

A Model Driven Engineering Design Approach for

Developing Multi-Platform User Interfaces

EMAN SALEH
(1)

 , AMR KAMEL
(2)

,

AND ALY FAHMY

(3)

Department of Computer Science

University of Cairo

EGYPT

(1) eman_maghary@yahoo.com (2) a.kamel@fci-cu.edu.eg (3) a.fahmy@fci-

cu.edu.eg

Abstract:- The wide variety of interactive devices and modalities an interactive

system must support has created a big challenge in designing a multi-platform user

interface and poses a number of issues for the design cycle of interactive systems.

Model-Based User Interface Design (MBUID) approaches can provide a useful

support in addressing this problem. In MBUID the user interface is described using

various models; each describes a different facet of the user interface. Our

methodology is based on task models that are attributed to derive a dialog model,

from which different concrete models with different appearances can be generated.

This paper presents a semi-automatic Model-Based transformational methodology

for multi-platform user interface (MPUI) design. The proposed methodology puts

dialog modeling in the center of the design process. A core model is integrated in

the design process namely our Dialog-States Model (DSM); which represents our

initial step to adapting to multiple target platforms by assigning multiple Dialog-

State models to the same task model. A multi-step reification process will be taken

from abstract models to more concrete models until reaching a final user interface

customized according to the target platform

Key-Words: ConcurTaskTrees, Dialog model, Model-Based User Interface Design,

StateCharts, UsiXML.

1 Introduction

To meet the challenges of the diverse and

unpredictable number of computing platforms, ad

hoc development of the user interfaces is no

longer considered acceptable in terms of the cost

and time required for software engineering

development and maintenance. There is an

increasing interest and adoption of Model-Based

User interface Approach [6, 9] due to the

applicability of the approach in MPUI

development. Today, due to the fact that no

method has really been emerged from the various

attempts to establish a comprehensive Model-

Based approach for MPUI design, a

standardization process has been adopted by

researchers[8, 9, 17], mainly to follow a Model

Driven Engineering (MDE) approach by

implementing the Model Driven Architecture

(MDA) [13,18] launched by the OMG group [12].

Calvary et al in [8] introduced the CAMELEON

Reference Framework; the framework divides the

development process into four levels of

abstractions (Fig.1 [8, 16].)

Fig. 1 CAMELEON Framework

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 536 Issue 5, Volume 9, May 2010

mailto:eman_maghary@yahoo.com
mailto:a.kamel@fci-cu.edu.eg
mailto:a.fahmy@fci-cu.edu.eg
mailto:a.fahmy@fci-cu.edu.eg

Structuring our design process according to this

framework and using UsiXML [15] language as

the target modeling language supports the creation

of MPUIs in a MDE compliant approach [9].

2 Related Work

Many model-based UI design approaches have

considered MPUI design and development. In this

section we will focus on the most recent related

work. Dygimes [10] is a run time environment

that automatically generates UIs for mobiles and

embedded systems, the environment is a user

centered approach, similar to our approach; starts

the UI design from task specification using the

ConcurTaskTrees (CTT) formalism [2]. TERESA

[7]; also based on the CTT; is a transformational

approach that enables the design of multi-device

UIs with graphical or vocal modalities. TERESA;

similar to our approach; is a transformational

approach structured according the CAMELEON

Reference Framework [8] and followed a forward

engineering process; while we use one task model

to derive multiple UIs, TERESA requires the

designer to specify many task models by filtering

the original task model according to the target

iplatforms. TransformiXML [16] is a UsiXML

tool based on attribute graph grammar; the tool

follows a transformational approach following

transformation at the same level of abstraction for

a different context of use. Another work based on

UsiXML is an approach called “Graceful

Degradation” [11], the approach aims at creating

Multi-Platform UIs by splitting an existing user

interface designed for the least constrained

platform (e.g. a PC) to a more constrained

platform (e.g. a mobile phone),the transformations

are semi-automatic but do not follow the

CAMELEON Framework. We extended the work

done in both TERESA and UsiXML by

introducing the Dialog-States model [6], which is

more concrete than the task model and more

abstract than their abstract user interface model.

