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Abstract:Therecent advances in computer animation, motion image processing, robotics and so on prompted us to
analyze computational complexity of four-dimensional pattern processing. Thus, the research of four-dimensional
automata as a computational model of four-dimensional pattern processing has also been meaningful. From this
viewpoint, we introduced a four-dimensional alternating Turing machine (4-ATM) operating in parallel. In this
paper, we continue the investigations about 4-ATM’s, deal with a four-dimensional synchronized alternating Turing
machine (4-SATM), and investigate some properties of 4-SATM’s which each sidelength of each input tape is
equivalent. The main topics of this paper are:

(1) hierarchies based on the number of processes of 4-SATM’s, and

(2) recognizability of connected pictures by 4-SATM’s.
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1 Introduction

The question of whether processing four-dimensional
digital patterns is much difficult than two- or three-
dimensional ones is of great interest from the theo-
retical and practical standpoints[3,4]. In recent years,
due to the advances in many application areas such
as motion image processing, computer animation, and
so forth, the study of four-dimensional pattern pro-
cessing has been of crucial importance. Thus, the
study of four-dimensional automata as the compu-
tatinal model of four-dimensional pattern prcessing
has been meaningful. From this viewpoint, we intro-
duced a four-dimensional alternating Turing machine
(4-ATM )[18-33,44,53-58,63-67].

On the other hand, Alternating Turing machines
were as a model of parallel computation[5,8,12,34-
37,45,46,52]. Informally, an alternating Turing ma-

chine is a generalization of a nondeterministic Turing
machine which can, at some point during a compu-
tation, split into several processes working in parallel
and independently; an input is accepted if all paral-
lel processes finish in accepting configurations. How-
ever, the alternating Turing machine is not a realis-
tic model for realworld computers, because it does
not allow any communications among its processes.
synchronized alternating Turing machines were intro-
duced in [13-15,17] to study the effect of allowing
processes of an alternating Turing machine to com-
municate via synchronization. Informally, a synchro-
nized alternating machine is an alternating machine
with a special subset of internal states called synchro-
nizing states. Each of these synchronizing states is
associated with a synchronizing symbol. If, during
the course of computation, some process enters a syn-
chronizing state, then it has to wait until all other pro-
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cesses entereither an accepting state or a synchroniz-
ing state with the same synchronizing symbol. When
this happens, all processes are allows to continue their
computation; otherwise, the machine is said to have
a deadlock. A computation is successful if no dead-
locks occur and all processes terminate in accepting
states. It turns out that synchronization significantly
increases the computaional power of alternating Tur-
ing machines.

In this paper, we continue the investigations about
4-ATM’s, deal with a four-dimensional synchronized
alternating Turing machine (4-SATM ), and investi-
gate some properties of4-SATM ’s which each side-
length of each input tape is equivalent. In this section,
we provide a background and a motive for our study
of four-dimensional automata. Section 2 summarizes
the formal definitions and notations necessary for this
paper. Section 3 investigates hierarchies based on the
number of processes (hardware hierarchies) of four-
dimensional synchronized alternating finite automata,
and shows that for four-dimensional synchronized al-
ternating finite automata,k + 1 processes are more
powerful thank processes for anyk ≥ 1. Section 4
investigates recognizability of connected pictures by
seven-way four-dimensional synchronized alternating
Turing machines with only universal states, and shows
that (1) the necessary and sufficient space for these
machines to accept the complement ofTc (whereTc

denotes the set of all the connected pictures) ism3,
and (2) seven-way four-dimensional synchronized al-
ternating finite automata can acceptTc. Finally, Sec-
tion 5 concludes this paper by giving several open
problems.

2 Preliminaries

Definition 2.1.

Let Σ be a finite set of symbols. Afour-
dimensional input tapeover Σ is a four-dimensional
rectangular array of elements ofΣ. The set of all
the four-dimensional input tapes overΣ is denoted
by Σ(4). Given an input tapex ∈ Σ(4), for each
j (1 ≤ j ≤ 4), we let lj(x) be the length ofx
along thejth axis. The set of allx ∈ Σ(4) with
l1(x) = m1,l2(x) = m2,l3(x) = m3 and l4(x)=m4

is denoted byΣ(m1,m2,m3,m4). If 1 ≤ ij ≤ lj(x) for
eachj (1 ≤ j ≤ 4), let x(i1, i2, i3, i4) denote the
symbol inx with coordinates (i1, i2, i3, i4). Further-
more, we definex[(i1, i2, i3, i4),(i′1, i

