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Abstract: Synchronizedalternating machine is an alternating machine with a special subset of internal states
called synchronizing states. This paper introduces a four-dimensional synchronized alternating Turing machine
(4-SATM ), and investigates fundamental properties of4-SATM ’s. The main topics of this paper are: (1) a re-
lationship between the accepting powers of4-SATM ’s and four-dimensional alternating Turing machines with
small space bounds, (2) a relationship between the accepting powers of seven-way and eight-way4-SATM ’s,
(3) a relationship between the accepting powers of4-SATM ’s and four-dimensional nondeterministic Turing ma-
chines. In this paper, we let each sidelength of each input tape of these automata be equivalent in order to increase
the theoretical interest.
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1 Introduction

Alternating Turing machines were as a model of par-
allel computation[5,8,29-32,39,43,57,58,62]. Infor-
mally, an alternating Turing machine is a generaliza-
tion of a nondeterministic Turing machine which can,
at some point during a computation, split into sev-
eral processes working in parallel and independently;
an input is accepted if all parallel processes finish
in accepting configurations. However, the alternating
Turing machine is not a realistic model for realworld
computers, because it does not allow any communica-
tions among its processes.

Synchronized alternating Turing machines were
introduced in [12-15] to study the effect of allowing
processes of an alternating Turing machine to com-
municate via synchronization. Informally, a synchro-
nized alternating machine is an alternating machine
with a special subset of internal states called synchro-
nizing states. Each of these synchronizing states is

associated with a synchronizing symbol. If, during
the course of computation, some process enters a syn-
chronizing state, then it has to wait until all other pro-
cesses enter either an accepting state or a synchroniz-
ing state with the same synchronizing symbol. When
this happens, all processes are allowed to continue
their computation; otherwise, the machine is said to
have a deadlock. A computation is successful if no
deadlocks occur and all processes terminate in accept-
ing states. It turns out that synchronization signifi-
cantly increases the computaional power of alternat-
ing Turing machines.

On the other hand, Blum and Hewitt first
proposed two-dimensional automata as computa-
tional models of two-dimensional pattern processing,
and investigated their pattern recognition abilities[2-
4,6,7,41,42,55,56,59]. Since then, many researchers
in this field have been investigating a lot of
properties about automata on a two-dimensional
tape[16,19-25,34]. Recently, due to the advances
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in computer vision, computer animation, moving
picture processing, robotics, and so on,the study
of multi-dimensional information processing has
been of great importance[40]. Thus, the study
of three- or four-dimensional automata has been
meaningful as the computational model of multi-
dimensional information processing[18,26-28,31,35-
38,45-54,60,61,63,64]. From this viewpoint, we
introduced four-dimensional alternating Turing ma-
chine [45,51].

In this paper, we continue the investigations about
four-dimensional alternating Turing machines, in-
troduce a four-dimensional synchronized alternating
Turing machine (4-SATM ), and investigate funda-
mental properties of4-SATM ’s.

In this section, we provide a background and a
motive for our study of four-dimensional automata.
Section 2 summarizes the formal definitions and no-
tations necessary for this paper. Section 3 inves-
tigates a relationship between the accepting pow-
ers of four-dimensional synchronized alternating ma-
chines and four-dimensional nonsynchronized alter-
nating machines. Section 4 investigates a relation-
ship between the accepting powers of seven-way and
eight-way synchronized machines. Section 5 imvesti-
gates a relationship between the accepting powers of
four-dimensional synchronized alternating machines
and four-dimensional nondeterministic machines. Fi-
nally, Section 6 concludes this paper by giving some
open problems.

2 Preliminaries

This section summarises the formal definitions and
notations necessary for the paper.

Definition 2.1.

Let Σ be a finite set of symbols. Afour-
dimensional input tapeover Σ is a four-dimensional
rectangular array of elements ofΣ. The set of all
the four-dimensional input tapes overΣ is denoted
by Σ(4). Given an input tapex ∈ Σ(4), for each
j (1 ≤ j ≤ 4), we let lj(x) be the length ofx
along thejth axis. The set of allx ∈ Σ(4) with
l1(x) = m1,l2(x) = m2,l3(x) = m3 and l4(x)=m4

is denoted byΣ(m1,m2,m3,m4). If 1 ≤ ij ≤ lj(x) for
eachj (1 ≤ j ≤ 4), let x(i1, i2, i3, i4) denote the
symbol inx with coordinates (i1, i2, i3, i4). Further-
more, we definex[(i1, i2, i3, i4),(i′1, i