Unlike TERESA and UsiXML, our Dialog-States

model gives an explicit design of the navigational

model, and gives the opportunity to adapt to

context of use at early stages of the design

process.

3 The Design Methodology

Our methodology aims at producing multiple

Final UIs for multiple computing platforms, at

design time.

We believe that the navigation structure of the UI

is the core aspect of the UI and the most affecting

model in Multi Platform context.

One of the major difficulties on designing MPUIs

is how to distribute the user interface over the

available physical screen space associated with

every target device and how to handle the

navigation according to this distribution; hence,

we are placing dialog modeling (DSM) is in the

center of the design process, this also helps to

achieve continuity and consistency between the

models and to allow designers to predict earlier

about the presentation of the user interface. Fig. 2

describes the design process as a four step process

supporting forward engineering from the “Tasks

& concepts” level to the “Final UI” level as

depicted in the CAMELEON Framework:

The following sections will explain the steps of

the design process; a case study is used to

illustrate the process.

Fig. 2 The design process

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 537 Issue 5, Volume 9, May 2010

3.1 Creation of the Task and Domain Model

The task model is expressed using the

ConcurTaskTrees (CTT) notation [4]: The

designer uses IdealXML [7] tool that enables the

creation of the task, domain model and the

mapping between them, Fig. 3 show the CTT for

the payment task, for a car rental system. Leaf

tasks should be specified using two attributes:

userAction and taskItem that enable a refined

expression of the nature of the task and are

essential in the next transformation to derive the

AUI model [15, 5]. The userAction indicates a

user action required to perform the task. The

userAction values are: start/go, stop/exit, select,

create, delete, modify, move, duplicate, toggle,

view, monitor and convey [14]. These are the

same values as for the actionType attribute for

Abstract Individual Components at the Abstract

User Interface level [14]. The taskItem attribute

refers to a type object or subject of an action;

which can be: an element, container, operation or

a collection of them. For example for the task

“EnterName” actionType =”input” and taskItem =

“Element”, the mapping model specifies that this

task maimpulates an attribute of the domain

model.

3.2 Deriving the Abstract User interface

(AUI)

Although we are using IdealXML [5] for

specifying the task model, we do not rely on the

generated enabled task sets that were defined in

[10], nor the AUI presented in the tool. The AUI

in IdealXML restricts the navigation since the

containment of UI elements corresponds to the

user tasks is done based on the level in the task

tree; this indicates a level of automation based on

the structure of the task model and is a limitation

of the approach which is more flexible and can be

tailored according to the target device screen size.

A pragmatic approach will be taken in which

usability is emphasized over a completely

automated transformation. Thus, transformation

from task model to AUI model is done by our

semi-automated dialog model; the DSM. To

derive the AUI from the task model two

intermediate sub-steps are performed:

Step 1) Task model to DSM mapping

At this step the DSM; a model based on Harel’s

StateCharts [3]; is created. This model captures

both the containment and the navigation structure

of the user interface. The model combines tasks

that should be presented to the user at the same

time in a state. Hence we define a state in the

DSM as the set of all tasks that are logically

enabled to start their performance during the same

period of time; thus will represent a presentation

unit in the user interface. This is similar to the

concept of Enabled Task Sets [9, 15].

A dedicated algorithm, automatically computes an

initial DSM based on a set of defined semantics of

the task types and temporal relationships among

tasks [6]. While in [9] and [15] only the enabling

operator is considered to represent a new

presentation unit, our algorithm considers the

enabling operator as a place to create a new state

and the concurrent operator when appears at an

Fig. 3 The task model

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 538 Issue 5, Volume 9, May 2010

intermediate level of the tree. Distribution of

necessary disabling and choice tasks among

presentation units is taken into consideration. To

keep the model consistent with the task

specification the algorithm creates bi-directional

transitions in case of splitting at a concurrent

operator. Hence, this model initially creates the

maximum set of states that represent the

maximum distribution of the user interface among

containers [6], since our initial target is devices

with very small screen size.