′
2, i

′
3, i4)], when

1 ≤ ij ≤ i′j ≤ lj(x) for each integerj (1 ≤ j ≤ 4),
as the four-dimensional input tapey satisfying the fol-
lowing;

(1) for eachj (1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;

(2) for each r1, r2, r3, r4 (1 ≤ r1 ≤
l1(y), 1 ≤ r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y),1 ≤
r4 ≤ l4(y)), y(r1,r2,r3,r4)=x(r1+i1-1,r2+i2-1,r3+i3-
1,r4+i4-1). (We call x[(i1,i2,i3,i4),(i′1,i′2,i′3,i′4)] the
[(i1,i2,i3,i4),(i′1,i′2,i′3,i′4)]-segment ofx.)

We now introduce afour-dimensional synchro-
nized alternating Turing machine.

Definition 2.2.

A four-dimensional synchronized alternating Tur-
ing machine (denoted by4-SATM ) is a 10-tupleM
= (Q, q0, U , E, S, F , Σ, Π, Γ, δ), where

(1) Q = U ∪ E ∪ S is a finite set ofstates,

(2) q0 ∈ Q is theinitial state,

(3) U is the set ofuniversal states,

(4) E is the set ofexistential states,

(5) S ⊆ {(q, s) : q ∈ U ∪ E, s ∈ Π} is the set
of synchronizing states(s-states),

(6) F ⊆ Q is the set ofaccepting states,

(7) Σ is a finite input alphabet(# /∈ Σ is the
boundary symbol),

(8) Π is a finite alphabet of synchronizing sym-
bols,

(9) Γ is a finitestorage tape alphabetcontaining
the specialblank symbolB,

(10)δ ⊆ (Q×(Σ∪{#})×Γ)×(Q× (Γ−{B}) ×
{east,west,south,north,up,down,future,past,no move}
× {left,right,no move}) is thenext-move relation.

M has a read-only four-dimensional input tape
with boundary symbols #’s (# /∈ Σ) and one semi-
infinite storage tape, initially filled with the blank
symbols.M begins in stateq0. A positionis assigned
to each cell of the input tape and the storage tape. A
stepof M consists of reading one symbol from each
tape, writing a symbol on the storage-tape, moving the
input and storage-tape heads in specified directions,
and entering a new state, according to the next move
relationδ. When a processP enters a synchronizing
state, it stops and waits until all the parallel processes
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either enterthe states with the same synchronizing el-
ement or stop in accepting states.

Definition 2.3.

An instantaneous description(ID) of a
4-SATM M = (Q, q0, U , E, S, F , Σ, Π, Γ,
δ) is a pair of an element ofΣ(4) and an element of

CM = (N ∪{0})4×SM , SM = Q×(Γ−{B})∗×N,

where N denotes the set of all positive inte-
gers. The first component of anID I =
(x, ((i1, i2, i3, i4), (q, α, k))) represents the input to
M , and the first component(i1, i2, i3, i4) of the sec-
ond component ofI represents the input head posi-
tion (0 ≤ i1 ≤ l1(x) + 1, 0 ≤ i2 ≤ l2(x) + 1, 0 ≤
i3 ≤ l3(x) + 1), 0 ≤ i4 ≤ l4(x) + 1), and the sec-
ond component (q, α, k) of the second component of
I represents the state of the finite control, nonblank
contents of the storage tape, and the storage head po-
sition (1 ≤ k ≤ |α|+ 1). An element ofCM is called
a configurationof M , and an element ofSM is called
astorage stateof M .

An ID is universal (existential, synchronizing,
accepting) depending on the type of the state of the
finite control. Theinitial ID of M on input x is
IM (x) = (x, ((1, 1, 1, 1), (q0, λ, 1))), whereλ is the
null word.

Definition 2.4.

SupposeI1 andI2 are twoID’s of M andI2 fol-
lows from I1 in one step according to the next-move
relationδ. Then we writeI1 ⊢M I2 and say thatI2 is
a successorof I1. The reflexive transitive closure of
⊢M is denoted by⊢∗

M .
A sequence ofID’s of M , I0, I1, . . . , Im(m ≥

0), is called asequential computationof M if I0 ⊢M

I1 ⊢M · · · ⊢M IM . If I0 = IM (x) for somex, we
call this sequence a computation path ofM onx[1].

