
Implementing Time Series Identification Methodology Using
Wireless Sensor Networks

DANIEL-IOAN CURIAC

Department of Automatics and Applied Informatics
“Politehnica” University of Timisoara
Bd. V. Parvan nr. 2, 300223 Timisoara

ROMANIA
daniel.curiac@aut.upt.ro http://www.aut.upt.ro/~curiac

OVIDIU BANIAS

Department of Automatics and Applied Informatics
“Politehnica” University of Timisoara
Bd. V. Parvan nr. 2, 300223 Timisoara

ROMANIA
ovidiu.banias@aut.upt.ro http://www.aut.upt.ro/~ovidiub

CONSTANTIN VOLOSENCU

Department of Automatics and Applied Informatics
“Politehnica” University of Timisoara
Bd. V. Parvan nr. 2, 300223 Timisoara

ROMANIA
constantin.volosencu@aut.upt.ro http://www.aut.upt.ro/~cvolos

Abstract: - Wireless sensor networks being a collection of numerous sensor nodes, each with sensing
(temperature, humidity, sound level, light intensity, magnetism, etc.) and wireless communication capabilities,
provide huge opportunities for monitoring and mathematical modeling of the time-evolution of the physical
quantities under investigation. Starting from the measurements collected by the sensor nodes inside an
investigated spatial distributed system, this paper offers an efficient methodology to identify time series.

Key-Words: - time series, system identification, sensor networks, interpolation.

1 Introduction
A time series is a sequence of data, measured

usually at consecutive times spaced at uniform time
intervals. In normal conditions the measurement
process of a time series is done using a sensor
placed in a specified location. Sometimes, due to
different reasons (impossibility of a sensor
deployment in that specific location; a high rate of
sensor failures; the high imprecision of sensor
measurements; etc.) we need a distributed
measurement system that can be implemented using
wireless sensor networks (WSNs) technology.

The WSN can be perceived as a particular
category of mobile ad hoc network (MANET) and
as one of the main examples of ubiquitous
computing. This kind of network is typically a
collection of hundreds or thousands of autonomic
tiny devices called sensor nodes with limited

resources in terms of energy power, computational
capacities and radio bandwidth. Besides the fact that
the nodes individually possess small computational
and energy resources, the cooperation among them
allows the fulfillment of larger tasks. Such a task
can be the identification of time series mathematical
model in any location within the WSN sensing
coverage.

This paper is focused on developing of an
efficient methodology to solve this task using only
the capabilities offered by WSN components: sensor
nodes and base stations.

On the sensor nodes level, we will deploy
program code containing tasks like physical data
measurement or data transmission written in low-
level language fulfilling the constraints of IEEE
802.15.4 standard [1].

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 309 Issue 3, Volume 9, March 2010

On the base station level, complex software
modules written in high-level languages will be
deployed, including modules written in numerical
computing environments. Our tactic will rely on
specialized Matlab/Simulink functions for 2D
interpolation (interp2, griddata) and parameter
estimation (rarx) that can be run efficiently on the
base station level (the base station is assumed to be
a laptop class device).

The rest of the paper is organized as follows. The
second paragraph describes the time series
identification methodology. The third section
presents the data acquisition process when WSN is
involved and the forth section depicts some sensor
deployment considerations. The fifth and sixths
paragraphs describe the use of Matlab/Simulink
built-in functions in interpolating the sensor
measurements and the time series model
identification. Finally, in the sevenths section,
conclusions are offered.

2 Time Series Identification
 Methodology using WSN
System identification is a general term describing
mathematical instruments and methods that build
dynamical models from measured data. A
dynamical mathematical model in this perception is
a mathematical formalization of the dynamic
behavior of a process or system in either the time or
frequency domain.

Various categories of systems have particular
attributes that are important in their investigation,
simulation, prediction, monitoring, diagnosis, and
control system design. By properly identifying a
system, we can establish which analysis techniques
can be exploited with the system, and finally how to
examine and manipulate those systems [2][3]. In
other words, the first step in obtaining an efficient
control of a particular process lies in its
identification.

