
Automating ontology based information integration using service

orientation
BOSTJAN GRASIC, VILI PODGORELEC

Faculty of electrical engineering and computer science

University of Maribor

Smetanova ulica 17, 2000 Maribor

SLOVENIA

bostjan.grasic@uni-mb.si, vili.podgorelec@uni-mb.si

Abstract: With the rise of the Internet, globalization and the increasing number of applications used inside

organizations, there is an emerging need to integrate information across heterogeneous information systems.

Service oriented architecture (SOA) is seen as a general answer to intraorganisational as well as

interorganisational integration problems. While service oriented systems have been well studied, there are still

some challenges remaining unanswered. One of them is automation of service execution. This paper proposes

a method for automated execution of Web Services. Based on Web Service execution automation, the proposed

approach is bridging the gap between ontology based integration and service oriented architecture by enabling

dynamic and transparent integration of information which is provided by services.

Key-Words: Service execution, Web services, Soa, Information integration, Semantic Web

1 Introduction
Information system engineering nowadays deals

greatly with system interoperability issues,

information integration being one of the most

significant ones. Ontology based integration is one

of the possible solutions to the information

integration challenge. While it has many advantages

[4][9] there are still some gaps. One of the most

significant ones, in our opinion, is automation of the

data integration part. We propose incorporation of

SOA principles to ontology based integration.

Services can be seen as data provision

technology, where the data they provide can be

integrated at a higher level - the ontology level. The

main challenge is how to enable automated and

transparent service invocation. This paper proposes

a novel approach to ontology based integration,

which is based on automated execution of Web

Services and automated integration of data they

provide in a global data view.

The main advantage of this approach is that it is

suitable for any heterogeneous information system,

as long as a specific system is able to expose their

data in form of services. Data retrieval, conversion

to semantic form and integration is taken place

automatically when the need for a specific data

arises. The described approach as well as

automation of the service execution is described in

more detail in the rest of the paper.

The organization of the paper is as follows. First

section briefly summarizes ontologies and semantic

technologies. In the next section, ontology based

integration and existing state of the art for

integrating semantic and non-semantic data is

described. Section 3 introduces Semantic Web

Services. In Section 4, the service execution engine,

which automates service execution on the need

basis, is described. Section 5 describes a use case,

where automated service execution would benefit to

traditional approaches. In Section 6, performance

results are compared to competing approaches,

while the last section concludes the paper.

2 Related Work
The field of interapplication integration has a very

rich research activity [4][9][10]. One of the factors

is the number of different applications used in a

single organisation. While this number is rising,

there is even greater tendency to share data among

applications. Panian defines various levels of

integration complexity: from simple data transport,

which involves moving data objects between

systems, to ubiquitous integration, which allows

anytime, anywhere integration through standard

means [10]. While ubiquitous integration is a

visionary goal, Panian defines different stages in

between. The stages from the most primitive, to the

most complex integration stage are as follows: data

integration – synchronisation of data between

systems, application integration – leveraging

functionality in applications, process integration –

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 547 Issue 6, Volume 9, June 2010

integration at business process level, collaboration –

combining applications, data and human resources

in the enterprise [10].

In the recent years, service oriented architecture

(SOA) gained a momentum and is seen as a step

from application integration to process integration.

Several authors are identifying advantages over

classic enterprise application integration (EAI)

[13][14][25]. Major advantages are better business

agility due to improved flexibility and better cost

efficiency by empowering reuse and limiting the

number of connections between applications.

The approach presented in this paper uses

services, as they are defined in the context of SOA,

in the role of data providers. In this manner, the

approach bridges the gap between ontology based

systems and contemporary SOA ecosystems. At the

same time, the presented approach enables ontology

based integration [4][9] by reusing services from

existing SOA systems.

Most significant and novel contribution of the

presented work is automation of service execution.

The whole process of Web Service execution and

data integration is fully automated. The key enabler

is semantic service description, which enables

declarative execution of services, as well as

declarative integration of data returned by services.