′
2, i

′
3, i

′
4)], when

1 ≤ ij ≤ i′j ≤ lj(x) for each integerj (1 ≤ j ≤ 4),
as the four-dimensional input tapey satisfying the fol-
lowing;

(1) for eachj (1 ≤ j ≤ 4), lj(y) = i′j − ij + 1;

(2) for eachr1, r2, r3, r4 (1 ≤ r1 ≤ l1(y), 1 ≤
r2 ≤ l2(y), 1 ≤ r3 ≤ l3(y), 1 ≤ r4 ≤ l4(y)), y
(r1, r2, r3, r4) = x (r1 + i1−1, r2 + i2−1, r3 + i3−1,
r4 + i4 − 1). (We callx[(i1, i2, i3, i4),(i′1, i

′
2, i

′
3, i

′
4)]

the [(i1, i2, i3, i4),(i′1,i′2, i
′
3, i

′
4)]-segmentof x.)

We now introduce a four-dimensional synchro-
nized alternating Turing machine.

Definition 2.2.

A four-dimensional synchronized alternating Tur-
ing machine (denoted by4-SATM ) is a 10-tuple M =
(Q, q0, U , E, S, F , Σ, Π, Γ, δ), where

(1) Q = U ∪ E ∪ S is a finite set ofstates,

(2) q0 ∈ Q is theinitial state,

(3) U is the set ofuniversal states,

(4) E is the set ofexistential states,

(5) S ⊆ {(q, s) : q ∈ U ∪ E, s ∈ Π} is the set
of synchronizing states(s-states),

(6) F ⊆ Q is the set ofaccepting states,

(7) Σ is a finite input alphabet(# /∈ Σ is the
boundary symbol),

(8) Π is a finite alphabet of synchronizing sym-
bols,

(9) Γ is a finitestorage tape alphabetcontaining
the specialblank symbolB,

(10)δ ⊆ (Q×(Σ∪{#})×Γ)×(Q× (Γ−{B}) ×
{east,west,south,north,up,down,future,past,no move}
× {left,right,no move}) is thenext-move relation.

As shown in Fig.1,M has a read-only four-
dimensional input tape with boundary symbols
#’s (# /∈ Σ) and one semi-infinite storage tape, ini-
tially filled with the blank symbols.M begins in state
q0. A position is assigned to each cell of the input
tape and the storage tape, as shown in Fig.1. Astep
of M consists of reading one symbol from each tape,
writing a symbol on the storage tape, moving the in-
put and storage-tape heads in specified directions, and
entering a new state, according to the next move rela-
tion δ. When a processP enters a synchronizing state,
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it stopsand waits until all the parallel processes either
enter the states with the same synchronizing element
or stop in accepting states.

Definition 2.3.

An instantaneous description(ID) of a 4-SATM
M = (Q, q0, U , E, S, F , Σ, Π, Γ, δ) is a pair of an
element ofΣ(4) and an element of

CM = (N ∪{0})4×SM , SM = Q×(Γ−{B})∗×N,

where N denotes the set of all positive in-
tegers. The first component of anID I =
(x, ((i1, i2, i3, i4), (q, α, k))) represents the input to
M , and the first component(i1, i2, i3, i4) of the sec-
ond component ofI represents the input head posi-
tion (0 ≤ i1 ≤ l1(x) + 1, 0 ≤ i2 ≤ l2(x) + 1, 0 ≤
i3 ≤ l3(x) + 1, 0 ≤ i4 ≤ l4(x) + 1), and the sec-
ond component (q, α, k) of the second component of
I represents the state of the finite control, nonblank
contents of the storage tape, and the storage head po-
sition (1 ≤ k ≤ |α|+ 1). An element ofCM is called
a configurationof M , and an element ofSM is called
astorage stateof M .

An ID is universal (existential, synchronizing,
accepting) depending on the type of the state of the
finite control. Theinitial ID of M on input x is
IM (x) = (x, ((1, 1, 1, 1), (q0, λ, 1))), whereλ is the
null word.

Fig. 1: Four-dimensional synchronized alternating
Turing machine.

Definition 2.4.