Step 1.1) Generating the states of the DSM

Considering the semantics of temporal

relationships we identify two categories of tasks

that are logically enabled at the same period of

time, and hence are candidate for composing a

state: the necessary tasks and anchorsWith tasks.

The difference between the two categories is that

in the first category the relation holds for

descendents of the task while it’s not the case for

the second category. So we define two functions:

Necessary(t), and anchorsWith(t) for the two

categories respectively. There are other functions

that are used by the algorithm, before explaining

the algorithm lets first define these functions:

 Necessary (t): Returns all tasks involved

with temporal disabling operator (|>) with

t; at the same level or through parents on

higher levels in the tree.

 anchorsWith(t):

1. If t is a leaf tasks involved with concurrent

(|||) operator with another leaf task t’ then

t’ is in anchorsWith(t).

2. If t is a task that is linked with the

concurrency with information exchange

operator (|[]|) with t’ then first(t’) is in

anchorsWith (t)

3. If t is not leaf, and

children(t)={n1,n2,…,nm} are involved in

choice [] operator then

AnchorsWith(first(n1))={first(n2),

first(n3),…, first(nm)}Where the function

first(t) is defined by:

 first (t): Left subtasks of t that should

be executed first, first(t)={first(n1),

first(n2), …, first(nm)}, where

n1,n2,…nm are child tasks of task t. If

t has no subtasks, then first(t) = t.

Notice first({t1, ..., tn}) = {first(t1), ...,

first(tn)}.

 isMarked(t) : returns true Boolean

value if a task is already marked by the

mark function.

 The function createState (Si, S1,S2,..,

Sn): is a function that creates a

composite XOR state with id= Si and

contains basic sub-states S1,S2, ,.., Sn ;

where the initial state of the composite

state is the state S1.

The process of generating the states of the DSM

starts at the root of the tree, at every iteration of

the inner while loop a depth search for the left-

most leaf task is done, which we name an Anchor

task since it represent a start task for the current

subtree. The algorithm generates a composite state

that combines this Anchor task with its necessary

and anchorsWith tasks (Fig 4).

Fig. 4 The DSM derivation algorithm

 Step 1.2) Detecting the initial state of the DSM

Considering the semantics of StateCharts; a
StateCharts model starts in an initial state
represented by an arrow with a black circle at its
starting end; this initial state will point to the start
state of the DSM model, this state contains the
start task of the task tree which is the left most
leaf task in the task tree. As the algorithm start
creation of the states seeking for the anchor tasks
from left side of the task tree, the first anchor
found is the first task. Thus, the first state created
by the algorithm combines the start task with and
its necessary and anchorsWith tasks. Hence, the
initial state will point to S0 which the first state
created by the algorithm.

Step 1.3): Finding the transitions between the

states

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 539 Issue 5, Volume 9, May 2010

To model the dynamic behavior of the user

interface, we need to model the navigational part

of the dialog model by detecting the actual

transitions between the states of the DSM. This is

also computed in an algorithmic way. Going back

to the states generation process together with the

semantics of the task model we can infer that the

operators: enabling (>>), disabling ([>) and the

concurrent operator (|||) are candidate of

transitions between composite states. The first two

operators are candidate of transitions whether

occurred between leaf of non-leaf tasks while the

concurrent operator is only candidate of a

transition when occurs between non-leaf tasks,

still we can rely on leaf tasks (states) to detect

these transitions, because they present places of

user interaction with the user interface.

A leaf task is either linked via a temporal operator

to another task on its right or not linked to any

other task if it is the right most leaf. I call leaf

tasks that are not connected to another task via a

temporal operator a LastTasks.