Typically, a certain model structure is chosen by
the researcher, which contains unknown parameters

that will be obtained using dedicated estimation
procedures.

This paper presents a methodology that involves
wireless sensor networks in identifying time series
for localized points inside the area under
investigation.

The use of sensor networks as a complex
measurement system brings some characteristics
that have to be thoroughly considered, like: i) in the
majority of cases, the point of interest described by
the pair of coordinates (x,y) - P(x,y) - in which we
want to obtain the time series model is not the
location of a sensor node, therefore the value of the
parameter belonging to (x,y) point has to be
obtained using the values provided by adjacent
sensor nodes; ii) using the inherent redundancy
feature of WSNs, a set of sensor nodes involved in
obtaining the measured value in the specific point
P(x,y), can increase the precision of the
measurement in that specific location situated inside
the coverage of WSN, reducing the influence of
sensors with faulty operation. The proposed
methodology is divided in three major steps:

1. WSN measurement data acquisition; this
step implies the acquisition of a plethora of
values provided by sensor nodes with a
precise geographic distribution;
2. Building of the time series using
interpolation techniques; in this step, based on
strongly localized measurement values, we
can obtain at each moment in time the
estimates of the value in every point inside
the coverage area of WSN through
interpolation.
3. Obtaining the mathematical model of the
time series; considering the point of interest
to be P(x,y) situated inside the coverage area
we can identify the mathematical model of
the time series using specific system
identification and parameter estimation
procedures that can be applied in case of time
series. This methodology is depicted in Fig. 1.

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 310 Issue 3, Volume 9, March 2010

Fig.1 Time series identification methodology

3 WSN Measurement Data
 Acquisition
The use of WSN is suitable for identifying the
dynamic behavior of a spatial distributed system
[4][5]. In this case, the plethora of sensor nodes
collects measured data from diverse but relevant in-
field locations facilitating the identification
process.

In order to develop an identification procedure
for time series in case the WSN is used as a
geographically distributed measurement system it
is appropriate to consider a well-suited sensor
network topology relying on the following
statements:

a) The sensor network is static, i.e., sensor
nodes are not mobile; each node knows its
own position. If not, the nodes can acquire
their own location through the location
procedure depicted in [6]. This assumption is
vital in all system identification strategies.
b) The sensor nodes are similar in their
computational and communication
capabilities and power resources to the
present generation sensor nodes.
c) The base station is assumed to be a laptop
class device and supplied with long-lasting
power. We also assume that the base station
will not be compromised in case of malicious
activity and that its computational power is
enough to run complex software procedures.
d) Among the three main kinds of WSN
topologies (star, cluster-tree and mesh), we
selected the star architecture to be the most
appropriate for developing identification
procedures [7]. In this architecture, a number
of base stations are previously deployed in
the field. Each base station establishes a cell
around itself that covers a certain part of the
whole sensing area.

Also, it is possible to extend our methodology to

a SENMA (SEnsor Network with Mobile Access)
architecture that was suggested by [8] for large-
scale sensor networks. The major difference related
to the star architecture is that base stations are
considered to be mobile, so each cell has
changeable boundaries which imply that mobile
wireless nodes and other appliances can
communicate wirelessly, as long as they are at least
within the area covered by the range of the mobile
access point.

The two types of architectures presented bellow
(star and SENMA) have significant features that
make them appropriate for low-energy
identification methodologies: nodes communicate
directly to base stations; no node-to-node
communications; no multi-hop data transmissions;
sensor synchronism is not compulsory; sensor do
not listen, only transmit and only when polled for;
complicated protocols avoided; reliability of
individual sensors much less critical; system
reconfiguration for mobile nodes not necessary.

4 Sensor deployment aspects
Sensor networks placement has received significant
attention in the recent past [9]-[11]. Even if the
sensor deployment doesn’t represent a key issue
when interpolation techniques are involved, it has
to reflect the cost and detection capability of a
wireless sensor network. A high-quality
deployment should consider both coverage and
connectivity [12] and has to guarantee that the
network nodes meet critical network objectives
including coverage, load balancing, energy
efficiency, etc.