The full computation treeof M on an input tape
x is a (possibly infinite) labeled tree⊢M

x (Each branch
of ⊢M

x is called aprocess.) such that

(1) each nodev is labeled by someID Iv of M ,

(2) the root is labeled byIM (x),

(3) v2 is a direct descendant ofv1 iff Iv1 ⊢M Iv2 .

Thesynchronizing sequence(s-sequence) of a nodev
in a full computation treeT with root v0 is the se-
quence of synchronizing symbols occuring in labels of
the nodes on the path fromv0 to v. Two s-sequences

arecompatibleif one is a prefix of the other. Ifs1 and
s2 are two compatible s-sequences, ands2 is longer
thans1, then we uses2−s1 to denote their difference.

A computation treeof M on an inputx is a (pos-
sibly infinite) subtreeT ′ of the full computation tree
TM

x satisfying the following conditions:

(1) if u is an internal (non-leaf) node of the tree
T ′, Iu is universal and{I | Iu ⊢M I} = {I1, . . . , Im},
thenu has exactlym childrenv1, . . . , vm, such that
Ivi = Ii, 1 ≤ i ≤ m,

(2) if u is an internal node of the tree andIu is
existential, thenu has exactly one chiledv such that
Iu ⊢ Iv,

(3) For arbitrary nodesu and v of T ′, the s-
sequencesof u andv are compatible.

If M on inputx has no computation trees, then
any subtree ofTM

x that satisfies the first two condi-
tions above must have two processes with incompati-
ble s-sequences. In this case, we sayM deadlockson
x. The two processes with incompatible s-sequences
are calleddeadlock processesand the nonmatching s-
states causing the deadlock are calleddeadlock states.

The longest synchronizing sequence of a node in
the computation treeT is called thesynchronizing se-
quence of the computation treeT .

An accepting computation treeof M on an input
x is a finite computation tree ofM onx such that each
leaf node is labeled by an acceptingID. We say that
M acceptsx if there is an accepting computation tree
of M onx. Let T (M) = {x ∈ Σ(4) | M accepts x}.

We next introduce aseven-way four-dimensional
synchronized alternating Turing machinewhich can
be considered as a synchronized version of seven-way
four-dimensional alternating Turing machine [44].

Definition 2.5.

A seven-way four-dimensional synchronized al-
ternating Turing machine(denoted bySV 4-SATM )
is a 4-SATM M = (Q, q0, U,E, S, F,Σ, Π, Γ, δ),
such that

δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q × Γ − {B})×
{east, west, south, north, down, future, no move} ×
{left,right, no move}).

That is, anSV 4-SATM is a 4-SATM whose in-
put head can move east, west, south, north, up, down,
or in the future direction, but not in the pust direction.

Definition 2.6.
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Let L(m) : N → N be a function with one
variablem. With each 4-SATM(or SV 4-SATM )
M we assosiate aspace complexity functionSPACE
which takesID’s to natural numbers. That is, for
eachID I = (x,((i1,i2,i3,i4),(q,α,k))), let SPACE(I)
be the length ofα. We say thatM is “L(m) space-
bounded” if for all m and for all x with l1(x) =
l2(x) = l3(x) = l4(x) = m, if x is accepted byM ,
then there is an accepting computation tree ofM on
input x such that for each nodeπ of the tree, SPACE
(I(π)) ≤ L(m). By “4-SATM(L(m))” (“ SV 4-
SATM(L(m))”) we denote anL(m) space-bounded
4-SATM (SV 4-SATM) which each sidelength of
each input tape is equivalent[9-11,38,40,61,62].

Four-dimensional alternating Turing machines
(4-ATM ’s) and seven-way four-dimensional al-
ternating Turing machines (SV4-ATM ’s) in
[44] are 4-SATM ’s and SV 4-SATM ’s, respec-
tively, which have no synchronizing states. We
use 4-SUTM (SV 4-SUTM, 4-UTM, SV 4-
UTM ) to denote a 4-SATM (SV 4-SATM,
4-ATM, SV 4-ATM) which has no existential
states. By 4-ATM(L(m)) (SV 4-ATM(L(m)),
4-SUTM(L(m)), SV 4-SUTM(L(m)), 4-
UTM(L(m)), SV 4-UTM(L(m))), we denote
an L(m) space-bounded 4-ATM(SV 4-ATM,
4-SUTM, SV 4-SUTM , 4-UTM, SV 4-UTM ).