SupposeI1 andI2 are twoID’s of M andI2 fol-
lows from I1 in one step according to the next-move

relationδ. Then we writeI1 ⊢M I2 and say thatI2 is
a successorof I1. The reflexive transitive closure of
⊢M is denoted by⊢∗

M .
A sequence ofID’s of M , I0, I1, ..., Im(m ≥ 0),

is called asequential computationof M if I0 ⊢M

I1 ⊢M · · · ⊢M IM . If I0 = IM (x) for somex,
we call this sequence acomputation path of M on
x[1,9-11].

The full computation treeof M on an input tape
x is a (possibly infinite) labeled tree⊢M

x (Each branch
of ⊢M

x is called aprocess.) such that

(1) each nodev is labeled by someID Iv of M ,

(2) the root is labeled byIM (x),

(3) v2 is a direct descendant ofv1 iff Iv1 ⊢M Iv2 .

The synchronizing sequence(s-sequence) of a
nodev in a full computation treeT with root v0 is
the sequence of synchronizing symbols occuring in
labels of the nodes on the path fromv0 to v. Two
s-sequences arecompatibleif one is a prefix of the
other. If s1 ands2 are two compatible s-sequences,
ands2 is longer thans1, then we uses2−s1 to denote
their difference.

A computation treeof M on an inputx is a (pos-
sibly infinite) subtreeT ′ of the full computation tree
TM

x satisfying the following conditions:

(1) if u is an internal (non-leaf) node of the tree
T ′, Iu is universal and{I | Iu ⊢M I} = {I1, ..., Im},
then u has exactlym children v1, ..., vm, such that
Ivi = Ii, 1 ≤ i ≤ m,

(2) if u is an internal node of the tree andIu is
existential, thenu has exactly one chiledv such that
Iu ⊢ Iv,

(3) For arbitrary nodesu and v of T ′, the s-
sequencesof u andv are compatible.

If M on inputx has no computation trees, then
any subtree ofTM

x that satisfies the first two condi-
tions above must have two processes with incompati-
ble s-sequences. In this case, we sayM deadlockson
x. The two processes with incompatible s-sequences
are calleddeadlock processesand the nonmatching s-
states causing the deadlock are calleddeadlock states.

The longest synchronizing sequence of a node in
the computation treeT is called thesynchronizing se-
quence of the computation treeT .

An accepting computation treeof M on an input
x is a finite computation tree ofM onx such that each
leaf node is labeled by an acceptingID. We say that
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M acceptsx if thereis an accepting computation tree
of M onx. Let T (M) = {x ∈ Σ(4) | M accepts x}.

We next introduce a seven-way four-dimensional
synchronized alternating Turing machine which can
be considered as a synchronized version of seven-way
four-dimensional alternating Turing machine [12,14].

Definition 2.5.

A seven-way four-dimensional synchronized al-
ternating Turing machine(denoted bySV 4-SATM )
is a 4-SATM M = (Q, q0, U,E, S, F,Σ, Π, Γ, δ),
such that

δ ⊆ (Q × (Σ ∪ {#}) × Γ) × (Q × Γ − {B})×
{east, west, south, north, up, down, future, no move}
× {left,right, no move}).

That is, anSV 4-SATM is a 4-SATM whose in-
put head can move east, west, south, north, up, down,
or in the future direction, but not in the past direction.

Definition 2.6.

Let L(m) : N → N be a function with one
variablem. With each 4-SATM(or SV 4-SATM )
M we assosiate aspace complexity functionSPACE
which takesID’s to natural numbers. That is, for each
ID I = (x, ((i1, i2, i3, i4), (q, α, k))), let SPACE(I)
be the length ofα. We say thatM is “L(m) space-
bounded” if for all m and for all x with l1(x) =
l2(x) = l3(x) = l4(x) = m, if x is accepted byM ,
then there is an accepting omputa tion tree ofM on
input x such that for each nodeπ of the tree, SPACE
(I(π)) ≤ L(m). By “4-SATM(L(m))” (“ SV 4-
SATM(L(m))”) we denote anL(m) space-bounded
4-SATM (SV 4-SATM) which each sidelength of
each input tape is equivalent[33].