There has been some research work done in the

area of service execution automation; however none

of existing works, in our knowledge, concentrates

on interoperability between data represented in

semantic networks and web services. Almost all of

the research work done in the area of semantic web

services is oriented towards discovery and

composition of services. There is a working group

under Organization for the Advancement of

Structured Information Standards (OASIS) [26]

called semantic execution environment (SEE).

However, the working group limits their activities

only to WSMO [8], which is essentially designed

for service composition. SEE provides a reference

implementation of an execution environment called

WSMX for WSMO based services [20].

Martinek et al. has developed a system based on

semantic service descriptions for enterprise

application integration [12]. Their approach is

similar to ours technology wise, however they

mostly address data mediation for the purpose of

ubiquitous service composition. In this manner, their

approach is fundamentally different because they

employ semantic technologies on the services level,

while we use services on the semantic level in order

to bridge semantic applications and SOA

infrastructure in a transparent manner. The

importance of incorporating contemporary

approaches as SOA into knowledge systems is

stressed out by Chang and Tseng [11]. Our approach

can also be seen as an enabler platform for

connecting knowledge system to the SOA

infrastructure.

Fundamentally most similar approach to ours has

been presented by Langegger et al. They have

created a system for virtual data integration that uses

SparQL endpoints as data [21]. Similar to our

solution, they integrate various data sources on the

declarative level. The actual integration is done

transparently in run-time when a user makes a

standard query. The major difference is that they use

Sparql endpoints as data sources, while our

approach uses Web Services as data sources.

The presented approach may be used in different

independent domains. While this article sketches

possible use in the e-tourism domain, papers [18]

and [19] describe the use of the presented approach

in medical information systems. This approach

reduces the size of the semantic network by

exposing a part of data in form of services. As

identified by Soto et al.[15], semantic web servers

may not perform efficient on large datasets. By

reducing the size of the semantic network, the

performance of the reasoning and retrieval systems

may be improved.

3 Ontologies and Semantic

Technologies
Ontologies are one of the key technologies in the

evolving Semantic Web. There exist several

languages as well as several formalisms to capture

knowledge and represent it in ontologies. According

to the most recent survey that analyzed the use of

ontological languages, OWL is being by far the

most used one. Over 75 percent of respondents

answered they are using OWL [3].

Web ontology language (OWL) [7] is based on

description logic and is one of the main building

blocks of the Semantic Web technologies (SWT).

SWT is a set of technologies, tools and

recommendations proposed by World Wide Web

consortium (W3C), that follow the vision of

semantic web. The vision of semantic web is in

evolution from web of documents (as we know the

World Wide Web today) into semantic web (SW).

In SW, computers will have an awareness of the

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 548 Issue 6, Volume 9, June 2010

meaning of data; hence computer agents will be able

to find and process information based on their

meaning [2].

SWT provides technologies to achieve this

vision. Core technologies that SWT are built upon

are Unicode, URI and XML. This foundation

enables SWT to be platform and programming

language independent. Upon XML is RDF layer.

RDF (Resource Description Framework) [27] is a

XML-based language for describing resources. On

top of RDF is ontology layer. OWL, which is based

on RDF, is used as the ontology language. On top of

ontology layer is logic layer. This layer enables to

define additional rules in rule interchange format

(RIF).

4 Ontology based integration
Inter-application interoperability has been long seen

as schema mapping and data integration problem. In

this manner integration requires (1) mapping

systems that define relationships (mappings) among

schemes and (2) integration systems that use those

mappings to answer queries or translate data across

data sources [4].

According to [9] there are three different

categories of ontology based integration approaches:

single ontology approaches (SOIA), multiple

ontology approaches (MOIA), hybrid ontology

approaches (HOIA). SOIA use single upper

ontology to which all other systems conform. MOIA

use multiple interconnected ontologies, each system

having its own. HOIA on the other hand is seen as a

combination of other two. Approach presented in

the paper is a SOIA approach, where the mappings

are in form of services which are executed

automatically.

