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Abstract: We investigate the problems involved in efficient implementation of multiple assignment to
database tables, as suggested by Date and Darwen in their Third Manifesto proposal for future database
systems [10]. We explain the connection between assignment and the insert, delete and update op-
erations and why multiple assignments executed simultaneously are preferable to deferred constraint
checking. Our contributions are twofold. Firstly, we enable the user to specify updates either in terms
of the changes needed to the existing state or as the final table contents directly, with no degradation in
performance. Secondly, when multiple tables are updated SQL places the responsibility on the user to
order the update statements correctly. Integrity constraints must either be preserved in the unnecessary
intermediate states or else deferred. Multiple assignment accepts updates across the entire database si-
multaneously and makes the system responsible for scheduling them correctly. We present methods for
a proposed implementation that can potentially exceed the performance of SQL DBMSs by employing
parallelism and multi-query optimization.

Key–Words: Constraints, Multiple assignment, Multi-query optimization, Parallel updates, Query inde-
pendence, Simultaneous assignment

1 Introduction

A database state is a collection of relation variable
names (commonly known as “table names”) that
denote a relation value (a “table” in SQL) consist-
ing of zero or more tuples (loosely “rows”). Re-
lation variables (or relvars for short) behave like
conventional program variables in all respects
except that they are accessible to other database
programs (subject to security policy) and persist
using non-volatile storage. Reading a relvar is
equivalent to substituting its current value. For
example, SELECT * FROM R1 UNION SELECT *
FROM R2 is equivalent to SELECT * FROM VALUES
(‘Smith’, ‘London’) AS R1 UNION SELECT *
FROM VALUES (‘Blake’, ‘Paris’) AS R2 if R1
and R2 have the suggested values at runtime.
DBMSs do not implement substitution directly
because of performance concerns. Instead they
capitalize on relations being composed from tu-
ples by organizing them using memory layouts
such as hash tables and B-trees that allow the
DBMS to access only the tuples needed to an-
swer the query. Similarly, a write operation is

conceptually an assignment of a new relation
value to a relation variable, and again a DBMS
is free to implement any method that guarantees
the same result as the conceptual model. Many
programming languages provide shorthand for
common assignments such as the familiar post
increment operator ++ in C. DBMSs provide the
insert, delete and update operators as short-
hand for some assignments to relation variables.
Without database integrity constraints any as-
signment can be emulated by a sequence of
inserts, deletes and updates and in practice this
is usually convenient. In fact, existing DBMSs
only support the shorthand. However, the long-
hand <relation var name> := <query> form is
important for pedagogical purposes; for writ-
ing complex updates that are difficult to express
using shorthand; and when the necessary se-
quence of shorthand assignments is prevented
by integrity constraints.

Furthermore, the capability to assign to mul-
tiple relvars simultaneously is required for sev-
eral reasons. The most familiar reason is to ad-
dress situations where integrity constraints pre-
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vent assignments from being executed sequen-
tially that are nevertheless valid if considered to-
gether.

Multiple assignment offers performance ad-
vantages.

Parallel Execution: Assignments can be exe-
cuted in parallel when they do not interfere with
each other. In a distributed environment paral-
lelism can be between assignments that are exe-
cuted on the same or on different servers. For a
discussion of the specific issues involved in multi-
server parallism see reference [31].

Multi-Query Optimization: Commonality be-
tween assignments can be exploited by the op-
timizer.

Consolidated Updates: Multiple assignments to
the same variable are reducible to a single assign-
ment.

Multiple assignment is often used in formal spec-
ification languages [4] and some programming
languages, but this work and Date and Darwen’s
Third Manifesto upon which it is based [10] is the
first to apply multiple assignment to database ta-
bles. Some examples follow that demonstrate
some of the key advantages of multiple assign-
ment.

Example 1. A company database contains details of
employees and projects in three relvars: EMP, PROJ and
EMP PROJ. Every project must be have at least one em-
ployee and every employee-project attachment must
refer to an existing project. Thus, when a project is
created at least one employee must be simultaneously
attached to it. The project details cannot be entered in
PROJ before an employee is attached to it by insertion
into EMP PROJ and an employee cannot be attached to
the project before its details are entered into PROJ.

Example 2. A variation occurs when using a database
design technique called horizontal decomposition
that is proposed by Darwen to avoid NULLs [9]. Sup-
pose each project can use some resources, recorded
in the RES and RES USE relvars. Some resources
are purchased specifically for one project and in-
cur a cost to that project. Other resources are al-
ready owned by the company and do not incur any
cost. A third group are needed for a successful
project but have not been purchased yet so their
cost is unknown. In an SQL database the second
and third groups would be represented by NULL
but NULLs complicate the relational model and can
cause problems [11]. Under horizontal decomposi-
tion there are three additional relvars: COSTED RES{