Four-dimensional alternating Turing machines
(4-ATM ’s) and seven-way four-dimensional al-
ternating Turing machines (SV4-ATM ’s) in
[38] are 4-SATM ’s and SV 4-SATM ’s, respec-
tively, which have no synchronizing states. We
use 4-SUTM (SV 4-SUTM, 4-UTM, SV 4-
UTM ) to denote a 4-SATM (SV 4-SATM,
4-ATM, SV 4-ATM) which has no existential
states. By 4-ATM(L(m)) (SV 4-ATM(L(m)),
4-SUTM(L(m)), SV 4-SUTM(L(m)), 4-
UTM(L(m)), SV 4-UTM(L(m))), we denote
an L(m) space-bounded 4-ATM(SV 4-ATM,
4-SUTM, SV 4-SUTM , 4-UTM, SV 4-UTM ).

A four-dimensional deterministic Turing ma-
chine (4-DTM) (seven-way four-dimensional de-
terministic Turing machine(SV 4-DTM )) is a 4-
ATM (SV 4-ATM) whose ID’s each have at
most one successor, and afour-dimensional non-
deterministic Turing machine(4-NTM) (seven-

way four-dimensional nondeterministic Turing ma-
chine (SV 4-NTM)) is a 4-ATM which has no
universal states. We denote anL(m) space-
bounded 4-DTM (4-NTM, SV 4-DTM , SV 4-
NTM ) by 4-DTM(L(m)) (4-NTM(L(m)), SV 4-
DTM(L(m)), SV 4-NTM(L(m))). We use 4-
SAFA (SV 4-SAFA, 4-AFA, SV 4-AFA, 4-NFA,
SV 4-NFA, 4-DFA,SV 4-DFA) to denote afour-
dimensional synchronized alternating finite automa-
ton (seven-way four-dimensional synchronized alter-
nating finite automaton,four-dimensional alternat-
ing finite automaton, seven-way four-dimensional al-
ternating finite automaton, four-dimensional non-
deterministic finite automaton, seven-way four-
dimensional nondeterministic finite automaton, four-
dimensional deterministic finite automaton, seven-
way four-dimensional deterministic finite automaton).
That is, a 4-SAFA(SV 4-SAFA, 4-AFA, SV 4-
AFA, 4-NFA, SV 4-NFA, 4-DFA, SV 4-DFA) is
a 4-SATM (SV 4-SATM, 4-ATM, SV 4-ATM , 4-
NTM , SV 4-NTM, 4-DTM, SV 4-DTM) which
doesn’t have storage tape. Similarly, we use 4-
SUFA (SV 4-SUFA, 4-UFA, SV 4-UFA) to de-
note a 4-SUTM (SV 4-SUTM, 4-UTM , SV 4-
UTM ) which doesn’t have the storage tape. Further-
more, for any integerk ≥ 1, 4-SATM(L(m))[k]
is used to denote a 4-SATM(L(m)) such that
any computation tree ofM on any input x has
at most k leaves. SV 4-SATM(L(m))[k], 4-
SUTM(L(m))[k],...,4-SAFA(L(m))[k], etc. have
the similar meaning. For any integerk ≥ 1, 4-
NFA(k-heads) (4-DFA(k-heads)) is used to de-
note a 4-NFA (4-DFA) which hask input heads. For
any machine class C, let

L [C] = { T | T = T (M) for someM in C }.

Thus, for example,L[4-SATM(L(m))] denotes
the class of sets accepted by4-SATM(L(m))’s.

3 Synchronization versus Non-Syn-
chronization

This section investigates a relationship between the
accepting powers of4-ATM ’s and4-SATM ’s.

Lemma 3.1. Let T1 = {x ∈ {0, 1}2m×2m×2m×2m

| m ≥ 1& x[(1, 1, 1, 1), (2m, 2m, 2m,m)] =
x[(1, 1, 1,m + 1), (2m, 2m, 2m, 2m)]}(See Fig.2.).
Then,

(1) T1 ∈ L[SV 4-SUFA[2]], and

(2) T1 /∈L[4-ATM(L(m))] for anyL : N→N
such thatL(m) = o(log m).
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the latter half pattern ofthe first half pattern of
1T

2m

2m )4(}1,0{

1T

time axis

1 2 m 2mm+1 m+2

the same pattern

2m

Fig. 2: A tape inT1.