A four-dimensional deterministic Turing ma-
chine (4-DTM) (seven-way four-dimensional de-
terministic Turing machine(SV 4-DTM )) is a 4-
ATM (SV 4-ATM) whose ID’s each have at
most one successor, and afour-dimensional non-
deterministic Turing machine(4-NTM) (seven-
way four-dimensional nondeterministic Turing ma-
chine (SV 4-NTM)) is a 4-ATM which has no
universal states. We denote anL(m) space-
bounded 4-DTM(4-NTM, SV 4-DTM, SV 4-
NTM ) by 4-DTM(L(m)) (4-NTM(L(m)), SV 4-
DTM(L(m)), SV 4-NTM(L(m))). We use 4-
SAFA (SV 4-SAFA, 4-AFA, SV 4-AFA, 4-NFA,
SV 4-NFA, 4-DFA,SV 4-DFA) to denote afour-
dimensional synchronized alternating finite automa-
ton (seven-way four-dimensional synchronized alter-
nating finite automaton,four-dimensional alternat-
ing finite automaton, seven-way four-dimensional al-
ternating finite automaton, four-dimensional non-
deterministic finite automaton, seven-way four-
dimensional nondeterministic finite automaton, four-
dimensional deterministic finite automaton, seven-
way four-dimensional deterministic finite automa-
ton)[56]. That is, a 4-SAFA(SV 4-SAFA, 4-
AFA, SV 4-AFA, 4-NFA, SV 4-NFA, 4-DFA,
SV 4-DFA) is a 4-SATM (SV 4-SATM, 4-ATM,
SV 4-ATM , 4-NTM , SV 4-NTM, 4-DTM , SV 4-
DTM ) which doesn’t have storage tape. Simi-

larly, we use 4-SUFA(SV 4-SUFA, 4-UFA, SV 4-
UFA) to denote a 4-SUTM (SV 4-SUTM , 4-
UTM , SV 4-UTM ) which doesn’t have the stor-
age tape. Furthermore, for any integerk ≥
1, 4-SATM(L(m))[k] is used to denote a 4-
SATM(L(m)) such that any computation tree
of M on any input x has at mostk leaves.
SV 4-SATM(L(m))[k], 4-SUTM(L(m))[k], . . .,
4-SAFA(L(m))[k], etc. have the similar mean-
ing. For any integerk ≥ 1, 4-NFA(k-heads) (4-
DFA(k-heads)) is used to denote a 4-NFA (4-DFA)
which hask input heads. For any machine class C, let

L [C]={T | T = T (M) for someM in C }.

Thus, for example,L[4-SATM(L(m))] denotes
the class of sets accepted by4-SATM(L(m))’s.

3 Hierarchy Based on the Number of
Processes

It is shown in [30] that for two-dimensional alternat-
ing finite automata,k+1 processes are more powerful
thank processes for anyk ≥ 1. This section shows
that a similar result holds also for four-dimensional
synchronized alternating finite automata.

We will need the following operationρ mapping
one-dimensional words over an alphabetΣ to four-
dimensional input tapes which each sidelength of each
input tape is equivalent overΣ×Σ×Σ×Σ. This oper-
ation was first introduced in [47]. Letw = a1a2 · · ·an

be a word of lengthn. Then ρ (w) = x where
x (i, j, k, l) = (ai, aj , ak, al) for 1 ≤ i ≤ n, 1 ≤
j ≤ n, 1 ≤ k ≤ n and1 ≤ l ≤ n. Thus a sym-
bol of x in a certain row, column, plane and cube has
the corresponding symbol ofw in the first, second,
third, and fourth component, respectively. A word
w = a1a2 · · · an is mapped to

(a1, a1, a1, a1) (a1, a2, a1, a1) · · · (a1, an,
a1, a1) (a2, a1, a1, a1) (a2, a2, a1, a1) · · · (a2, an,
a1, a1) · · · · · · · · · · · · (an−1, a1, an, an) (an−1, a2, an, an) · · · (an−1, an,
a

This operation is extended in the usual way to lan-
guages.