resourceID, projectID, cost }, NOCOST RES{
resourceID } and UNCOSTED RES{resourceID }.
Some constraints are: (i) every costed resource must
be a known resource, (ii) every resource without a
cost must be a known resource, (iii) every uncosted
resource must be a known resource, and (iv) every re-
source is exactly one of: costed, uncosted or without
cost. Registering a new resource requires inserting a
tuple into RES and simultaneously inserting another
tuple into exactly one of COSTED RES, NOCOST RES or
UNCOSTED RES.
Example 3. A major project is completed and many
employees involved are relocated to a subsidiary com-
pany, assigned new employee identification numbers
and attached to projects in the subsidiary. Similar to
Example 1, the new project attachments cannot be en-
tered until the employee numbers are updated. The
employee details cannot be updated until their previ-
ous project attachments are removed but the project at-
tachments cannot be removed because that would leave
employees with no current projects. Multiple simulta-
neous assignment is needed. The database constraints
are guaranteed to hold prior to executing the assign-
ment statement so the system can combine the foreign
key declaration with the assignment statement [29]
to reason that the constraints requiring revalidation
are (a) the key constraints for both relvars, (b) that
employees transferred to the subsidiary are attached
to another project, and (c) that employees remaining
with the parent company who were attached to the
completed project have at least one other project at-
tachment. SQL deferred constraint checking would
incur an intermediate state where the database is in-
consistent, making it impossible to reason from the
database and the second update statement that only
relocated employees and the completed project require
checking. Thus the constraint would need revalidat-
ing in full.
Example 4. Suppose that an application involves si-
multaneous equations solved using the Jacobi method.

xk+1
i =

1
aii

bi −
∑
j,i

ai j · xk
j


xk

1..x
k
n are the values of attribute X for n tuples held

in a relvar R after k iterations of a while loop that
updates R and another relvar DIFF. x0

1..x
0
n are ini-

tial estimates of the mathematical unknowns x1..xn
that are successively refined by iteration. ai j and bi
are constants, possibly held in other relvars. DIFF
holds {xk+1

1 −xk
1, . . . , x

k+1
n −xk

n} for calculating the loop
exit condition. The while loop contains two assign-
ments, to R and DIFF which share a substantial com-
mon subexpression to calculate xk+1

1 ..xk+1
n . The update
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to R exhibits the Halloween Problem [22, pp.70–71]
because updating one of the xi tuples may alter its
storage location and subsequently cause a naive up-
date algorithm to update the same tuple twice within a
single iteration k. Sequentially updating DIFF then R
is possible but no known DBMS would recognize the
expensive common subexpression. Consider an exten-
sion to the scenario. In weather forecasting x1..xn rep-
resent some measurement (e.g. air pressure) measured
at regular intervals on a map. Often a multi-resolution
model is needed [8] though. For example, a national
forecast for the UK needs fine grained simulation over
the UK and coarse grained simulation of approaching
weather systems from other parts of the world. Sup-
pose that the global model and the regional model are
held in separate relvars, RG and RR. Now x1..xn are dis-
tributed between RG and RR and the update can only
be performed in SQL by copying one of the relvars
into a temporary table. Multiple assignment is a more
convenient and less costly alternative.

Date gives further rationale and examples
of multiple assignment in reference [12]. Mul-
tiple assignment is a comparable alternative to
deferred constraint checking and provides the ad-
ditional benefits of permitting dependency cycles
such as the weather forecasting example, unhin-
dered semantic optimization, and parallel execu-
tion.

2 Syntax & Semantics
A multiple assignment statement has the form:

V1 := E1, ... Vn := En;

V1..Vn are variables and E1..En are expressions
(exclusively queries unless a Vi is a local pro-
gram variable). If the same variable appears on
the left-hand side of more than one assignment
then the effect on that variable is the same as
if those assignments were executed sequentially
(apart from the possibility that sequential exe-
cution might raise a constraint violation when
multiple assignment does not). However, as-
signments to different variables are simultane-
ous, that is, all of the expressions are calculated
using the database state prior to any modifica-
tions [10, pp.177–180].

The structured operational semantics are
given in Figure 1. Conceptually there are four
steps. The first expands shorthand such as in-
sert into V := E form. Shorthand is language
specific and therefore not included in Figure 1.
The second step handles multiple assignments to
the same variable. The assignments are processed

〈V := E, ACL〉, s
⇒ 〈replace((ACL),V,E)〉, s[V′ 7→ EJEKs]

(1)

〈V := E〉, s⇒ msa(s[V′ 7→ EJEKs]) (2)
msa(s) = {V 7→ x|declared(V) ∧ assign(V, s) = x}

(3)

assign(V, s) =

s(V′) if V′ ∈ dom(s)
s(V) otherwise

(4)

replace(( ),Vr,Er) = ε (5)

replace((V := E, ACL),Vr,Er) =V := E[Er/Vr],ACL if V = Vr
V := E, replace(ACL,Vr,Er) if V , Vr

(6)

EJexpKs denotes the result of evaluating expres-
sion exp in state s. ε denotes the empty string.

Figure 1: Formal semantics of multiple assign-
ment

from left to right by the replace function. If an as-
signment V := E2 is encountered subsequently
to an assignment V := E1 then E1 is substituted
wherever V occurs in E2. In this way any mul-
tiple assignment can be reduced to one where
V1..Vn are unique. The third step introduces a
temporary variable V′ that is unused elsewhere
for every variable V. The expressions are com-
puted and stored in the corresponding tempo-
rary variables. The final step (described by the
msa function) assigns the values of the temporary
variables to their permanent counterparts and re-
linquishes the temporary variables.

Our work is described in the context of the
open source Ingres DBMS to provide a reference
DBMS implementation to which multiple assign-
ment could be added. The work is not dependent
on any technical features unique to Ingres.