Proof: (1) We can construct anSV 4-SUFA[2] M
acceptingT1 as follows: Givenx with l1(x) =
l2(x) = l3(x) = l4(x) = 2m (m ≥ 1), starting on
position (1,1,1,1) ofx, M first splits universally into
two processesp1 andp2. Processp2 moves its head to
(1, 1, 1,m+1) and then synchronizes with processp1

to comparex(i1, i2, i3, i4) andx(i1, i2, i3, i4 +m) for
eachi1, i2, i3, i4 (1 ≤ i1 ≤ 2m, 1 ≤ i2 ≤ 2m,
1 ≤ i3 ≤ 2m, 1 ≤ i4 ≤ m). M acceptsx iff
x(i1, i2, i3, i4) = x(i1, i2, i3, i4 + m) for eachi1, i2,
i3, i4 (1 ≤ i1 ≤ 2m, 1 ≤ i2 ≤ 2m, 1 ≤ i3 ≤ 2m,
1 ≤ i4 ≤ m).

(2) This proof is the same as that of Theorem 1 in
[44]. �

From this lemma, we have

Theorem 3.1. For any functionL(m) = o(log m),

(1)L[SV 4-UTM(L(m))]
( L[SV 4-SUTM(L(m))],

(2)L[SV 4-ATM(L(m))]
( L[SV 4-SATM(L(m))],

(3) L[4-UTM(L(m))] ( L[4-SUTM(L(m))],
and

(4)L[4-ATM(L(m))] ( L[4-SATM(L(m))].

Corollary 3.1. (1)L[SV 4-UFA] ( L[SV 4-SUFA],

(2)L[SV 4-AFA] ( L[SV 4-SAFA],

(3)L[4-UFA] ( L[4-SUFA], and

(4)L[4-AFA] ( L[4-SAFA].

Theorem 3.2. For any functionL(m) ≥ log m,
L[4-SUTM(L(m))] = L[4-UTM(L(m))].

Proof: Given a 4-SUTM(L(m)) M whereL(m) ≥
log m, we construct a 4-UTM(L(m)) M ′ to accept
the same set as follows. On inputx of sidelength
m ≥ 1, M ′ simulates each process ofM with a pro-
cess of its own. When some processp of M enters an
s-state, the corresponding processp′ of M ′ spawns off
a processc whose worktape contains the s-symbol as-
sociated with thes-state and the number ofs-statesp
has entered so far. Since each process makes at most
dL(m) moves (dis a constant), andL(m) ≥ log m,
there is enough space to store them. Processc restars
the computation ofM onx and verifies that the corre-
sponding s-symbols in other processes match with the
one stored on its worktape. If a discrepancy occurs,
M ′ rejects. It is easy to see thatM andM ′ accept the
same set. �

By using a technique similar to that in the proof
of Theorem 3.2, we have

Theorem 3.3. For any functionL(m) ≥ log m,
L[SV 4-SUTM(L(m))]

= L[SV 4-UTM(L(m))].

4 Seven-Way versus Eight-Way
This section investigates a relationship between the
accepting powers of seven-way and eight-way syn-
chronized machines.

It is shown in [14] that three-way two-
dimensional synchronized alternating Turing machine
are equivalent to two-dimensional synchronized alter-
nating Turing machines. By using the same idea as
in the proof of this fact, we can easily show that the
following theorem holds.

Theorem 4.1. For any functionL : N → N,

L[SV 4-SATM(L(m))] = L[4-SATM(L(m))].

Below,we investigate a difference betwecn the
accepting powers of space-bounded 4-SUTM’s and
SV 4-SUTM ’s.

Lemma 4.1. LetT2 ={x∈{0, 1}m×m×m×m | m ≥
2, & x[(1, 1, 1, 1), (m,m,m, 1)] ̸= x[(1, 1, 1, 2), (
m,m, m, 2)] & x[(1, 1, 1, 3), (m,m, m, 3)] ∈ {0}(4)

} (See Fig.3.). Then,

(1) T2 ∈ L[4-DFA](= L[4-SUTM(0)[1]]), and

(2) T2 /∈ L[SV 4-SUTM(L(m))] for any
L : N → N such thatL(m) = o(m3).

Proof: (1) We can construct a 4-DFA M accepting
T2 as follows: Givenx with l1(x) = l2(x) = l3(x) =
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m

m

the same pattern(          )
)4(}1,0{)4(}1,0{

)4(}0{
time axis

1 2 3 m4

m

Fig. 3: A tape inT2.

l4(x) = m (m ≥ 2), starting on position (1,1,1,1) of
x, M first checks thatx[(1, 1, 1, 3), (m,m, m, 3)] ∈
{0}(4). Then,M repeats the following process from
j = 1 tom; M records the input symbolx[(1, 1, 1, 1),
(m,m, m, 1)] in the finite control and checks that two
symbolsx[(1, 1, 1, 1), (m,m, m, 1)] ̸= x[(1, 1, 1, 2),
(m,m, m, 2)]. If so,M enters an accepting state. It is
clear thatT (M) = T2.