It is important to highlight that coverage is
influenced by sensors’ sensitivity, while
connectivity is affected by sensors’ communication
ranges. Although lots of work had tackled this
subject, most of them presume that the sensing
field is an open area and there is a particular

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 311 Issue 3, Volume 9, March 2010

relationship between the communication range and
sensing range of sensors.

The interpolation method is suitable even when
sensors are sparsely deployed inside the area under
investigation. Due to the smaller number of sensor
nodes positioned in the field some advantages can
be underlined: a) cost reduction; b) a smaller
amount of transmitted messages inside the network;
and, by this, c) decrease of the energy consumption
of each sensor network node. On the other side, a
dense sensor network offers a better interpolation
precision and a greater degree of redundancy,
which implies higher operational reliability and a
higher degree of accuracy due to a more efficient
data aggregation. Basically, we have to solve the
compromise between costs and accuracy.

There are two relevant ways to implement the
deployment process: in a uniform (controlled)
fashion or in a random (stochastic) fashion.

4.1 Uniform sensor deployment
The uniform sensor deployment offers a
homogeneous coverage of the entire area under
investigation and, by this, a better observation of
processes characterized by small apriori knowledge
that are happening in the field.

Definition: We say that a sensor deployment
method is uniform if the sensors are exactly in the
spots of a uniform grid (Fig.2).

This definition describes ideal sensor
deployment conditions because precise control of
sensor locations may not be possible in practice.

Fig. 2 Uniform sensor deployment

4.2 Random sensor deployment
The random deployment (fig.3) is suitable for
unknown, dangerous or harsh environments where
a uniform deployment is impossible. In these
circumstances, the sensor placement may be done
using aerial scattering involving aircrafts, cannons,
balloons, and so on. Another situation in which a
random deployment is preferred is when we have
significant information about the observed process
that is developed in the field – in these
circumstances we will densely deploy the sensors
in the regions with a higher probability of
measurement variations.

There are many practical circumstances in
which, due to diverse phenomena (sensors
malfunction, exhausting the node’s batteries, etc.)
the uniform deployment is transformed into a
random one (sensors may not be placed exactly in
their desired locations because of wind or
inaccurate localization; sensors may fail from
impact of deployment, fire or extreme heat, animal
or vehicular accidents, malicious activity, or simply
from extended use; etc.) Obviously, to attain the
same quality of service requirement, the random
deployment tactic wastes more resources than the
uniform placement approach.
Using the WSN with the characteristics previously
presented (paragraph 3 and 4), we will collect the
measured data provided by each sensor node, at
each moment in time, in order to obtain the
localized time series, through 2-D interpolation
techniques, for every place inside the area under
investigation.

Fig. 3 Random sensor deployment

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 312 Issue 3, Volume 9, March 2010

5. Interpolation Techniques for
 Time Series Construction
Wireless sensor nodes, as a complex and spatially
spread measurement system can gather physical
quantities from a set of locations in a defined area.
In order to obtain the value in a precise spot P(x,y)
inside the coverage area we will be able to apply
diverse strategies for computing it using the values
provided by the adjacent sensor nodes.

Solving this class of problems relies
unavoidably on interpolation/extrapolation between
the localized measurement values. This could
extend the information gathered from a finite
number of sensor nodes using analytical techniques
that involve data collected from the entire
investigated area. This kind of process of spreading
localized information in neighboring area is known
as space-filling phenomena and creates surfaces or
statistical surfaces.

In 1997, DeMers [13] asserts that any
measurable value occurring throughout an area can
be considered as a surface and measurements act as
Z-values i.e. adding the vertical dimension. To
estimate the level of that particular physical
quantity (measured by sensor nodes) in any user
defined point location, which is the goal of the
second step of our methodology, we need to know
first whether the point of interest is exactly the
location point of a sensor node, or in between. In
the first case, the value can be taken directly from
the WSN measurement database. In the second
situation we need to apply an
interpolation/extrapolation method to obtain it.

Interpolation is described as the analytical
technique of estimating output values within the
range of discrete set of known/measured data
points. On the other hand, extrapolation is
described as the analytical technique of estimating
output values outside the range of discrete set of
known/measured data points.