For eachk > 1, let 1-NFA(k-heads) denote
a one-dimensional two-way nondeterministick-heads
finite automaton [39].
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Lemma 3.1. For eachk ≥ 1, a one-dimensional lan-
guageL is accepted by a 1-NFA(4k-heads) if ad
only if ρ(L) ∈ L [4-NFA(k-heads)].

Proof: We only prove the lemma for the case of
k = 1. The 1-NFA(4-heads) simulates the 4-NFA
by storing the information of row, column, plane and
cube in its head positions. It assembles the quartet
from the symbols read by the heads.

Conversely the 4-NFA verifies that the first (sec-
ond, third,fourth) components of input symbols within
every row (column, plane, cube) agree. Then the 4-
NFA starts a step by step simulation by storing the
first head-position as the current row number, the sec-
ond head-position as the current column number, the
third head-position as the current plane number, and
the fourth head-position as the current cube number,
respectively. The currently scanned symbols are avail-
able as the components of the symbol fromΣ read by
the head. �

It is shown in [39] that the following lemma
holds.

Lemma 3.2. For eachk ≥ 1, L[1-NFA(k-heads)]
( L[1-NFA((k + 1)-heads)].

From Lemmas 3.1 and 3.2, we can get the follow-
ing theorem.

Theorem 3.1. For any integerk ≥ 1,

L[4-NFA(k-heads)] ( L[4-NFA((k+1)-
heads)].

Proof: Let us suppose that

L∈L[1-NFA((4k+4)-heads)]−L[1-NFA(4k-
heads)] · · · (1).

Then we haveρ(L) ∈ L[4-NFA((k + 1)-heads)]
from Lemma 3.1. Now, we assume thatρ(L) ∈ L[4-
NFA(k-heads)]. Then, we would haveL ∈ L[1-
NFA(4k-heads)] from Lemma 3.1. This contradicts
(1), and thus we haveρ(L) /∈ L[4-NFA(k-heads)].
This completes the proof of the theorem. �

From Theorems 5.2 (1) of [31] and Theorem 3.1,
we have

Corollary 3.1.

For any integerk ≥ 1,

L [4-SAFA[k]] ( L[4-SAFA[k+1]].

4 Recognizability of Connected Pic-
tures

There have been many interesting investigations on
digital geometry [2,6,7,16,41,48-51]. These works
form the theoretical foundation of digital image pro-
cessing. Among them, the problem of recognizabil-
ity of connectedness is one of the most interesting
topics. In [59,60,68], Yamamoto, Morita, and Sug-
ata showed that a three-dimensional nondeterminis-
tic one-marker automaton can recognize connected
tapes. In the case ofL(m) space-bounded five-way
three-dimensional deterministic Turing machine, they
proved that spacem2log m is necessary and suffi-
cient among for recognizing connected tapes of size
m×m×m. In [43], Nakamura and Rosenfeld showed
that three-dimensional connected tapes are not rec-
ognizable by any three-dimensional deterministic or
nondeterministic finite automaton. By the way, it is
well known that two-dimensional digital pictures have
4- and 8-connectedness, and three-dimensional digi-
tal pictures have 6- and 26-connectedness. It is also
known that various topological properties can be de-
fined by making use of these connectedness. For ex-
ample, Nakamura and Aizawa proposed a new topo-
logical property of three-dimensional digital pictures
— the interlocking component which is a chainlike
connectivity. They showed that three-dimensional de-
terministic one-marker automaton can not detect in-
terlocking components in a three-dimensional digital
picture[42], After that, we have investigated recogniz-
abilities of automata on four-dimensional input tapes,
and showed some properties. This section investi-
gates the recognizability of connected tapes bySV 4-
SAFA’s andSV 4-SUTM’s.

Definition 4.1.

Let x be in {0, 1}(4). A maximal subset,P of
N4 satisfying the following conditions is called a 1-
componentof x.

(1)For any (i1,i2,i3,i4) ∈ P , we have1 ≤ i1 ≤
l1(x), 1 ≤ i2 ≤ l2(x),1 ≤ i3 ≤ l3(x),1 ≤ i4 ≤ l4(x),
andx(i1, i2, i3, i4)=1.