It is unrealistic to expect that all the data will be

in semantic form, which would simplify the

integration process significantly. Rather one can

expect a mixture of semantic and non-semantic

systems, where the former are in minority. Currently

there exist two techniques that are used to transform

non-semantic data into RDF. These are:

• Export from non-semantic into semantic

form and

• Dynamic relational database mapping.

4.1 Export into semantic form

Most straightforward technique is to export non-

semantic data into RDF and then import RDF data

into the inference system with the preloaded

ontology. Usually custom software programs are

coded to achieve this. In case data source is in XML

format, then a special mechanism called gleaning

resource descriptions from dialects of languages

(GRDDL) may be used. GRDDL automates the

transformation procedure.

Computer agents or scripts are used to transform

data from external data sources (e.g. relational

databases, text files, spreadsheets, application

specific files, etc.) into RDF documents based on

concepts defined in the ontology. The reasoning

engine is responsible to integrate the data and reason

on it. The knowledge that is captured in such system

can be used by querying the reasoning engine and

displaying the information to the user.

The described approach is easy to set up, but

may be costly to maintain. If the exported data is

changing frequently, then data integrity issued

should be considered and handled. We have to

identify when the imported data changes, then we

need export that data and import it again into the

knowledge system.

4.2 Relational database mapping

Most critical issue with the first presented approach

is identification of data changes and repetition of the

export-import procedure. This issue may be

overcome by providing external data dynamically.

State-of-the-art approach to achieve this is by

relational database mapping.

This technique defines mappings between

relational schemes and concepts in ontologies. RDF

data is provided dynamically by the transformation

engine. There are several approaches to access data

using this technique. Transformation engines allow

different ways to access the data. Most useful data

access for ontology based information integration is

direct access via SPARQL endpoint. SPARQL is a

query language to access semantic data. This way

the knowledge system can access and query the data

as if it was in RDF. Actually, the transformation

engine is querying the database and transforming

the data automatically when the SPARQL endpoint

is queried.

There already exist stable implementations of

such transformation engines e.g. D2R, Virtuoso,

Triplify, METAmorphoses, SquirrelRDF. The most

widely used implementation D2R enables SPARQL

access, RDF dump of the complete relational

database, as well as access via a Web browser.

4.3 Service oriented interoperability

Both previously described approaches have their

shortcomings. In the first approach, one needs to

take care about data integrity between non-semantic

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 549 Issue 6, Volume 9, June 2010

data and data in the knowledge system. The second

approach solves this issue by providing data on

demand, but there is another issue with the second

approach. Data is available via a separate, virtual

SPARQL endpoint. This means that transformed

non-semantic data, which should be used by the

system, needs to be integrated manually.

The ideal integration technique would need to

solve both issues:

• Provide data dynamically – on demand,

• Automatically integrate data with

knowledge system's data.

We propose a novel, service oriented approach

(SOA) that meets both criteria. Instead of mappings

between relational schema and ontological concepts,

we use Web Services as data providers. They can

provide dynamic input from an arbitrary data

source, not just from relational databases.

Service oriented architecture addresses

shortcomings of the enterprise application

integration (EAI) approach. The main shortcoming

of EAI and hence also of direct database to database

mappings are high maintenance cost. In order to

connect n applications, n ∗ (n − 1) connections have

to made - between each application pair [25].

Basic idea behind SOA is: applications should

expose their data and functionality in form of

services, which provide platform and programming

language independent communication interfaces.

Applications that need other application’s data need

only to invoke appropriate service. Because each

application exposes data and functionality other

applications may need, the number of hardcoded

and unique connections between applications can be

drastically reduced [25].