Interpolation problem is depicted as follows:
Specifying rectangular grid { }lk y,x and the

associated set of numbers klz with mk1 ≤≤ and

nl1 ≤≤ , find a bivariate function ()y,xfz = that

interpolates the data, i.e. () kllk zy,xf = for all
values of k and l.

Using appropriate interpolation techniques [14],
at every instant in time we will obtain a surface
representing the spatial distribution of the measured
physical quantity.

To obtain the interpolation surface in the form
()yxfz ,= starting from distributed

measurements represented by the triplet ()zyx ,,

we use the interp2 Matlab function (uniform sensor
deployment) or griddata Matlab function (random
sensor deployment), which encloses linear, cubic or
nearest-neighbor interpolation techniques. We have
to mention that the surface always passes through
the data points.

The implementation of our methodology can be
done in a simple manner by writing the code in
Matlab (there we already have functions for
interpolation and parameter estimation), export this
program to C# using Matlab Builder NE tool and
deploying the C# code on the base station of the
wireless sensor network.

The decision to implement the interpolation
technique on base station level is done regarding
the following assumption: interpolation is a
complex methodology that cannot be implemented
on the sensor node level in a distributed fashion due
to known constraints (CPU speed, energy, memory,
etc.). Assuming that base station is a laptop class
device, the implementation can be efficiently done
relying on Matlab environment.

5.1. Uniform sensor deployment case
In order to interpolate the measurements provided
by the uniform deployed sensors, we used a
Matlab’s built-in function that performs two-
dimensional interpolation and has the following
most general form:

zi = interp2(x, y, z, xi, yi, 'method')

It offers a bivariate interpolant on the
rectangular grids. Z is an array containing the
values of a two-dimensional function, and X and Y
are arrays of the same size containing the points for
which the values in Z are given. The interp2
function requires that X and Y be monotonic. XI
and YI are matrices containing the points at which
to interpolate the data.

Sixth input parameter 'method' is an optional
string specifying an interpolation method.
Available methods are:

 'nearest' - nearest neighbor interpolation;
This method fits a piecewise constant surface
through the data values. The value of an
interpolated point is the value of the nearest
point. Nearest neighbor interpolation is the
fastest method. However, it provides the
worst results in terms of smoothness.
 'linear' - bilinear interpolation (default

option); This method fits a bilinear surface
through existing data points. The value of an
interpolated point is a combination of the

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 313 Issue 3, Volume 9, March 2010

values of the four closest points. This method
is piecewise bilinear, and is faster and less
memory-intensive than bicubic interpolation.
Linear interpolation uses more memory than
the nearest neighbor method, and requires
slightly more execution time. Unlike nearest
neighbor interpolation its results are
continuous, but the slope changes at the
vertex points.
 'cubic' - bicubic interpolation; This

method fits a bicubic surface through existing
data points. The value of an interpolated
point is a combination of the values of the
sixteen closest points. This method is
piecewise bicubic, and produces a much
smoother surface than bilinear interpolation.
Cubic interpolation requires more memory
and execution time than either the nearest
neighbor or linear methods. However, both
the interpolated data and its derivative are
continuous.
 'spline' - spline interpolation; Cubic spline

interpolation has the longest relative
execution time, although it requires less
memory than cubic interpolation. It produces
the smoothest results of all the interpolation
methods. You may obtain unexpected results,
however, if your input data is non-uniform
and some points are much closer together
than others.

Even if the spline or cubic methods produce
smoother contours, for some applications, e.g.
when presence sensors are involved, a method like
nearest neighbor may be preferred because it
doesn’t generate any “new” data values.