Transitions either occur due to enabling or

disabling temporal operators between leaf tasks or

ancestors of LastTasks that are involved in

concurrent or enabling operators with or without

information exchange. For LastTasks there are

two categiories:

(1) LastTasks that do not have an ancestor

involved with any temporal relationship with a

right hand side task in the task model (e.g. the

“Submit” task in Fig. 3); in this case this task is a

task that terminates the application and considered

as an accept state. Thus, it enables a transition to

the final state of the DSM (line 14 of Fig. 5)

 (2) LastTasks that have an ancestor (we locate the

first ancestor) linked with a temporal operator

with a task to its right; in this case these tasks

enable a transition from their super state to the

state that contains the first task of the right hand

side of that ancestor. Hence we give the following

definitions:

Definition 1: AcceptTasks:

A task t is in acceptTasks if t is in LastTasks and t

has no ancestor P with 𝑃
𝑜𝑝
 𝑡 in the task model.

Definition 2: LinkedAncestor(t).

If a task t is in LastTasks and P is the first

ancestor of t, if 𝑃
𝑜𝑝
 𝑡 ′ in the task model and op

is in {>>, |||, []>>, |[]|} then P is called the

LinkedAncestor(t).

For the purpose of finding the transitions between

the different states of the DSM we need to define

the following functions:

 addTransition(Si,Sj,L): creates a transition

from the state Si to the state Sj labeled

with L, note that at this level, task

execution represent the triggering events

of transitions.

 superState(S): returns the parent state of

state S.

Based on the above definitions the algorithm

in Fig. 5 finds the transitions between the

states of the DSM.

Fig. 5 The transitions detecting algorithm

The initial DSM created for our example (the task

tree in Fig 3) is shown in Fig. 6.

Step 1.4) Creating multiple Dialog State Models

After computing the initial DSM, the designer can

refine this model and/or create one or more

Dialog-State models, each for a target platform by

merging states; hence the DSM is our initial step

in handling adaptation to context of use; (device

screen size at this phase); by mapping the same

task model to different DSMs. For example the

designer can save both DSMs in Fig. 7.

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 540 Issue 5, Volume 9, May 2010

Fig. 6 The initial DSM

Note that in Fig 7(b) the designer combined the

three states into one compound state according to

target screen size.

Fig. 7 Two possible combinations of

the initial DSM

It is the designer responsibility to create multiple

Dialog-States models from the initial DSM. Some

guiding rules are necessary to ensure consistency

with the task model specification, on top of all

merging must start with states that represent

higher level number in the tree, where the root is

at level number=0 (i.e. merging is a bottom-up

process). As the concurrent and enabling

operators were the basis of creating new state, the

state combination process must merge these states

by including these tasks in the same state. States

that have been created due to concurrent operator

has a higher priority over those that have been

created due to enabling operator and hence will be

combined first. The main heuristics that must be

followed in top-down logical order, when merging

states are:

H1) If two states are different by one basic

state merge the states into one single state

H2) If a state contains only one task it can be

merged with its successor state or predecessor

according to linking task temporal relation

applying H1 and taking into consideration that

precedence of merging concurrent tasks is

higher than merging tasks linked with

enabling operator.

H3) Merge states that contain tasks linked

with concurrent operator in an outer

composite state.

H4) Merge states that contain tasks linked

with enabling operator in an outer composite

state.

Consider the tree in Fig. 8, three states are created

initially by the algorithm. The designer cannot

combine S0 with S2 since there is no common

parent following the logical order of heuristics the

combining should be in a bottom-up order where

concurrent tasks should be combined first:

Combining states may done in the following

order:

First the designer can combine S1 and S2 into one

state, the resultant state can be combined with S0

into a composite state.

Now let’s consider that task7 and task 8 are linked

with enabling operator then they will belong to

different states; these states should be combined

(a)

(b)

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 541 Issue 5, Volume 9, May 2010

Fig. 8 State composition example

first then the state that contains the combination

can be combined with S1. This ensures

consistency with the task execution order as

specified in the task model.

A post processing stage is needed to:

1) Deleting redundant states and replace by

one in the top super state. These redundant

states correspond to disabling tasks which

are usually have a navigation or control

facet thus they insure the navigation

between the states of the dialog states

model, thus we place them in the outer top

SuperState to avoid repeating transitions.