3 Optimizer Architecture
Our work is described in the context of Ingres
to provide a reference onto which multiple as-
signment could be added, but the work is not
dependent on any features unique to Ingres. In-
gres uses a classic cost-based query optimizer.
So statement execution proceeds in five phases:
parsing, query rewrite, plan enumeration and se-
lection, code generation, and finally scheduling
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and execution. Some additional steps are needed
to incorporate multiple assignment.

1. Parsing
2. Application of query rewrite rules
3. Dependency graph construction
4. Multi-query optimization, query plan enu-

meration and selection
5. Dependency cycle removal
6. Merging integrity constraint checks
7. Transitive dependency removal
8. Code generation
9. Scheduling and execution

4 Parsing
A multiple assignment statement enters the sys-
tem via the parser where each expression is split
into subqueries. A subquery in this context repre-
sents a select-project-join fragment as a list of re-
sult attribute specifications, a selection predicate
and a range variable table. The term “subquery”
in the SQL language specification has a differ-
ent meaning. The range variable table records
the relvars involved, including temporary tables
for SQL subqueries. Conceptually the query be-
gins by computing their Cartesian product. Join
conditions are provided as part of the selection
predicate. The overall query is a collection of sub-
queries to union, each formatted in a tree struc-
ture. Multiple assignment is part of Date and
Darwen’s Tutorial D language [10, Ch.5], which
we are adding to Ingres as part of our work. Tuto-
rial D permits more syntactic variations than are
possible in SQL. For example, R{X} WHERE X>5 is
equivalent to (R WHERE X>5){X} (braces signify
projection). The high degree of abstraction in
Ingres’s abstract syntax trees (ASTs) allows can-
onization of many Tutorial D variations during
parsing, but not all. The parser expands insert,
delete and update shorthand into longhand as-
signments and the statement is reduced to a sin-
gle assignment per variable as previously dis-
cussed.

INSERT R S ⇒ R := R D_UNION S

DELETE R WHERE b ⇒ R := R WHERE NOT(b)

UPDATE R WHERE b (I := X, J := Y) ⇒

R := SUBSTITUTE R WHEN b THEN (I := X,

J := Y)

d union is a variation of union that raises an
error if the relations are not disjoint sets of tu-
ples. substitute is not a Tutorial D keyword but

it is useful to include an operator in the abstract
syntax tree that directly corresponds to the sin-
gle pass back-end operation of scanning a table
and conditionally updating some attributes. In
general there can be any number of substituted
attributes. substitute is expressible in Tutorial D
but the expression is not easily recognizable as a
single pass operation.

SUBSTITUTE R WHEN b THEN (I := X, J :=

Y) ≡

(R WHERE NOT(b))

UNION

((EXTEND (R WHERE b) ADD (X AS I’, Y

AS J’)){ALL BUT I, J}

RENAME (I’ AS I’’, J’ AS J, I’’

AS I))

5 Query Rewrite
The conversion to an abstract syntax tree can only
standardize variations that are easily detectable
from localized pieces of syntax. More complex
variations must be considered by traversing the
tree after parsing is complete, which is performed
by the query rewrite phase. Tutorial D queries
have a less rigid structure than the SQL SE-
LECT. . . FROM. . . WHERE. . . format. In par-
ticular, the placement of the union operator is
more flexible. Therefore some rewrite rules not
currently implemented in Ingres are suggested
as additions in order to optimize query forms
that would be unlikely to occur in SQL but are
commonplace in Tutorial D. There is scope for
adding further standardizations such as expand-
ing parentheses in arithmetic expressions. We are
considering these because multi-query optimiza-
tion can make big performance gains when two
equivalent subexpressions are identified. How-
ever, until the need for these rewrite rules is
demonstrated in usability testing we rely on users
writing their assignments in a consistent format
for these more trivial variations.

6 Dependency Graphs
The examples illustrate read-write dependencies
between the relvars, such as the local weather
depending on the global weather. These depen-
dencies are recorded using a dependency graph. A
dependency graph is a directed graph with la-
belled vertices G = (V,E, f ). G has a vertex for
each variable assigned, V = {V1, . . . , Vn} and an
arc Vi → V j if the assigned expression Ei might
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A B

30 70

(a) Dependency graph

A′ B

A

N/A 70

N/A

(b) Splitting A into before
state A′ and after state A

Figure 2: Splitting a vertex

yield different results before and after the assign-
ment Vj := Ej is performed. Informally, Vimust
be executed before Vj. Formally, Vi is dependent
on Vj if and only if Ei is not conditionally indepen-
dent of the update Vj := Ej, that is, Ei . Ei[Ej/V j]
for some database that satisfies the database in-
tegrity constraints [27]. E is a superset of the
dependencies because query dependence is un-
decidable in general. A dependency graph has
a self-loop on Vi if Ei refers to Vi. A cycle in-
volving two or more vertices indicates that there
is no sequential execution order that assigns the
correct values to all variables. Apart from a few
special cases, one of the relvars must be version
controlled to allow simultaneous access to both
its pre and post assignment values, thus breaking
the cycle (Figure 2) by splitting a vertex into two
vertices. Some other techniques for resolving cy-
cles in special cases are discussed in Section 8.
Self-loops must be tracked but unlike true cycles
many do not require special treatment, such as
simple insertions. The remainder are instances of
the well-known Halloween Problem, for which
DBMSs already include handling mechanisms al-
though version control is an alternative. The
vertex labelling function f estimates the cost of
the work needed to complete the update, pro-
duce version control information if needed and
the overhead incurred from reading different ver-
sions.