In the figures 4, 5 and 6 the above presented
interpolation methodology is exemplified.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Fig. 4 The uniform deployment of the sensor nodes
within the investigated area

0
2

4
6

8
10

0

5

10
0

1

2

3

4

5

Fig. 5 Measurement data gathered from the sensors
regularly deployed inside the investigated area

0
2

4
6

8
10

0

5

10
-4

-2

0

2

4

6

Fig. 6 Interpolation surface obtained using interp2
function

5.2. Random sensor deployment case
In order to interpolate the measurements provided
by random deployed sensors, we can use a
Matlab’s built-in function that performs two-
dimensional interpolation from scattered data. It
has the following general form:

zi = griddata(x, y, z, xi, yi, 'method')

The function griddata offers an interpolation
surface based on known measurements z provided
by sensors deployed in the points specified by
coordinates x and y. The surface always goes
through the data points. xi and yi are usually a
uniform grid (as produced by meshgrid Matlab
function).

The last parameter of griddata function is
‘method’, which defines the type of surface fit to
the data and has the following values:

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 314 Issue 3, Volume 9, March 2010

• 'linear' - Triangle-based linear
interpolation (default method)
• 'cubic' - Triangle-based cubic interpolation
• 'nearest' - Nearest neighbor interpolation
• 'v4' - Matlab4 griddata method

 The 'cubic' and 'v4' methods generate smooth
surfaces while 'linear' and 'nearest' have
discontinuities in the first and zero-th derivative
respectively. All the methods except 'v4' are based
on a Delaunay triangulation of the data [15].

In Fig.7-9 it is depicted an example on how the
map of physical values is estimated using
interpolation techniques. Starting from the random
sensor deployment in the field (Fig.7), the
measurements provided at a specified instant in
time (Fig. 8) are interpolated obtaining the surface
presented in Fig.9.

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

Fig. 7 The random deployment of the sensor nodes
within the investigated area

-10
-5

0
5

10

-10

-5

0

5

10
-1

0

1

2

3

Fig. 8 Measurement data gathered from all the
sensors deployed inside the investigated area at a

specified moment in time

-10
-5

0
5

10

-10

-5

0

5

10
-1

0

1

2

3

Fig. 9 Interpolation surface obtained using griddata

function

5.3 Vector Data Interpolation
Another type of data that in some cases might be
gathered from sensor nodes is described using
vector fields. An example of such an application is
the measurement in diverse locations of the wind
speed and its direction. This type of measurement
data are represented by vectors within the
investigated area (an example is presented in
Fig.11, having the sensors deployment schema as in
Fig.10) and, using interpolation techniques (based
on superposition of two interpolations), an
estimated vector field can be obtained (Fig.12).

In order to interpolate vector fields, first we
have to decompose the vectors into their
components along x, y or in case of 3D vectors, on
z-axis, too. After that we will apply similar
techniques to the ones depicted in sections 5.1 or
5.2.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Fig. 10 Sensor deployment

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 315 Issue 3, Volume 9, March 2010

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Fig. 11 Vector Measurements within the
investigating area at a specified moment in time

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Fig. 12 Vector field obtained by

interpolation/extrapolation techniques

6 Time Series Model Identification
In order to identify a time series, first, we have to
choose a structure of the mathematical model. We
consider that an autoregressive (AR) model can
efficiently approximate the time evolution of the
physical quantity in a precise spot P(x,y). An
autoregressive or AR model, also known as an
infinite impulse response filter or all-pole model,
describes the evolution of a variable measured over
the same sample period as a linear function of only
its past evolution. This kind of systems evolves due
to its "memory", generating internal dynamics. The
AR model definition is as follows:

)(ξ+)(+...+)(=)(tntzatzatz n1 (1)

where z(t) is the series under investigation (in our
case is the series of values obtained using
interpolation technique) for the location P(x,y), ai
are the autoregression coefficients, n is the order of

the autoregression and ξ is the noise which is
almost always assumed to be a Gaussian white
noise. By convention the time series z(t) is assumed
to be zero mean. If not, another term (a0) is added
in the right member of equation (1).

If the ai coefficients are time-varying, the
equation (1) can be rewritten as:

)(ξ+)()(+...+)()(=)(tntztatztatz n11 (2)

There is no simple method to establish the
correct model order in case of an AR model. In our
case there are two parameters that influence our
decision: the type of data measured by sensors and
the computing limitations of the base stations.
Because both of them are a priori known we
propose the use of an off-line methodology
presented in [16]. Realistic values are between 3
and 6.