The proposed ontology based system architecture

that is using service oriented approach is shown in

Figure 1. External data sources define regular Web

Services that are used as data providers for the

knowledge system. The proposed framework and

also the implemented system do not require

development of new Web Services. Existing Web

Services can be reused by adding semantic

descriptions to their inputs and outputs. Based on

these descriptions, Web Services are automatically

executed and data that is returned by them is

automatically integrated into the knowledge system.

The core component of the proposed technique is

the Service Execution Engine (SEE). SEE integrates

itself into the reasoning engine and identifies when

the data, which is provided by Web Services, is

needed. When this need arises, SEE:

• identifies which services need to be

executed in order to provide this data,

• prepares input messages Web Services,

• executes Web Services,

• integrates data returned by Web Services

into the knowledge system.

The proposed architecture enables fully

transparent and dynamic integration of non-

semantic data for the ontology based information

integration. We have developed the described

service execution engine which implementation is

described more detail in the rest of the paper.

Fig. 1: Otology base integration architecture

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 550 Issue 6, Volume 9, June 2010

5 Semantic Web Services
Web Services are seen as the technology of choice

for implementing service oriented architecture

(SOA) systems. While they provide state of the art

data exchange platform for heterogeneous

environments (being platform and programming

language independent), they lack in automated

service discovery and execution aspects.
Current WS descriptions rely only on syntax for

defining WS interfaces. To be able to use a service,

the consumer has to know what the operations of

particular WS actually do and what is the meaning

of data they return (XML Schema is not sufficient

for this task). WS specifications do not provide

means to describe this in a formal way.

These problems led to defining Semantic Web

Services (SWS) [1], which is an approach that tries

to combine Web Services with Semantic Web

concepts. Main idea behind SWS is: if we define the

semantics of WS operations and data that is being

exchanged with the service in a formal computer

readable and processable way (vision of Semantic

Web), then we can automatically discover, compose

and execute web services.

There are three main approaches to SWS; these

are: WSMO [8], OWL-S [6] and SAWSDL [5].

WSMO and OWL-S are mainly concentrating on

service discovery and composition. For these

reason, they provide fairly complex ontologies to

semantically model services. Both approaches

enable use of Web Services for data exchange. Main

difference between these two concepts is that OWL-

S uses SWT for service modeling purposes (RDF,

OWL, SAWSDL), while WSMO introduces its own

language called WSML [16].

WSMO and OWL-S require a lot of effort to

provide semantic service descriptions; SAWSDL,

on the other hand does not define the way services

are modeled, rather it just provides a mechanisms to

semantically annotate existing web service

descriptions (WSDL) [17]. How or in which

language the consumer defines these concepts is out

of scope of the specification. Because of that,

SAWSDL is seen as an iterative approach from WS

to SWS.

We chose to use SAWSDL in our system,

because of following facts: (1) defining WSMO and

OWL-S services is a complex task, besides that we

do not need discovery and composition capabilities

in our system; thus we can use a simpler formalism,

(2) WSMO uses its own language, that is not

compatible with SWT, (3) research and

development effort of OWL-S is fading and a lot of

tools are already outdated, (4) existing WS can be

easily converted to SAWSDL by just semantically

annotating WSDL, (5) SAWSDL is not just

compatible with SWT, but it is also compatible with

current Web Services, (6) SAWSDL is interoperable

with SOA implementations.

As we already mentioned, SAWSDL does not

specify how the services are modeled. Because of

that, we have developed a lightweight service

modeling ontology that is targeted at automated

execution of web services. The ontology is called

semantic web services execution ontology

(SWSEO).

6 Automated integration execution

environment
The core component of the proposed approach is the

service execution engine. The system as whole is

called Semantic Web Services Execution

Environment (SWSEE). SWSEE uses SAWSDL,

which is a W3C recommendation, for specifying

relations between Web Services and concepts

defined in domain ontology. The architecture of the

system is shown in Figure 2.