2) Replacing transitions that goes from an

intermediate sate to an outer state by a

transition from the Top SuperState to the

outer states

Step 2): DSM to AUI mapping:

The AUI in UsiXML is composed of Abstract

objects: Abstract Containers (ACs) and Abstract

Individual Components (AICs) [14, 16], at this

step we map composite states to ACs and basic

states AICs, then assigning the suitable facets to

the AICs, also we define both the navigation and

control between AUI elements. Table 1 presents

the potential mappings between the two models

constructs.

According to transformation rules, Each of the

DSM in Fig. 7 will be mapped to an AUI model.

The DSM in Fig. 7(a) will be transformed to an

AUI with three containers, the First Conainer will

contain two AICs, corresponding to the basic

states an extra AIC with navigation facet will be

added to replace the transition that goes out of the

state, to ensure navigation while for the DSM in

Fig 7(b) an AC that embeds three ACs will be

created.

Table 1 mappings between the DSM and the

AUI in UsiXML

DSM Construct UsiXML AUI model

construct

Basic state AIC

Composite State AC

Transition abstractDialogControl

relationship + AIC

with navigation facet

Hierarchy abstractContainment

relationship

Each AIC can be equipped with facets describing

its main functionality (input, output, Navigation

and control) [14]. These facets are derived from

the combination of task model, domain model and

the mappings between them, using transformation

rules, as these listed in table 2.

Table 2: Mapping between task attributes and AIC

facet types
UserAction TaskItem Facet

Create Element Input

Select Element Input

Start Operation
Navigation /

control

Convey Element Output

Start Container Navigation

Transitions between the states of the DSM are

modeled by assuming sequential navigation and

Global placement on interaction components (i.e

NEXT button is placed in the outer container); that

is done by a transformation rule that creates AICs

with navigation facet (NEXT, PREVIOUS buttons

at the next step) and placing them in the outer

Container (line 15-17 Fig. 9). At the AUI dialog

control between Abstract Objects is ensured by

dialogControl relationship, using LOTUS

operators (lines 58-.69.Fig. 9)

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 542 Issue 5, Volume 9, May 2010

……………………………………

Fig. 9: Part of the AUI model expressed in

UsiXML

3.3 Mapping the AUI to Concrete User

Interface (CUI) Model

This level is modality dependent, at this level

the designer chooses the target modality,

currently we only consider graphical modality.

In UsiXML the CUI is populated by Concrete

Interaction Objects (CIO’s) and Concrete

User Interface relationships between them.

For graphical modality UsiXML further

classifies graphical CIO’s in two categories:

graphical containers (GCs) and graphical

individual components (GIC). A GC is a

graphical CIO that can contain other CIO’s,

including other containers. UsiXML's

metamodel [14,15] contains a list of 11 types

of containers such as: dialog box, menu bar,

menu pop-up, tool bar, status bar, window and

box. GIC’s are a direct abstraction of widgets

found in popular toolkits. For example,

UsiXML's checkbox component corresponds

to <INPUT TYPE = CHECKBOX> in HTML

4 or JCheckBox in Java Swing. The list of

GICs in UsiXML includes: text component,

button, radio button, checkbox, combobox,

etc. [14]. Dialog control relationship can be

defined between both types of interaction

objects. We derive the CUI by set of

transformation rules: mapping AC to

Graphical containers (GCs), AICs to graphical

Individual components (GICs), some of these

rules are shown in table 3.

Many other rules are available for matching the

target platform, for example an AIC with input

facet and actionType=select can be mapped also to

radio button group if the target platform supports

this widget. Other rules as resizing rules can be

applied; for example to change the font size and

picture size. The dialog control relationship at this

level is a reification of the dialog control

relationship at the AUI, transitions at the DSM

which where mapped to AIcs with navigation

facet will be transformed to NEXT-PREVIOUS

buttons at this level, that are endowed with

graphicalTransition relation[14]. That enables

giving them an activate/deactivate power. Two

rules are applied here:

R1: Endow the OK button with

graphicalRelationship type=

“graphicalTransition” and transitionType =

“activate”.