The second phase in determining the model of
the time series after the shape of AR model is
chosen, is the estimation of the parameters ai(t)
using a recursive parameter estimation method.
There are a large number of methods for obtaining
AR coefficients. The three main categories rely on:
a)computing the autocorrelation estimates, where
an important factor is the truncation threshold
(maximum leg); b) calculating the partial
autocorrelation (reflection) coefficients, where an
important role is played by the specific definition
of the reflection coefficient; and c) least-square
matrix formulas. In our case we consider that a
recursive least square method (RLS) is the most
appropriate to solve this problem in an efficient
manner since it produce the best spectral estimates.
Taking into consideration that the basic RLS
algorithm cannot be chosen due to its poor
numerical properties and due to the demanding
computational requirements, we decided to use a
numerically robust RLS variant adapted for (1)
model: RARX (Recursive Auto Regressive
eXogenous), implemented in Matlab environment
(System Identification Toolbox) as rarx.m file. This
estimation method can be implemented efficiently
on the base stations level (laptop class device) [17].

To understand how rarx parameter estimation is
done, we start from a variant of equation (2), that
can be reshaped as:

)(ξ+)()(=)(∑
=

titztatz
n

i
i

1

(3)

Equation (3) can be written as:

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 316 Issue 3, Volume 9, March 2010

() ())(ξ+θ̂φ=)(ttttz T (4)

where, the regression vector)(tφ encloses old
values of the time series under investigation

[]()Tntztztzt)(...),2(),1()(−−−=φ , and the

parameter vector)(ˆ tθ encloses the parameters that
should be estimated:

[]Tn tatatat)(...),(),(=)(θ̂ 21 (5)

 RARX recursive parameter estimation method
discounts older observations; therefore the model
adopts the changing situation dynamically, with a
forgetting factor λ i.e. an observation that is

τ samples old is considered to have a τλ weight of
the weight of the most recent observation (that data
from some time ago is considered less important
than the most recent data.). A typical selection of
λ is included in the interval [0.97; 0.995] which
means that 33 to 200 last observations are
considered.

The complete RARX algorithm is described
by the following set of equations [18]:

()

)(φ)()(φ+λ

)()(φ)(φ)(
)(=)(

)(φ)()(φ+λ

)(
=)(

)(φ)(=)(

)(θ̂)(φ=)(ˆ

)(ˆ)()(+)(θ̂=)(θ̂

ttPt
tPtttP

tPtP

ttPt
tP

tQ

ttQtK
tttz

tztztKtt

T

T

T

T

1
11

1

1
1

1
1

(6)

The Matlab built-in function rarx has the

following syntax:

[thm,yhat,P,phi] = rarx(z,n,adm,adg,th0,P0,phi0)

and estimates the parameters thm (previously

denoted by θ̂), the predicted output yhat (ẑ , final
values of the scaled covariance matrix of the
parameters P, and final values of the data vector phi
(φ) of single-output AR model from z and model
order n using the algorithm specified by adm and
adg (e.g. adm = 'ff' and adg = 0.98 for RLS with a
forgetting factor λ =0.98).

After obtaining the estimated parameters of AR
model (1) we conclude that the time series under
investigation is completely modeled.

The same methodology can be applied when
vector data are involved, with the note that the

identification process must be applied to each
component along x, y and z-axis., obtained after
decomposing the vectors.

7 Conclusion
This paper presented a time series identification
methodology using a wireless sensor network as a
complex measurement system. After acquiring the
measured values from the area covered by sensor
networks, an interpolation technique is involved in
obtaining the value of the physical quantity in a
specific location. After this, an AR model will be
identified for the time series using efficient
parameter estimation techniques. This methodology
can be efficiently implemented by WSN’s base
stations, so there is no need for other hardware
resources.

Acknowledgement
This work was developed in the frame of PNII-
IDEI-PCE-ID923-2009 CNCSIS - UEFISCSU
grant.

References:
[1] S. C. Ergen, ZigBee/IEEE 802.15.4 Summary,

http://www.eecs.berkeley.edu/ csinem / academic
/ publications / zigbee.pdf, pp. 1-35.