Views must be replaced by their definitions
to perform dependency analysis accurately. Sim-
ilarly, if an expression invokes a user-defined op-
erator then the operator definition must be ex-
amined to identify the relvars accessed in ad-
dition to the arguments. Greater precision can
be obtained by simultaneously performing opti-
mizations such as branching code elimination by
substituting constant arguments in place of their
formal parameters. Ingres does not currently per-
form any interprocedural optimization.

6.1 Arcs

Focussing specifically on deciding the arcs
needed in the dependency graph, two query con-
tainment checks are needed to establish if a query
is independent of an update, Ei ≡ Ei[Ej/V j]: Ei ⊆
Ei[Ej/V j] and Ei ⊇ Ei[Ej/V j]. Query contain-
ment checking is an established research prob-
lem [5, 20, 24, 26, 27] and in general the problem
is NP-complete [7] so no solution to this difficult
problem is attempted in the short space this paper
permits. Any sound and complete algorithm doc-
umented elsewhere can be incorporated into the
multiple assignment procedure. The approach
that we recommend is the CQC method [15] be-
cause the authors show that it covers a broader
class of queries than most previous methods, ex-
pands views and is at least as efficient as the other
algorithms they survey. Also, CQC can take ad-
vantage that it is sufficient that the queries are
equivalent only when the database conforms to
its integrity constraints. The CQC approach han-
dles the class of Datalog queries with negation
(restriction, projection, join, rename, union and
difference) and efficiently reasons about range re-
strictions for ordered data types. However, CQC
cannot handle aggregation and is severely lim-
ited for recursive queries. Description logic ap-
proaches improve on the latter but cannot han-
dle all select-project-join queries which are much
more commonly than recursion.

Briefly, the CQC approach tests Q1⊆Q2 by at-
tempting to find a minimal example database
where the query Q1 MINUS Q2 returns some tu-
ples. It sets out a proof using a tableau with five
columns:

1. Goal (initialized to Q1⊆Q2)
2. Conditions to enforce (negations not yet pro-

cessed, initialized to integrity constraints)
3. Example database constructed so far
4. Conditions to maintain (negations pro-

cessed)
5. Literals used

The proof proceeds using proof rules that do the
following transformations:

• Expand a view definition
• Make the database satisfy a non-negated

term (1→3, 5) (A term moves from column 1
to column 3 with possible changes to column
5. Columns as numbered above.)

• Make a negated term into an additional con-
straint (1→2)
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• Check a constraint (2→4, 5)

• Mark a constraint for rechecking (4→2)

When a query-update combination is not sup-
ported by the chosen independence checking
method the system must make the conservative
assumption that the query is dependent on the
update if it refers to any updated projections of
the updated relvar. This type of checking is sim-
ilar to checking database schema dependencies
and is much easier than the query independent
of update problem [18].

6.2 Vertex Labels

The labelling function f gives the cost of the
cheapest method of the two version control meth-
ods suggested. The primary suggested technique
uses the differences between the old relvar value
and the new value to rollback a page to obtain
the older version no longer held in the database.
The changes are obtained from the transaction
log. This is a form of delta compression and it
is already done by DBMSs that support multiple
table versions for multiversion concurrency con-
trol (MVCC) schemes, such as PostgreSQL, Ora-
cle and Microsoft SQL Server [32]. A variation is
to store the differences in the database itself, as in
Firebird [30]. Our implicit deletion technique is
intended for use with this method. Either way, an
existing MVCC system must be modified to allow
the query engine to explicitly choose which ver-
sion of a page the page manager supplies. Also,
to calculate the dependency graph labels the op-
timizer must estimate the cost of completing the
update and reconstructing the old version when
needed. This is unnecessary for MVCC because
there is no choice of which relvar to version.

When the delta compression technique is less
suitable the alternative version control technique
uses shadow copying to produce the new ver-
sion. When the old and new values have little
data in common, such as bulk unload operations,
simple shadow copying can outperform the delta
compression approach. Shadow copying can im-
prove performance in the same cases even if no
version control is needed because rows can be
deleted without individual row deletion actions.
The update cost for shadow copying is trivially
calculated and there is no read overhead.

The costs are more complicated for delta com-
pression. Conventional AIRES-style transaction
logging is assumed [21] because it is much more
common than other schemes such as Firebird’s.

CUpdate = CSearch + CRead + ·CRLog + CULog (7)

CSearch is the cost to use index lookups to find
existing tuples to update or delete and to con-
firm the non-existence of tuples to insert. CRead is
the cost for reading the actual tuples to modify.
CRLog is the cost of writing the changed pages to
disk as redo log entries and CULog is the cost to
write the undo log entries. Let the assignment
be V := E. CSearch + CRead is the cost of query-
ing the changed data, which is given by query
plans for V MATCHING E{K1,..., Kn} (finding ex-
isting keys) and E{K1,..., Kn} NOT MATCHING V
(confirming non-existence of new keys), where
K1,..., Kn constitute a candidate key for V.
Those query plans are subject to the restriction
that a single table scan is the only operation al-
lowed on E because materializing E as a tempo-
rary relvar would equate to shadow copying. The
combined number of changed and added tuples
is denoted by C.