R2: Endow the Cancel button with

graphicalRelationship type=

”graphicalTransition” and transitionType =

”deactivate”.

Table 3 Mapping AUI components to CUI

components

AUI(AIC) CUI(GIC)

 Facet Type
Input Create

element

create two GICs: An input

text and an output text(for

the label)

Input Select

element

create two GICs: A list box

and an output text(the

label), for every value in the

tag <selectionValue> create

an item in the list box.

Navigation Start

operation

Create GIG of type button.

3.4 From CUI to Final User Interface (FUI)

After the code of the CUI is produced, this code

could be either interpreted or compiled by a

rendering engine. UsiXML can be rendered by set

of rendering engines (e.g. GrafiXML,

FlashiXML, QtkXML, InterpiXML)[9].

The FUI for the DSM in Fig. 7(a) and Fig. 7(b),

are shown in Fig. 10 and Fig. 11, as previewed by

GrafiXML [1] tool.

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 543 Issue 5, Volume 9, May 2010

Fig. 10 FUI for DSM in Fig. 7(a) as previewed by

GrafiXML and possible presentation on a mobile

Fig. 11 FUI for DSM in Fig. 6(b)

4 Conclusion

In this paper we presented a MDE

transformational approach to design MPUI, the

design process is structured according to the

CAMELEON Reference Framework and the

target modeling language is UsiXML. A core

model is integrated in the design process to adapt

to multiple platforms multiplatform screen size

limitations by designer intervention. The approach

is more feasible than fully automatic approaches

from usability view point. The proposed

methodology uses set of tools for model based UI

development, storing the models in a model

repository allows reusability of the models for

new target devices. Future work will focus in

combining these tools as a tool chain embedded in

a modeling framework, also taking other

parameters of the context of use model

(environment and user) into account, and

considering other modalities.

References:

[1] B. Michotte, and J. Vanderdonckt,

“GrafiXML, A Multi-Target User Interface

Builder based on UsiXML,” Proc. of 4th

International Conference on Autonomic and

Autonomous Systems ICAS’2008 , IEEE

Computer Society Press, Los Alamitos, 2008.

[2] CTTE: The ConcurTaskTrees Environment

http://giove.cnuce.cnr.it/ctte.html, 2009

[3] D. Harel, StateCharts: A Visual Formalism for

Complex Systems, Science of Comp. prog.,

1987.

[4] E.Saleh, A. kamel, and A. Fahmy, “Dialog

States a multi-Platform Dialog model”, ECS

journal, vol. 33, No. 2, Sep. 2009, pp 1-9.

[5] F. Montero, V. Víctor López Jaquero, J.

Vanderdonckt, P. Gonzalez, M. Lozano, and

Q. Limbourg, Solving the Mapping Problem

in User Interface Design by Seamless

Integration in IdealXML, Lecture Notes in

Computer Science, Vol. 3941, Springer-

Verlag, Berlin, 2005, pp. 161-172.

[6] F. Paterno, Model-Based design and

Evaluation of Interactive Applications.

Springer-Verlag, London, 1999.

[7] F. Paterno, and C. Santoro, One model, many

interfaces, In Christophe Kolski and Jean

Vanderdonckt, editors, CADUI 2002, VOL 3,

2002, pp. 143-154.

[8] G. Calvary,J. Coutaz, D. Thevenin, Q.

Limbourg, L. Bouil-lon, and J. Vanderdonckt,

A Unifying Reference Framework for Multi-

Target User Interfaces, Interacting with

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 544 Issue 5, Volume 9, May 2010

http://www.isys.ucl.ac.be/bchi/members/bmi/
http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://www.iaria.org/conferences2008/ICAS08.html
http://giove.cnuce.cnr.it/ctte.html
http://www.dsi.uclm.es/personal/FranciscoMonteroSimarro/
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/
http://www.i3a.uclm.es/consulta/investigador.php?lang=en¶m_0=4¶m_1=62¶m_2=1¶m_3=79509
http://www.dsi.uclm.es/personal/MariaLozano
http://www.dsi.uclm.es/personal/MariaLozano
http://www.isys.ucl.ac.be/bchi/members/qli/

Computers, Vol. 15, No. 3, June 2003, pp.