(2)For any (i1,i2,i3,i4), (i
′
1,i

′
2,i

′
3,i′4) ∈ P , there

exists a sequence (i1,0, i2,0, i3,0,i4,0), (i1,1, i2,1,
i3,1,i4,1),. . . , (i1,n, i2,n, i3,n, i4,n) of elements inP
such that (i1,0, i2,0, i3,0, i4,0) = (i1, i2, i3,i4), (i1,n,
i2,n, i3,n, i4,n) = (i

′
1,i

′
2,i

′
3,i′4), and |i1,j − i1,j−1| +

|i2,j − i2,j−1| + |i3,j − i3,j−1| + |i4,j − i4,j−1| ≤ 1
(1 ≤ j ≤ n). A tapex ∈ {0, 1}4 is calledconnected
if there exists exactly one 1-compnent ofx. We de-
note the set of all the four-dimensinal connected tapes
by Tc.
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It is shown in [44] that a 4-ATM can acceptTc.
From this fact and from the factL[SV 4-SAFA] =
L[4-SAFA] ⊇ L[4-AFA] by using a technique sim-
ilar to that in Ref.[4], the following theorem holds.

Theorem 4.1. Tc ∈ L[SV 4-SAFA].

It is shown in [44] that logm space is necessary
and sufficient forSV 4-ATM’s to acceptTc. We be-
low show the necessary and sufficient space forSV 4-
SUTM ’s to acceptT̄c (=the complement ofTc).

Theorem 4.2. m3 space is necessary and sufficient
for FV 3-SUTM ’s to acceptT̄c.

Proof: (The proof of sufficiency) It is shown in [50]
that Tc is accepted by a deterministic one-way par-
allel/sequential array acceptor (DOWPS), and it is
shown in [25] thatL[DOWPS] =L[TR2-DTM(m)]
(TR2-DTM(m)) means m space-bounded three-
way two-dimensional deterministic Turing machine).
From these facts and the fact [22,23] thatL[TR2-
DTM(m)] is closed under complementation, it fol-
lows that T̄c is in L[TR2-DTM(m)], and thus in
L[TR2-SUTM(m)]. By applying the same idea of
such a two-dimensional case, we can easily get the
fact thatT̄c is in L[SV 4-SUTM(m3)].

(The proof of necessity) Suppose that there is
an SV 4-SUTM(L(m)) M accepting T̄c, where
L(m) = o(m3). We assume without loss of general-
ity that M enters an accepting state only on the bottom
boundary.

Let

T ′
c={ x ∈ {0, 1}(4m+1,4m+1,4m+1,4m+1) | m ≥ 1

& ∀i1(1≤ i1 ≤ m+1)∀i2(1≤ i2 ≤ 2m+1)∀i3(1
≤ i3 ≤ 4m + 1)[x[(2i2−1,1,2i1−1,i3),(2i2−1,
4m-2i1+3, 2i1−1,i3)],x[(2i2−1,1,4m−2i1+3,i3),
(2i2−1,4m−2i1+3,4m−2i1+3,i3)],x[(2i2−1,4m
−2i1+3,2i1−1, i3),(2i2−1,4m−2i1+3,4m−2i1+
3,i3)]∈ {1}(3)] & ∀i2(1≤ i2 ≤ 2m) ∀i3(1 ≤ i3
≤ 4m + 1)[ x[(2i2,1,2m+1,i3),(2i2,2m+1,2m+
1,i3)]∈ {1}(3)]& ∀i1(1≤ i1 ≤ 2m) ∀i2(1≤ i2 ≤
2m+1)∀i3(1 ≤ i3 ≤ 4m+ 1) [ x(2i2−1,1,2i1,i3)
=x(2i2 − 1, 1, 4m − 2i1 + 2, i3)] &(the other
part ofx consists of 0’s)},

where we definē0 = 1 and 1̄ = 0. Furter,for each
w ∈ {0, 1} (3),w̄ denotes the tapew′ such that (i)
lj(w) = lj(w′),1 ≤ j ≤ 4,and (ii)w′(i1, i2, i3, i4) =
w(i1, i2, i3, i4) for each i1, i2, i3, i4[1 ≤ i1 ≤
l1(w′), 1 ≤ i2 ≤ l2(w′), 1 ≤ i3 ≤ l3(w′), 1 ≤ i4 ≤
l4(w′)](See Fig. 1.).