Estimating the undo logging cost is straight-
forward under the simplifying assumption that
each changed tuple produces one fixed-length
log record. Let there be NL/P undo log records
per page and let the system write log records NPL
pages at a time. TSeek denotes the disk seek time
and TTrans denotes the block transfer time.

CULog =

⌈
C

NL/P ·NPL

⌉
· TSeek +

⌈
C

NL/P

⌉
· TTrans (8)

The redo logging cost depends on the num-
ber of pages modified, which in turn depends on
the locality of the affected tuples. For an unin-
dexed or hash indexed relvar the distribution is
essentially random. Let S denote the maximum
number of tuples that fit into the storage cur-
rently allocated to V and NT/P denote the num-
ber of tuples that fit into a page. The minimum
number of pages modified is dC/NT/Pe. The num-
ber of additional pages modified above the min-
imum follows a hypergeometric probability dis-
tribution. The probability of obtaining k affected
tuples from a sample of n tuple slots follows the
hypergeometric function f (k,S,C,n). Consider-
ing the pages sequentially with n pages accessed
so far, the probability that the ‘next’ page will
be modified is the probability of obtaining some
number of updated tuples r from n + NT/P tuple
slots with at least one from the next sample of
NT/P tuple slots. This is equivalent to sampling
from two independent populations where the pa-
rameters of the second one depend on the sample
taken from the first population.
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P(modify next page|updated r from n) =

P(update r from n)×

(1 − P(update 0 from next NT/P))

= f (r,S,C,n) × (1 − f (0,S − n,C − r,NT/P))
(9)

The unconditional probability is found by first
summing over r and then summing over n in in-
crements of NT/P (Equation 10). By numerical
analysis the summation was discovered equiva-
lent to a quartic equation in C (with small quanti-
zation errors) for fixed S and NT/P. The summa-
tion function passes though (1, 0), since when a
single tuple is modified there cannot be more than
one page modified in total, which is also the min-
imum number of pages. When C > S − NT/P the
number of additional pages is zero because the
minimum number of pages includes the whole
relvar. By inspection there is one maximum
at (1/3S, 1/2 · S/NT/P + NT/P). The quartic curve
can be approximated from these features by two
quadratic curves and a plateau.

For relvars with physical data clustering
(ISAM, BTree) the write cost is calculated using
the optimizer’s histogram estimation for query-
ing the changed tuples to assign a seek time for
each non-consecutive interval.

Estimating the overhead of reading the ver-
sion of a relvar that is not stored in the database
requires estimating how many updates will be
made by overlapping transactions. Thus is the
cost of rolling back a page to read the prior
version if updates have been written back to
database.

An in-memory table is used to record the
number of transactions that make modifications
to each relvar and the total number of transac-
tions processed. When a transaction is initiated
this counter is incremented and when it obtains a
write lock the relvar’s counter is incremented. If a
transaction rolls back then the counters are decre-
mented as the write locks are released. When a
counter reaches its maximum possible value all
of the counters are divided through by a small
fixed constant.

Prior to a multiple assignment statement the
DBMS computes the counter for each source
relvar divided by the number of transactions
counter to determine the proportion of recent
transactions that have written to each relvar.
Multiplying the result by the number of active
read/write transactions gives an estimate of the
length of the log record chain that must be inter-
rogated to rollback a page.

7 Multi-Query Optimization
The expressions E1..En are queries that can be
evaluated in any order. Normally a query op-
timizer optimizes each query independently as
they arrive. However, multiple assignment in-
herently presents the queries E1..En to the sys-
tem simultaneously. The sum of the cost of the
best execution plan for each query considered in-
dependently may be more than the cost of the
best plan that considers them together because of
commonality between queries. Multi-query op-
timization (MQO) is more complicated than the
common subexpression elimination that is often
performed in a regular programming language
compiler, or sometimes in hardware [28].

1. The query language is very expressive so se-
mantic properties are compared rather than
input text comparisons, hence the effort ex-
pended during parsing and query rewrite to
put equivalent queries into a consistent for-
mat.

2. The only requirement is that two or more
queries can execute faster if the result of an-
other query is precomputed. For example
R{X, Y} and R{Y, Z} have the common ex-
pression R{X, Y, Z} even though it is not a
common subexpression.

3. The common expression must be temporar-
ily stored somewhere. Relations are large
data structures that do not usually fit into
main memory so extracting a common ex-
pression incurs a cost that must be weighed
against the cost saving. Modifying query
plans to share a common expression is not
always advantageous.

4. Reading from the precomputed common ex-
pression can become a bottleneck.

The first three problems are described well
by Zhou et al. [34]. The forth problem can be
addressed using a shared table scan technique
[6]. As with query independence checking any
available MQO algorithm can be used for multi-
query optimization of multiple simultaneous as-
signments. However, we recommend the Zhou
et al. approach because it has a proven implemen-
tation in a Microsoft SQL Server prototype that
unlike many academic prototypes has a similar
architecture to other industrial strength DBMSs.
Our query rewrite rules attempt to move unions
outward to maximize the size of the parse sub-
trees composed of only restriction, projection,
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CRLogUnsorted =
( 1
NPL
· TSeek + TTrans

)
×( ⌈

C
NT/P

⌉
+

S−NT/P, NT/P∑
n=

⌈
C

NT/P

⌉
·NT/P

min(C,n)∑
r=max(C−S+n,

⌈
C

NT/P

⌉
+1)

f (r,S,C,n)(1 − f (0,S − n,C − r,NT/B))
) (10)

join and aggregation because these are the inputs
to the Zhou et al. algorithm.