289-308.

[9] J. Vanderdonckt, Model-Driven Engineering

of User Interfaces: Promises, Successes, and

Fail-ures, Proc. of 5th Annual Romanian Conf.

on Human-Computer Interaction

ROCHI’2008 , Bucarest, 2008, pp. 1-10.

[10] K. Luyten, T. Clercks, K. Coninx, and J.

Vanderdonckt, Derivation of a Dialog Model

from a Task Model by Activity Chain

Extraction, Proc. Of DSV-IS2003, Spriger-

Verlag, 2003, pp. 203-217

[11] M. Florins, F. Montero, J. Vanderdonckt,

and B. Michotte, Splitting Rules for Graceful

Degradation of User Interfaces, In Proc. of

10th ACM Int. Conf. on Intelligent User

Interfaces IUI’2006, ACM Press, New York,

2006, pp. 264–266.

[12] OMG: The object management Group:

http://www.omg.org

[13] OMG: Model Driven Architecture available

at: http://www.omg.org/mda/mda_files/02F-

SIW-004-OMG.pdf .

[14] UsiXML documentation version 1.8.0,

available at:

http://www.usixml.org/index.php?mod=downl

oad&file=usixml-doc/UsiXML_v1.8.0-

documentation.pdf

[15] Q. Limbourg, , J. Vanderdonckt, ,B.

Michotte, and L. Bouillon and V. López ,

UsiXML: a Language Supporting Multi-Path

Development of User Interfaces, Lecture

Notes in Computer Science, VOL. 3425,

Springer-Verlag, Berlin, 2005, pp. 200-220.

[16] Q. Limbourg, J. Vanderdonckt,

Transformational Development of User

Interfaces with Graph Transformations, Proc.

of the 5th International Conference on

Computer-Aided Design of User Interfaces

CADUI’2004, Madeira, Kluwer Academics

Publishers, Dordrecht, 2004.

[17] A. Mahfoudhi, W. Bouchelligua, M. Abed,

and M. Abid, Towards a new approach of

model-based HCI Conception, Proceedings of

the 6th WSEAS International Conference on

Multimedia, Internet & Video Technologies,

Lisbon, Portugal, September 2006, pp. 22-24,

[18] A. MOHAMED, N. ARSHAD, N. HIDZIR

Model-Based Computer Science Curricula

Design, Proceedings of the 6th WSEAS

International Conference on Artificial

Intelligence, Knowledge Engineering and

Data Bases, Corfu Island, Greece, February

2007.

WSEAS TRANSACTIONS on COMPUTERS Eman Saleh, AMR Kamel, Aly Fahmy

ISSN: 1109-2750 545 Issue 5, Volume 9, May 2010

http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://rochi.utcluj.ro/
http://www/
http://www/
http://www.omg.org/mda/mda_files/02F-SIW-004-OMG.pdf
http://www.omg.org/mda/mda_files/02F-SIW-004-OMG.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-%20documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-%20documentation.pdf
http://www.usixml.org/index.php?mod=download&file=usixml-doc/UsiXML_v1.8.0-%20documentation.pdf
http://www.isys.ucl.ac.be/bchi/members/qli/
http://www.isys.ucl.ac.be/bchi/members/jva/index.htm
http://www.isys.ucl.ac.be/bchi/members/bmi/index.htm
http://www.isys.ucl.ac.be/bchi/members/lbo/index.htm
http://www.dsi.uclm.es/personal/VictorManuelLopez/mipagina/

	32-536
	42-418
	42-437
	42-538
	89-542
	89-547
	89-556
	89-566
	89-567
	89-570
	89-573
	89-581