The system as whole, acts like a wrapper to the

inference engine's SPARQL endpoint. This way

SWSEE is able to identify which data is needed by

the query and execute Web Services. The whole

process of service input retrieval, data conversion,

service execution and data integration is transparent

to the user or the developer; the user has to provide

only the SPARQL query.

Main components of the architecture are shown

in Figure 2. SPARQL query processor is responsible

for splitting the query into two subqueries: (1) static

query and (2) dynamic query. Static query is

addressing only data that is permanently in the

Fig. 2: Component model

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 551 Issue 6, Volume 9, June 2010

knowledge system, i.e. not provided by Web

Services. The execution engine executes at first only

the static query in order to identify for each

instances Web Services need to be executed. Results

from the static query are used to generate service

input. Dynamic query is basically the same as the

input query. It is executed after the data from Web

Services has been integrated into the knowledge

system. The query processor component has another

important task. It is responsible for identifying Web

Services that need to be executed in order to execute

the query successfully.

Input provider is responsible for preparing input

data for Web Services. A single Web Service may

be executed many times. E.g. let us suppose we

have a Web Service that returns temperature for a

specific geographical location. If the result of the

query should contain only one geographical

location, then temperature Web Service is executed

only once. On the other hand, if the query contains

many geographical locations, then the Web Service

is executed once for each location. Input provider is

responsible for identifying such situations, and for

preparing the input according to Web Service‟s

description.

Input and output mediators are responsible for

converting data into the right form. Input mediators

convert data from semantic form into XML

messages according to Web Service's specification.

Output mediators convert XML messages returned

by Web Services into RDF messages. Both types of

mediators can be defined either as Java classes or

XSL transformations.

Service executor is responsible for executing

web services. The query executor wrapper provides

data from knowledge system's domain semantic

network as well as from semantic network that holds

information about Web Services. The main goal of

the executor wrapper is to provide the data in an

efficient manner. This is achieved by data caching,

which reduces the number of query executions.

7 Prototype architecture
Listing 1 shows the algorithm for automated

execution of web services. The algorithm is based

on the presented system architecture and is

implemented in the prototype described in Section

9. The algorithm and the prototype were developed

as a proof of concept on the one hand and as a

means for measuring the efficiency of the system as

a whole on the other hand.

define extQuery(staticQuery,

 serviceOutputConcepts, userServiceInput)

define execItem(inputData, outputData,

 invocationDesc)

define execPlan

extQuery = parseSparQLQuery(inputQuery)

staticData = executeQuery(extQuery.staticQuery)

services[] = getServicesWithOutputConcepts(

 extQuery.serviceOutputConcepts)

foreach (service:services) do

begin

 mainConcepts[] =

 staticData.getMainConcepts(service)

 foreach (mainConcept:mainConcepts)

 begin

 execItem = new execItem()

execItem.inputData.add(extQuery.userService

 Input)

 automaticInput = getAutomaticInput(service,

 mainConcept)

 execItem.inputData.add(automaticInput)

execItem.invocationDesc(service.getInvocation

 Desc())

 execPlan.add(exeItem)

 end

end

foreach (execItem:execPlan.getItems())

begin

 execItem.lowerMessages()

 execItem.invokeService()

 dynamicData = execItem.liftMessages()

end

return staticData + dynamicData

Listing 1: Algorithm for automated WS execution.

Figure 3 shows the sequence diagram of the

message flow during the execution of a query,

which is intercepted by the sparql query processor.

The query processor is denoted as an instance of the

SparqlWrapper class in the sequence diagram. Priori

the start of the message flow, as shown in Figure 3,

the query processor splits the query into two

subqueries and creates static input data, as it was

described earlier.

The SparqlWrapper object creates an instance of

the AggregatedQuery class, which holds all the

information regarding a single query. The input

parameters to the constructor shown in Fig. 3 are

required in order to execute the service successfully.

The list of services is constructed automatically

based on the dynamic query.

After preparing the aggregated query, the

execution plan is prepared. For each service one or

many execution items are created. The number of

execution items for each service depends on the

service type as well as on the input query. After

executing services according to the plan, the static

query is processed and result is being integrated

with services output.