To briefly survey the issues involved in select-
ing an MQO algorithm: if there are n expressions
that can share a common expression then the po-
tential saving is n− 1 times the cost of evaluating
the common expression. The costs incurred are:

1. 1 × the evaluation cost remains

2. 1 ×materializing the common expression

3. n × reading the common expression back in
(can be reduced using shared scans)

4. Any additional operations to extract the re-
quested data (e.g. further projections on R{X,
Y, Z} above)

A significant problem is that adding MQO makes
query optimization non-compositional. That is,
the best plan for a query cannot necessarily be ob-
tained by combining the best plans for its parts
because those plans must take a share of the single
evaluation and materialization costs. However,
the number of participants that can benefit from
a shared evaluation is unknown until a complete
plan is produced. This problem is solved either
by charging the shared costs to a common an-
cestor or by charging them at the point of use
based upon a heuristic estimate of the number
of consumers. Heuristics proposed include the
number of uses in the best plan obtained with-
out MQO [3], greedy algorithms, A* search and
genetic algorithms [2]. The overall multi-query
optimization algorithm can use text matching, an
explicit search for compatible parse tree pieces
(as in Zhou et al.), representing all possible query
plans using a graph-based approach [3], costing
the whole query plan by genetic algorithm, or
by top-down analysis to devise the most benefi-
cial view to partially cover the query expressions
[23]. However, text matching is more limited
than the other approaches and of the remain-
ing approaches only a parse tree search can be
retrofitted to a DBMS that uses standard bottom-
up optimization.

E is derivable from V if and only if E can be
computed by applying a sequence of in place up-
date operations to V. In place update operations
are: union, disjoint-union, intersection, semi-
join, anti-join, substitution, restriction and transi-
tive closure. If an operator has a second relation-
typed argument then that is permitted to be an ar-
bitrary relational expression. For example, V :=
(V UNION R1) MINUS R2 can be transformed into
INSERT V R1; DELETE V R2;, or more precisely
internal versions of insert and delete that do
not check integrity constraints. In place updates
are usually considerably more efficient than (re-
)materializing every tuple.

When a common expression CE is evaluated
once for {V1, . . . , Vm} (without loss of generality)
the dependency graph is updated as follows.

If some Vk ∈ {V1, . . . , Vm} is derivable from CE
(Figure 3b):

1. Create CE:

(a) Create a vertex for CE. Add outgoing
arcs for the variables CE depends on.

(b) Wherever there is an arc Vi → Vk for
some Vi replace it by an arc Vi→ CE.

2. Add usage arcs:

(a) Add arcs fromCE to each of {V1, . . . , Vm}\
{Vk}.

(b) Add arcs from {V1, . . . , Vm} \ {Vk} to Vk.

3. Recheck dependencies: For each of
{V1, . . . , Vm} check that the other outgoing de-
pendencies are still necessary, ignoring vari-
able references within CE. Delete the arcs for
any unnecessary dependencies.

Vk is described as derived from CE.
Otherwise (Figure 3c):

1. Create CE: Create a vertex for CE. Add outgo-
ing arcs for the variables CE depends on.

2. Add usage arcs: Add arcs from CE to each of
{V1, . . . , Vm}.
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3. Recheck dependencies: For each of
{V1, . . . , Vm} check that the other outgoing de-
pendencies are still necessary, ignoring vari-
able references within CE. Delete the arcs for
any unnecessary dependencies.

8 Dependency Cycles
If and only if the dependency graph does not con-
tain any cycles (self-loops are permitted) then an
ordering exists such that every assignment Ei :=
Vi is executed before any assignments to the rel-
vars that Ei refers to. Cycles must be removed,
for which four methods have been identified.

1. Version control

2. Catalog permutation

3. Further common expression factoring

4. Multi-query deoptimization

Only version control is universally applica-
ble, while the other methods handle special cases.
Catalog permutation has negligible cost. The
costs for version control were discussed in Sec-
tion 6. The other methods use information calcu-
lated during multi-query optimization.

Finding the minimum cost of removing all
cycles is more complicated than identifying the
cheapest break-point on each cycle because a ver-
tex can participate in multiple cycles. The prob-
lem, known as the minimum feedback vertex set
problem, is NP-complete. However a reasonable
approximation obtained quickly is sufficient for
query optimization. Speed is especially impor-
tant for small dependency graphs — the graph
is constructed from a single multiple assignment
statement so usually there are only a few vertices.

Using version control to split a vertex par-
ticipating in multiple cycles breaks all of them
for a single cost but splitting the vertex with
the smallest weight is the cheapest way to break
an individual cycle. Demetrescu and Finocchi
[13] addressed this conflict by splitting the ver-
tex with the smallest weight and subtracting the
weight from the other vertices in the cycle. With
the weights reduced they are more likely to be
selected for breaking another cycle that is sub-
sequently considered. If this occurs then two
vertices have been split from the same cycle so
a second phase recombines unnecessarily split
vertices. The technique is extended similarly for
the other cycle removal methods. Matrix mul-
tiplications dominate the asymptotic complexity

and the approximation factor is the longest cycle
length.