Clearly T ′
c ⊆ Tc. Let s and t be the numbers of

states (of the finite control) and storage tape symbols
of M, respectively. For eachm(m ≥ 1), let

V (m) = { x ∈ T ′
c | l1(x) = l2(x) = l3(x) = l4(x)

=4m+1 }.
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the 4th axis
(time axis )

Fig. 1: A tape inT ′
c.

For eachx in V (m), letS(x) andC(x) be sets of
configurations ofM defined as follows:

S(x)={((i1,i2,2m+1,i3),(q,α,k))|there exists a
computation pathIM (x) ⊢∗

M (x,((i1,i2,2m,i3),(q′,α′,
k′))) ⊢M (x,((i1,i2,2m+1,i3),(q,α,k))) of M onx (that
is, (x,((i1,i2,2m+1,i3),(q,α,k))) is anID of M just af-
ter the point where the input head left the (2m+1)th
plane of each cube ofx) },

C(x) = {{ρ1, ρ2} | ρ1 andρ2 are configurations
in S(x) such that

(1) in case ofρ1 = ρ2, there exists a sequential
computation ofM which starts withID(x,ρ1) and ei-
ther terminates in a rejectingID, or enters an infinite
loop, and

(2) in case ofρ1 ̸= ρ2, there exist two sequential
computations ofM which start withID’s(x,ρ1) and
(x,ρ2), respectively, and terminate in syncID’s with
different sync elements}.

(Note that, for eachx in V (m), C(x) is not
empty, sincex is not in T̄c, and so not accepted by
M .) Then the following proposition must hold.

Proposition 4.1. For any two different tapesx, y ∈
V (m),
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C(x) ∩ C(y)= ϕ.

[Proof: For otherwise, suppose thatx ̸= y(x,y ∈
V (m)), C(x) ∩ C(y) ̸= ϕ, and{ρ1,ρ2} ∈ C(x) ∩
C(y). Let z (with l1(x)=l2(x)=l3(x)=l4(x)=4m+1) be
the tape such that

(1)z [(1,1,1,1), (4m+1,4m+1,4m+1,2m+1)]=
x[(1,1,1,1), (4m+1,4m+1,4m+1,2m+1)], and

(2)z [(1,1,1,2m+2), (4m+1,4m+1,4m+1,4m+1)]
= y[(1,1,1,2m+2), (4m+1,4m+1,4m+1,4m+1)].

Since{ρ1,ρ2} ∈ C(x), there exist computation
paths IM (z) ⊢∗

M (z, ρ1) and IM (z) ⊢∗
M (z, ρ2).

Since{ρ1,ρ2} ∈ C(y), in case ofρ1=ρ2, there exists
a sequential computation ofM which starts with the
ID (z,ρ1) and either terminates in a rejectingID, or
enters an infinite loop, and in case ofρ1 ̸= ρ2, there
exist two sequential computations ofM which start
with ID’s(z, ρ1) and (z, ρ2), respectively, and termi-
nate in syncID’s with different sync elements. This
means thatz is not accepted byM . This contradicts
the fact thatz is in T̄c = T (M). �]

Proof of Theorem 4.2(continued): Let p(m) de-
note the number of pairs of possible configurations of
M just after the point where the input head left the
(2m+1)th cube of tapes inV (m). Then

p(m) =
(
K
2

)
+ K

where K = s(4m + 3)3 L(4m+1)tL(4m+1). On
the other hand,|V (m)| = 2m(2m+1)(4m+1). Since
L(m) = o(m), we have|V (m)| ≥ p(m) for large
m. Therefore, it follows that for largem there must
be two different tapesx, y in V (m) such thatC(x) ∩
C(y) ̸= ϕ. This contradicts Proposition 4.1 and com-
pletes the proof of necessity. �

5 Conclusion
This paper dealt with two topics concerning 4-
SATM ’s. We mainly investigated about hierarchies
based on the number of processes of 4-SATM’s and
recognizability of connected pictures by 4-SATM ’s,
and showed some properties of 4-SATM ’s.

In this section, we conclude this paper by giving
several open problems.

(1) For any functionL(m) ≥ log m, L[4-
ATM(L(m))] ( L[4-SATM (L(m))]?

(2)For any integerk ≥ 1, L[4-SUFA[k]] ( L[4-
SUFA[k+1]]? andL[SV 4-SUFA[k]] ( L[SV 4-
SUFA[k+1]]?

(3)Tc ∈ L[4-SUFA]? and Tc ∈ L[SV 4-
SUFA]?
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