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 552 Issue 6, Volume 9, June 2010

Fig. 3: Query execution sequence diagram

8 Use case
The presented approach is best described on a use

case. One of the possible scenarios, where such a

system would be of an advantage is in e-tourism.

Suppose there is a network of accommodation

providers (e.g. resorts, hotels, private apartments).

The main objective is to integrate the data about

each provider in a dynamic and transparent manner.

Data in such system can be static - e.g. address of

the accommodation provider, capacity, services

offered - or dynamic - available capacities for a

specific period, special offers, events.

Static data can be expressed in RDF and

provided in a standard Semantic Web manner. On

the other hand, dynamic data can be provided by

Web Services, which are executed on a need basis -

in the same time, their data is being integrated

dynamically into the central knowledge base. In

order to achieve this, a integration ontology is

needed. This ontology can be seen as a common

schema for a specific domain or task - in our case

providing accommodation information. If

accommodation providers expose their static data in

RDF according to the domain ontology, then this

information can be integrated dynamically by

existing approaches. A sample upper ontology for

the described use case is shown in Figure 4.

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 553 Issue 6, Volume 9, June 2010

The algorithm for automated service execution is

described on the given example. The system is

queried using standard Semantic Web query

language SPARQL. However, instead of passing the

query to the knowledge base, the query is passed to

the service execution engine. Based on semantic

service description, the execution engine identifies

that some of the data, which is being asked for, is

being provided by Web Services. The execution

engine then identifies services that need to be

invoked and prepares their input data. There are two

types of services, we shall call them broad and

narrow.

For broad services, there exists only one service

for a specific kind of data. A example service might

be a weather service, which provides weather

forecast information. In our case, there is only one

service for all locations. However, for the capacity

availability information, there exist several services

that all provide the same data - namely availability

information. The major difference is, that each of

those services provides availability information for a

specific accommodation provider. A hotel may have

its own availability service that is exposed from its

internal information system, while a group of

private apartments may use shares service, which is

provided by the local tourist office. The execution

engine identifies services for each and every kind of

data.

After the engine identifies which services are

about to be executed, it prepares their input data

from the knowledge base or from the query itself.

For example, period of stay is naturally provided

within the query itself, while some other

information might be stored in the knowledge base.

In the former case, the engine takes information

from the query, while in the latter case the execution

engine grabs information directly from the

knowledge base. After the input data has been

prepared, the services are invoked and data, which

they return, is integrated into the knowledge base

dynamically using XSLT transformations that

transform data from XML into RDF.

9 Performance evaluation
A reference implementation of the proposed system

was developed using Java programming language

and Jena libraries. Plain WSDL based Web Services

have been developed using JAX-WS. They were

deployed on Sun's Glassfish application server.

Generated WSDL documents were annotated with

SAWSDL annotations. XSLT mediators have been

used for lifting and lowering of messages.

Annotated SAWSDL documents were processed

using SAWSDL4J library [22].

The system was tested on real data. We used

open source database containing music artists and

albums data, called Musicbrainz [23]. The test query

requested basic information about artists and the list

of albums they have released. We have tested

performance on a normal RDF memory store (all

data has been imported a priori), relational database

mapping engine and the proposed SWSEE.

Fig. 4: E-tourism ontology using SWSEE approach

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 554 Issue 6, Volume 9, June 2010

Evaluation was performed on a computer using a

2 GHz Intel Core 2 Duo processor with 2 GB of

memory, running Linux Ubuntu operating system

and Sun Application Server 9.1. For each use case,

two subsequent batch runs were made. In each batch

run, the same query was executed for 12 times. The

first run was removed from each batch, because of

dynamic class loading and one-time class

initialization. Table 1 shows performance

comparison between the proposed framework, data

stored in Jena RDF memory store and a relational

database mapping engine. In the case of RDF

memory store, only music artist names and albums

were imported into the RDF store. In the remaining

two systems, the same database system with the

fully loaded Musicbrainz database was used. For

relational database mapping engine, D2R server

[24] was used.