To split a vertex Vk into a pre-assignment
value Vk and a post-assignment value Vk′ (Fig-
ure 2):

1. Create the vertex Vk′

2. For all Vj replace any arc Vk→Vj with
Vk′ →Vj

3. For all Vi replace any arc Vi→Vk previously
added by step 2 of multi-query optimization
by Vi→Vk′.

Vk cannot be a candidate to split if it is derived
from a common expression because an implau-
sible directed path from the derived expression
to the expression it derives from would remain.
Other consumers can be split (e.g. B in Figure 3c)
but if the common expression participates in the
cycle then the cycle remains because of step 3
above and the split is unproductive.

Catalog Permutation Although the multiple as-
signment X := Y, Y := X; has a dependency
cycle it can be executed in constant time. The
database catalog is updated so the identifier X
points to the storage location previously allocated
to Y and vice versa. The catalog update action is
represented by a new vertex (Figure 4). In gen-
eral, permutation is applicable whenever there is
a cycle where none of the participating vertices
are derived assignments from a common expres-
sion and no participants have self-loops. When
a permutable cycle contains a subcycle then per-
muting the longest cycle breaks both cycles and
gives greater concurrency. Vertices preceding the
cycle can be placed before or after permutation (C
in Figure 4).

Cycles and MQO Let G = (V,E, f ) be a depen-
dency graph and G′ = (V′,E′, f ′) be obtained by
performing multi-query optimization on G with
a common expression CE. Let {C1, . . . , Cn} be the
consumers of CE.

Theorem 5. Let Ck be a derived assignment. If G
has a cycle that contains Ck but no other consumers,
Ck→ Vi→ . . .→ Vj→ Ck, then G′ has a cycle that
contains CE.

Proof. (outline) By the rule for applying MQO to
a dependency graph:

Case 1: CE depends on Vi. G′ has a cycle
CE→ Vi→ . . .→ Vj→ CE.
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A B

C D

40 100

70 80

(a) Dependency graph

A B

CE

C D

40 N/A

50

70 30

(b) B derived from CE

A B

CE

C D

40 50

50

70 30

(c) B & D not derivable from CE

Figure 3: Multi-Query Optimization: B and D share a common expression involving C

C A D

B

(a) Dependency graph

C B

P

A D

(b) After catalog permutation

Figure 4: Removing the cycle A → B → A by
permuting the storage locations of A and B

Case 2: Ck depends on Vi outside of the com-
mon expression. G′ has cycles CE → Ci → Ck →
Vi → . . . → Vj → CE for each consumer Ci (ex-
cept Ck).

Case 1, Case 2 or both always apply.

Theorem 6. If there is no derived assignment and
G has a cycle that contains exactly one consumer Ck,
Ck → Vi → . . . → Vj → Ck, and Ck depends on Vi
outside of the common expression then G′ has a cycle
that contains Ck.

Proof. (outline) No arcs are removed by the rule
for applying MQO to a dependency graph in this
case. Therefore the cycle in G is preserved in G′.

Theorem 7. If G′ has a cycle CE → Ci → Ck →
Vi→ . . .→ Vj→ CE for consumers Ci and Ckwhere

Ck is a derived assignment, then G has a cycle (or a self-
loop if {Vi, . . . , Vj} = ∅) Ck→ Vi→ . . .→ Vj→ Ck.

Proof. omitted.

Theorem 8. MQO with no derived assignment can-
not introduce cycles.

Proof. By definition of the MQO dependency
graph rule the common expression has no incom-
ing arcs.

MQO where one consumer is derived from
the common expression adds two classes of arcs,
either of which can introduce a cycle, though
no introduced cycle includes both classes of arc
added by the same optimization (Theorem 7):
(i) arcs from common expressions to consumers,
and (ii) arcs to the derived assignment from other
consumers. Three levels of multi-query deop-
timization are possible: (i) changing a derived
assignment to a non-derived one (therefore mak-
ing it not performed “in place”), (ii) removing the
problematic consumer as a consumer, and (iii) to-
tal deoptimization.

9 Integrity Constraints
Integrity constraint checking introduces addi-
tional read dependencies to consider. An in-
tegrity constraint is a proposition that a given
query does not produce any tuples. A vertex
is added to the dependency graph for each in-
tegrity constraint and an arc is added from each
relvar that a constraint is dependent upon to that
constraint. Constraint vertices never have out-
going arcs so cycles are not possible. Defining
constraints using queries allows constraints to
participate in multi-query optimization.
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10 Transitive Dependencies
Any transitive arcs remaining once the graph is
acyclic are redundant. Redundant arcs can im-
pair performance in a distributed environment
because each arc requires a communication to the
coordinator node. The transitive reduction of the
dependency graph is found by first computing
the transitive closure and applying Boolean ma-
trix algebra operations [25].

11 Code Generation
Some of the syntactic constructs canonized dur-
ing parsing suggest query plans that the canon-
ical equivalents do not. For example, insert
suggests a more efficient algorithm than an as-
signment where the right-hand side contains a
d union invocation. The canonical form provides
a compact intermediate representation to sim-
plify programming the optimizer. It also ensures
equal performance irrespective of how the user
states their update. However, an additional step
is needed during code generation to select the
best low-level operator such as “insert” or “gen-
eral assign” to implement the intermediate rep-
resentation. A similar selection process already
happens for queries to choose the best join algo-
rithm (for example hashed lookup versus sort-
merge).