(2) Suppose that there exists aSV 4-SUTM(L(
m)) M acceptingT2, whereL(m) = o(m3). By
using the technique of counting argument[14,44], we
can get the desired result. �
Lemma 4.2. LetT3 ={x∈{0, 1}2m×2m×2m×2m | m
≥ 1, & x[(1, 1, 1, 1), (2m, 2m, 2m,m)] ̸= x[(1, 1,
1, m + 1), (2m, 2m, 2m, 2m)]} (See Fig.4.). Then,

(1) T3 ∈ L[4-DTM(log m)] (= L[4-SUTM(
log m)[1]]), and

(2) T3 /∈ L[SV 4-SUTM(L(m))] for any
L : N → N such thatL(m) = o(m4).

the latter half pattern ofthe first half pattern of 3T

2m

2m

2m

)4(}1,0{

time axis

1 2 m 2mm+1 m+2

the different pattern

3T

Fig. 4: A tape inT3.

Proof: (1) We can construct a 4-DTM(log m) M ac-
ceptingT3 as follows: Givenx with l1(x) = l2(x) =
l3(x) = l4(x) = 2m (m ≥ 1), starting on posi-
tion (1,1,1,1) ofx for all i1,i2,i3,i4 (1 ≤ i1 ≤ 2m,

1 ≤ i2 ≤ 2m, 1 ≤ i3 ≤ 2m, 1 ≤ i4 ≤ m), M repeats
the following process;M records the input symbol
x(i1,i2,i3,i4) in the finite control and checks that two
symbolsx(i1, i2, i3, i4) ̸= x(i1, i2, i3, i4 + m). (This
can be easily done by usinglog m cells of the storage
tape.) If so,M and enters an accepting state. It is
clear thatT (M) = T3.

(2) The idea is almost the same as in the proof of
Lemma 4.1 (2). �

From Lemmas 4.1 and 4.2 we can get the follow-
ing theorem.

Theorem 4.2. Let L : N → N be a function such
that (1) L(m) = o(m3), or (2) L(m) ≥ log m and
L(m) = o(m4). Then,

L[SV 4-SUTM(L(m))] ( L[4-SUTM(L(m))].

Corollary 4.1. L[SV 4-SUFA] ( L[4-SUFA].

lt is easy to show that the following theorem
holds.

Theorem 4.3. For any functionL(m) ≥ m4,

L[SV 4-SUTM(L(m))] = L[4-SUTM(L(m))].

5 Nondeterminism versus Synchro-
nized Alternation

This section investigates a relationship between the
accepting powers of four-dimensional synchronized
alternating machines and four-dimensional nondeter-
ministic machines.

Let L : N → N be a function. The function
L is said to bethree-dimensionally fully space con-
structible if there is a 4-DTM which for any input
tapex with l1(x) = l2(x) = l3(x) = l4(x) = m
(m ≥ 1) makes use of exactlyL(m) cells of the stor-
age tape and halts.

Theorem 5.1. For any functionL(m) ≥ log m,

L[4-SATM(L(m))] = Uc≥0L[4-NTM(m4cL(m))].

Proof: We first show thatL[4-SATM(L(m))] ⊆
Uc>0L[4-NTM(m4cL(m))]. Given a 4-
SATM(L(m)) M , we can construct a
4-NTM(m4cL(m)) M ′ to simulate M by doing
a breadth-first-like traversal of the computation tree
of M on input x of sidelengthm. Each process
of M is simulated until it enters ans-state; M ′

will compare the correspondings-states to make
sure that no deadlock occurs before continuing the
simulation. Since there are at mostm4dL(m) distinct
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configurations ofM on an inputx of sidelengthm,
M ′ needs at mostm4eL(m) space, for some constants
d ande, at any time to maintain the currentID’s of
all processes ofM on x. Then on any inputx of
sidelengthm, M uses at mostL(m) space iffM ′

uses at mostm4eL(m) space.
On the other hand, by using same idea de-

scribed in Lemma 3.4 in [17], we can show that∪
c≥0 L[4-NTM(m4cL(m))] ⊆ L[4-SATM(L(m))

]. �

Theorem 5.2. For any integerk ≥ 1,

(1)L[4-SAFA[k]] = L[4-NFA(k-heads)], and

(2)L[SV 4-SAFA[k]] = L[4-NFA(k-heads)].