Classic RDF memory store performed best,

however it did not contain the entire Musicbrainz

database. It does not provide dynamic data

provision, or dynamic data integration. The

proposed framework performed slightly better than

the relational database mapping engine. Since this is

a reference implementation, there is still some room

for improvements. However it should be noted, that

the reference implementation does not yet

implement input query stripping and service

identification, however noticeable performance

slowdowns are not expected by adding these

features.

System Avg (ms) St. dev

RDF memory store

(1
st
 run)

215,64 49,36

RDF memory store

(2
nd

+ run)

1,82 0,87

Relational database

mapping

37,82 11,69

SOA integration

framework

36,02 12,68

Table1: Performance comparison

10 Conclusion
This paper describes an approach for automated

execution of Web Services, which can be used for

ontology based integration. Automation of the

service execution approach has been described in

detail and compared to existing approaches, which

could be used for the same goal – ontology based

information integration.

The presented approach has been implemented as

a prototype which in turn has been evaluated with

the aforementioned approaches. It would be

expected, that using Web Services as data providers

would have a great impact on latency - especially

comparing it to the relational database mapping

techniques. However, performance tests have shown

that the developed prototype is even slightly faster

than the well accepted D2R server. Although the

prototype did not implement all the functions

described in the paper (query processing), it is not

expected that implementing remaining functions

would have a greater impact on final results.

There are still some open questions for future

work. While the prototype may be seen as a

feasibility study for the proposed information

integration approach, the problem of splitting the

query into static and dynamic query has not been

addressed fully. The other relevant future work

question is how to prepare the execution plan for

interdependent services.

References:

[1] Rama Akkiraju. Semantic Web Service -

Theory, Tools, and Applications, chapter

Semantic Web Services, pages 191–216. Idea

Group, 2006.

[2] Tim Berners-Lee, James Hendler, and Ora

Lassila. The semantic web: Scientific american.

Scientific American, May 2001.

[3] J. Cardoso. The semantic web vision: Where

are we? Intelligent Systems, IEEE, 22(5):84–

88, Sept.-Oct. 2007.

[4] Dejing Dou and Paea LePendu. Ontology-

based integration for relational databases. In

SAC ’06: Proceedings of the 2006 ACM

symposium on Applied computing, pages 461–

466, New York, NY, USA, 2006. ACM.

[5] Joel Farell and Holger Lausen (Eds.). Semantic

annotations for wsdl and xml schema. W3C

Reommendation, August 2007.

[6] David Martin, Mark Burstein, Drew

McDermott, Sheila McIlraith, Massiomo

Paolucci, Katia Sycara, Deborah L. McGuiness,

Evren Sirin, and Naveen Srinivasan. Bringing

semantics to web services with owl-s. World

Wide Web, 10:243-277,207.

[7] Deborah L. McGuiness. OWL Web Ontology

Language. W3C Recommendation, February

2004.

[8] Dumitru Roman, Holger Lausen, and Uwe

Keller. Wsmo final draft. WSMO Working

Draft, http://www.wsmo.org/TR/d2/v1.3/,

October 2006.

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 555 Issue 6, Volume 9, June 2010

[9] H. Wache, T. Vögele, U. Visser, H.

Stuckenschmidt, G. Schuster, H. Neumann, and

S. Hübner. Ontology-based integration of

information — a survey of existing approaches.

In H. Stuckenschmidt, editor, IJCAI–01

Workshop: Ontologies and Information

Sharing, pages 108–117, 2001.

[10] Panian, Z., Trends in IT Empowered Enterprise

Integration, WSEAS Transactions on

Communications, January 2004, pp. 122-127.