Some assignments can be executed in paral-
lel while others must wait for dependent assign-
ments to complete. The dependency graph is
used to schedule the assignments. Each vertex
has a counter that is initialized to the number of
incoming arcs and protected by a mutex. There is
a queue of pending jobs and a pool of worker
threads. Threads execute an assignment and
decrement the counters of all immediately pro-
ceeding vertices. A Counter reaches zero when
all dependent assignments have been executed
and the corresponding vertex becomes a pend-
ing job. Threads must frequently inspect a global
flag that signals when a rollback is needed.

SQL does not support relvar assignment,
only the shorthand insert, delete and update.
An assignment V := E can be implemented in
three ways.

1. Identifying the insert, delete and update
operations that transform the current value
of V into E and using them to update V in
place. E is derived from V.

2. Generalized assignment. E must be fully

computed, although only one tuple needs
to be materialized at any time.

3. Proving that there are no deletions and op-
timizing the generalized assignment proce-
dure accordingly.

4. Similarly, proving that all changes are dele-
tions.

Derived assignments have already been dis-
cussed in connection with MQO. Here E derives
directly from V whereas for MQO E derives from
the common expression CE, which itself may or
may not derive from V or another common ex-
pression. Thus an assignment can sometimes be
separated into a derived part handled by in place
operations and a non-derived part handled by
generalized assignment. Query rewrite rules that
attempt to maximize the part updated in place
have been identified but are omitted here because
of space constraints.

Generalized assignment has two phases and
relies on a flag stored beside each row that indi-
cates if it is new or has been updated, together
with a field in the page header that records the
transaction number of the last transaction that
modified the page. This is a standard solution to
the Halloween problem that is extended for gen-
eralized assignment. E is evaluated as a pipelined
query and the tuples are fed to the assignment
operator which either inserts or updates an exist-
ing row or “touches” an existing row (sets the flag
without any update). The second phase performs
a table scan on V and deletes any rows without the
flag set. This can be eliminated by assuming im-
plicit deletion if the DBMS implements multiver-
sion concurrency control in the database rather
than the transaction log. The flags are replaced by
timestamps and if the row timestamp indicates an
expired version them whenever the relvar is read
then the row is known as having been deleted and
is ignored. The second phase can also be elim-
inated if the query containment checking sub-
routine used to construct the dependency graph
can be invoked to prove that V := E does not
delete any tuples from V, that is V{K1,..., Kn} v
E{K1,..., Kn}, where {K1, . . . , Kn} is a key.

12 Related Work
Multiple simultaneous assignment was first de-
scribed by Dijkstra [14] and its problem solving
importance was subsequently discussed by Floyd
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[16]. Some programming languages have multi-
ple assignment, either of the kind discussed or of-
ten a very limited version where all participating
variables must be assigned the same value. No-
tably the SQL update statement applies updates
to multiple attributes simultaneously. However,
attributes typically hold small amounts of data
such as integers. We are not aware of any work
that attempts a solution other than copying, de-
spite modern SQL supporting user-defined types.
Reference [19] is the only known work discussing
efficiency. It describes a technique for minimiz-
ing the number of temporary variables used but
the result is not necessarily minimal because the
minimum feedback vertex set is not considered.
“Multiple assignment” is also used to describe
multiple assignments contained in the same state-
ment that get executed sequentially, not simulta-
neously [33].

Multiple simultaneous assignment has
equivalent semantics to an exclusive write
PRAM. However prototype PRAM implementa-
tions do not support atomic operations on large
data structures [1]. There are also similarities
with the transaction scheduling problem [17].
However, some transaction schedules are always
possible (non-interleaved, sequential) whereas
dependency cycles are inherent in some multiple
assignment statements.

13 Conclusion
We presented Date and Darwen’s multiple as-
signment construct with a view to producing
an efficient implementation suitable for large
databases. A naive implementation prevents in-
terference between assignments by copying the
pre-assignment value of every variable into a
temporary variable. We determine which assign-
ments might interfere by using query contain-
ment checking to produce a dependency graph
and avoid making complete copies by using ver-
sion control techniques to record changes only.
Also, SQL’s lack of support for a general rel-
var assignment operator necessitated investigat-
ing efficient execution for an individual assign-
ment. In addition to the challenges we consid-
ered performance related opportunities, includ-
ing multi-query optimization, parallel execution
and in particular how multi-query optimization
interacts with resolving dependency cycles. We
briefly discussed how integrity constraint en-
forcement procedures interact with multiple as-
signment, which we intend to conduct further

work on. The next stage is to produce a quan-
tified evaluation of our work. A working im-
plementation of our techniques is not yet avail-
able because they involve substantial additions
to many different components of the DBMS and
our knowledge of the Ingres source code is lim-
ited. Generating appropriate performance tests
requires careful consideration. Generic bench-
mark tests such as the TPC benchmarks are inap-
propriate because they do not exhibit the qualities
that make some multiple assignments more chal-
lenging than others, such as dependency cycles.
However, once suitable tests are constructed reli-
able numerical performance results could be pro-
duced prior to an implementation by applying
our techniques manually and entering procedu-
ral SQL statements that mimic our code genera-
tion phase.
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