Proof: We only prove (1). Given a 4-NFA(k-heads)
M wherek ≥ 1, we can construct a 4-SAFA[k]
M ′. Let H1, H2, ..., Hk denote the input heads ofM .
These heads are simulated by a single input head of
4-SAFA[k] M ′ in the following way. The computa-
tion of M ′ branches from the initial configuration in a
universal manner intok processes. Note that, the ini-
tial configuration is the only universal configuration
which occurs in the computation. The states ofM ′ (in
all processes ofM ′) store the simulated state ofM . If
the stored state is an accepting (rejecting) state, then
the state ofM is also an accepting (rejecting) one. In
the ith process, for anyi (1 ≤ i ≤ k), the input head
of M ′ is at the same position asHi.

One step ofM is simulated by two steps ofM ′.
Besides the state ofM the symbols scanned by all
heads ofM have to be known toM ′. Every process
in the computation ofM ′ has only a part of the nec-
essary information. The processes can share this in-
formation via the synchronization. The synchronizing
element consists ofk components and represents the
symbols scanned by the input heads ofM . The ith
process, for1 ≤ i ≤ k, sets theith component ac-
cording to the symbol scanned by the input head of
M ′. The other components are set nondeterministi-
cally. The synchronization is successful only in the
case when every process has correctly guessed the re-
maining components.

The next synchronization is necessary because of
nondeterminism. One configuration ofM has several
potential successors. All of the processes ofM ′ must
agree on the next step ofM (they must simulate the
same successor of the currently simulated configura-
tion). The synchronizing element represents the new
state ofM and the actions of the heads ofM . The
successful synchronization means that all processes
choose the same element of the next move relation

of M . After that, M ′ moves its heads and enters a
new state in accordance with the synchronizing ele-
ment (i.e., in theith process (for1 ≤ i ≤ k), M ′

moves by its input head likeM by Hi). It will be
obvious thatM ′ can simulateM .

Conversely, given a 4-SAFA[k] M , we can con-
struct a 4-NFA(k-heads)M ′ such thatT (M) =
T (M ′). The proof is omitted here. �

We next investigate a relationship betwen the ac-
cepting powers of seven-way nondeterministic ma-
chines and seven-way synchronized machines with
only universal states.

Theorem 5.3.

(1)L[SV 4-SUFA[2]]
− L[SV 4-NTM(o(m4))] ̸= ϕ,

(2)L[SV 4-NFA]−L[SV 4-SUTM(o(m3))] ̸=
ϕ, and

(3)L[SV 4-NTM(log m)]
−L[SV 4-SUTM(o(m4)] ̸=ϕ.

Proof: (1) Let T1 be the set described in Lemma 3.1.
By using the technique of counting argument, we can
show thatT1 /∈ L[SV 4-NTM(o(m4))]. (1) follows
from this fact and Lemma 3.1 (1).

(2) Let T2 be the set of described in Lemma 4.1.
It is easy to see thatT2 ∈ L[SV 4-NFA]. (2) follows
from this fact and Lemma 4.1 (2).

(3) Let T3 be the set of described in Lemma 4.2.
It is easy to see thatT3 ∈ L[SV 4-NTM(log m)]. (3)
follows from this fact and Lemma 4.2 (2). �

Corollary 5.1. For any functionL(m) = o(m4),
L[SV 4-SUTM(L(m))] andL[SV 4-NTM(L(m))]
are incomparable.

6 Conclusion

In this paper, we introduced a four-dimensional syn-
chronized alternating Turing machine and investi-
gated basic several accepting powers. In this section,
we conclude this paper by giving two open problems.

(1) For any functionL(m) ≥ log m, L[4-ATM(
(m))] ( L[4-SATM(L(m))] ? andL[SV 4-ATM(
L(m))] ( L[SV 4-SATM(L(m))] ?

(2) For any integerk ≥ 1, L[4-SUFA[k]] (
L[4-SUFA[k + 1]] ? andL[SV 4-SUFA[k]] (
L[SV 4-SUFA[k + 1]] ?
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