[11] Chang, C. C. and Tseng, C. Development and

integration of expert systems based on service-

oriented architecture. In Proceedings of the 7th

WSEAS international Conference on

Simulation, Modelling and Optimization

(Beijing, China, September 15 - 17, 2007). D.

Xu, Ed. World Scientific and Engineering

Academy and Society (WSEAS), Stevens

Point, Wisconsin, 2007, pp. 116-121.

[12] Martinek, P., Tothfalussy, B., and Szikora, B.

2008. Implementation of semantic services in

enterprise application integration. W. Trans. on

Comp. 7, 10 (Oct. 2008), 1658-1668.

[13] Mahmood, Z. Service oriented architecture:

potential benefits and challenges. In

Proceedings of the 11th WSEAS international

Conference on Computers (Agios Nikolaos,

Crete Island, Greece, July 26 - 28, 2007).

World Scientific and Engineering Academy

and Society (WSEAS), Stevens Point,

Wisconsin, 2007, pp. 497-501.

[14] Panian, Z. The SOA ecosystem. In Proceedings

of the 9th WSEAS international Conference on

Data Networks, Communications, Computers

(Trinidad, Tobago, November 05 - 07, 2007).

B. Bhatt, B. Tewarie, A. Lazakidou, and K.

Siassiakos, Eds. World Scientific and

Engineering Academy and Society (WSEAS),

Stevens Point, Wisconsin, 2007, pp. 360-365.

[15] J. Soto, O. Sanjuan, L. Joyanes. Semantic Web

Servers: A New Approach to Query on Big

Datasets of Metadata, WSEAS Transactions on

Computers, November 2006, pp. 2658-2662.

[16] J. d. Bruijn, H. Lausen, A. Polleres, and D.

Fensel. The Semantic Web: Research and

Applications, chapter The Web Service

Modeling Language WSML: An Overview,

pages 590–604. Springer Berlin / Heidelberg,

2006.

[17] E. Christensen, F. Curbera, G. Meredith, and S.

Weerawarana. Web services definition

language (WSDL). W3C Note, March 2001.

[18] V. Podgorelec, B. Grašič. Adoption of semantic

web technologies for developing medical

software systems and services. Information

modelling and knowledge bases XXI,

(Frontiers in artificial intelligence and

applications, Vol. 206). Amsterdam [etc.]: IOS

Press, cop. 2010, str. 263-274.

[19] V. Podgorelec, B. Grašič, L. Pavlič. Medical

diagnostic process optimization through the

semantic integration of data resources. Comput.

methods programs biomed.. [Print ed.], aug.

2009, vol. 95, iss. 2, str. S55-S67, doi:

10.1016/j.cmpb.2009.02.015.

[20] A. Haller, E. Cimpian, A. Mocan, E. Oren, and

C. Bussler. WSMX - A Semantic Service-

Oriented Architecture. In Proc. International

Conference on Web Service. 2005.

[21] A. Langegger, W. Wöß, M. Blöchl. A Semantic

Web Middleware for Virtual Data Integration

on the Web. In proc. European Semantic Web

Conference. 2008.

[22] SAWSDL: Semantic Annotations for WSDL at

http://lsdis.cs.uga.edu/projects/meteor-

s/SAWSDL viewed 30.10.2009.

[23] Musicbrainz, at http://musicbrainz.org/ viewed

30.10.2009.

[24] D2R Server at http://www4.wiwiss.fu-

berlin.de/bizer/d2r-server/ viewed 30.10.2009.

[25] T. Erl. SOA Principles of Service Design.

Prentince Hall/PearsonPTR, 2005.

[26] OASIS, Organization for the Advancement of

Structured Information Standards at

http://www.oasis-open.org viewed 30.20.2009.

[27] F. Manola and E. Miller. RDF primer. W3C

Recommendation, 2004.

WSEAS TRANSACTIONS on COMPUTERS Bostjan Grasic, Vili Podgorelec

ISSN: 1109-2750 556 Issue 6, Volume 9, June 2010

