlay
movlw HIGH 0x04F20
movwf Dlay+1

Lp1

decf Dlay, f
btfsc STATUS,2
decfsz Dlay+1, f
goto Lp1
movlw -d'1'
addwf Outside, f
btfss STATUS, 0
decf Outside+1, f
clrf count2
movf Outside, w
btfsc STATUS, 2
incf count2, f
movf Outside + 1, w
btfsc STATUS, 2
incf count2, f
movf count2, w
sublw d'2'
btfss STATUS, 2
goto OuterLoop1
return

;**************PROGRAM START HERE ***************
INIT

bsf STATUS, 5
movlw b'00011111'
movwf TRISA ^ 0x080
movlw b'11000000'
movwf TRISB ^ 0x080
bcf STATUS, 5
clrf PORTA
clrf PORTB

MAINLINE

B1
bcf v1
bcf v2
bcf v3
bcf v4
bcf v5

Loop2
btfsc pb1
goto B2
btfsc pb2
goto B3
goto Loop2

B3
bsf v3
goto B4

B2
bsf v1
bsf v2
goto B4

B4
call Sub1
bcf M1
bsf v4

Loop3
btfss s1
goto B1
goto Loop3
end

Fig. 12 Assembly Code

In this work, the generator generates assembly code for a
PIC microcontroller, specifically the PIC16F84 as the
target microcontroller. However, an MPLAB assembler
is employed to further assemble the assembly code into
machine readable codes. The MPLAB assembler (see
Fig 13) is an integrated development environment (IDE)
that provides facilities to evaluate the assembly code

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 580 Issue 6, Volume 9, June 2010

generated by S-PNGEN. The code generated by S-
PNGEN can be easily copied and paste into the MPLAB
text editor. The assembler’s build result for the assembly
code in Fig. 12 is shown in Fig. 14. Executable absolute
machine code is then preceded by the loader into the
target microcontroller.

Fig. 13 MPLAB IDE

Fig. 14 Assembler’s build result

Conclusion
This paper has introduced and described a method for
visually expressing microcontroller application programs
as SSPNs. Also described was the extensions added to
the SSPN to enable it to precisely and fully represent the
data flow and control algorithms of a microcontroller
application program. The SSPN diagram drawing,
editing, and translation were done using a customized

tool (S-PNGEN) that employs directed graphs as internal
diagram models and context-free graph grammar to
evaluate diagram and text syntax. An innovative
application of graph transformation has also been
described which provided semantics execution sequence
and control flow information to the code generator for
efficient translation of the SSPN to assembly code. Upon
successful parsing and translation of the SSPN
programs, S-PNGEN produces machine readable code
ready for downloading into the target microcontroller.
Code optimization issues, however, were not addressed
in this work.

References:
[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers:

Principles, Techniques and Tools, Addison-Wesley,
1982.

[2] R. David, Grafcet: A Powerful Tool For Specification
of Logic Controllers, IEEE Transactions on Control
System Technology, Vol. 3, No.3, 1995.

[3] D. Jorg and J. Esparza, Free Choice Petri nets,
Cambridge University Press, 1995.

[4] J.M. Fernandes, M. Adamski and A.J. Proenca,
VHDL Generation From Hierarchical Petri Net
Specifications of Parallel Controllers, IEEE
Proceedings-E Computers and Digital Techniques,
pp. 127-137, 1997.

[5] G. Frey and M. Minas, Editing, Visualizing, and
Implementing Signal Interpreted Petri Nets,
Proceedings of the AWPN 2000, pp. 57-62, 2000.

[6] W. Kurdthongmee, ertCPN: The adaptations of the
coloured Petri-Net theory for real-time embedded
system modeling and automatic code generation.
Songklanakarin Journal of Science & Technology,
Vol.25, No.3, 2003, pp. 381-394.

[7] M. Minas and G. Frey, Visual PLC-Programming
using Signal Interpreted Petri Nets, Proceedings of the
American Conference 2002 (ACC2002), Anchorage,
Alaska, pp. 5019-5024, 2002.

[8] K.H. Mortenson, Automatic Code Generation from
Coloured Petri Nets for An Access Control System,
ICATPN 2000: International Conference on
Application And Theory of Petri Nets, Aarhus,
Denmark, 1825, pp. 367-386, 2000.

[9] W.L.A. Oliveira and N.Marranghello, A High-level
Petri Net for Digital Systems, Proceedings of the XV
SBMicro–International Conference on
Microelectronics and Packaging, pp.220–225, 2000.

[10] A. Schurr, A. Winter and A. Zundorf, Graph
Grammar Engineering with PROGRES in: A. Schafer
and O. Botella (eds.): Proc. ESEC ’95, LNCS 989,
Springer Verlag, 1995, pp. 219-234.

[11] A. Wallen, Using Grafcet to Structure Control
Algorithm, Proceedings of the Third European
Control Conference (ECC95), Roma, Italy, pp. 3160-
3165, 1995.

[12] D.A. Watt, and D.F. Brown, Java Collections: An
Introduction to Abstract Data Types, Data Structures
and Algorithms, John Wiley & Sons Ltd. England,
2001.

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 581 Issue 6, Volume 9, June 2010

[13] K.A.Zhang, M.A. Orgun, and K. Zhang, Visual
Language Semantics Specification in the Vispro
System, VIP2002: Pan-Sydney Area Workshop on
Visual Information Processing, Sydney, Australia,
2002.

[14] B. Hoffman and M. Minas, A Generic Model for
Diagram Syntax and Semantics in J.D.P Polim et.
al (Eds.), ACALP Workshops – Proceedings of the
Satellite Workshops of the 27th International
Colloqium on Automata, Languages and
Programming, No. 8, pp. 443-450, 2000.

[15] K. Loeis and E. Joelianto, Application of Control
of Boiler using Signal Interpreted Petri Net
(SIPN) Method, WSEAS Int. Conf. on Electronics,
Control & Signal Processing, Singapore, 2002.

[16] V. Ababii, E.Gutuleac, V.Sudacevschi and D.
Odobesco, FPGA-based Implementation of Safe
Petri Nets Model, Proceedings of the 4th WSEAS
International Conference, Rio de Janeiro, Brazil,
2005.

[17] P. Pivonka and L.Chomat, Real-Time
Implementation of Petri Nets into PLC, 11th
WSEAS International Conference on
COMPUTERS, Crete Island, Greece, 2007.

[18] V. Kayanov, Methods and Tools for Support of
Graphs and Visual Processing, (CSCC 2002): 11th
WSEAS International Conference on
COMPUTERS, Crete Island, Greece, 2002.

WSEAS TRANSACTIONS on COMPUTERS Kok Mun Ng, Zainal Alam Haron

ISSN: 1109-2750 582 Issue 6, Volume 9, June 2010