[2] Sjoberg, J., et. all., Non linear black box modeling
in system identification: an unified overview,
Automatica, 33, 1997, 1691-1724.

[3] C. Volosencu, Identification of distributed
parameter systems, based on sensor networks and
artificial intelligence, WSEAS Transactions on
Systems, Volume 7 Issue 6, p. 785-801, June
2008.

[4] C. Volosencu, Identification in Sensor Networks,
Automation & Information, Theory and Advanced
Technology, Proceedings of the 9th WSEAS Int.
Conf. on Automation and Information (ICAI’08),
WSEAS Press, 2008, pp. 175÷183.

[5] G. B. Giannakis, Distributed Estimation Using
Wireless Sensor Networks, The 12th WSEAS Int.
Conf. On Systems, Heraklion, Crete Island,
Greece, 2008.

[6] A. Savvides, C. C. Han, M. B. Srivastava,
Dynamic fine-grained localization in ad-hoc
networks of sensors, Proceedings of the 7th ACM
MobiCom, Rome, Italy, 2001, pp.166-179.

[7] M. I. Abd-El-Barr, M. A. M. Youssef, M. M. Al-
Otaibi, Wireless sensor networks - part I:
topology and design issues, Canadian Conference

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 317 Issue 3, Volume 9, March 2010

on Electrical and Computer Engineering, 1-4
May 2005, pp.1165 – 1168.

[8] L. Tong, Q. Zhao, S. Adireddy, Sensor Networks
with Mobile Agents, Proceedings of IEEE 2003
MILCOM, Boston, USA, October 2003, pp.688-
694.

[9] Z. Bojkovic, B. Bakmaz, A survey on wireless
sensor networks deployment, WSEAS
Transactions on Communications, v.7 n.12,
p.1172-1181, December 2008.

[10] E. G. Rowe, T. A. Wettergren, Coverage and
Reliability of Randomly Distributed Sensor
Systems with Heterogeneous Detection Range,
International Journal of Distributed Sensor
Networks, v.5 n.4, p.303-320, July 2009.

[11] X. Zhang, S. B. Wicker, How to distribute
sensors in a random field?, Proceedings of the 3rd
international symposium on Information
processing in sensor networks, April 26-27, 2004,
Berkeley, California, USA.

[12] S. Gabriele, P. Giamberardino, Redundant
coverage for noise reduction in dynamic sensor

networks, WSEAS Transactions on Systems,
Volume 7, Issue 10, p. 855-865, October 2008.

[13] M. N. DeMers, Fundamentals of geographic
information systems. New York: Wiley (1997).

[14] G. Mastroianni, G. V. Milovanovic,
Interpolation Processes: Basic Theory and
Applications, Series: Springer Monographs in
Mathematics, Springer, 2008.

[15] C. B. Barber, D.P. Dobkin, H.T. Huhdanpaa,
The Quickhull Algorithm for Convex Hulls,
ACM Transactions on Mathematical Software,
Vol. 22, No. 4, Dec. 1996, p. 469-483.

[16] P. Stoica, Y. Selen, Model-order selection: a
review of information criterion rules, IEEE Signal
Processing Mag., July 2004, pp.36-47.

[17] B. Haller, J. Gotze and J. Cavallaro, Efficient
Implementation of Rotation Operations for High
Performance QRD-RLS Filtering, ASAP '97
Proc., 14-16 July 1997, Zurich, Switzerland, pp.
162-174.

[18] L. Ljung,, System Identification: Theory for the
User. Prentice-Hall, Inc., Inglewood Cliffs, 1989,
New Jersey, 515 pp.

WSEAS TRANSACTIONS on COMPUTERS Daniel-Ioan Curiac, Ovidiu Banias, Constantin Volosencu

ISSN: 1109-2750 318 Issue 3, Volume 9, March 2010

	89-324
	89-370
	89-371
	89-388
	89-390
	89-409
	 4.4.1 Shape canvas events
	// custom shape canvas class
	class MyCanvas : public wxSFShapeCanvas
	{
	 public:
	 // overrided virtual functions
	 virtual void OnLeftDown(wxMouseEvent &event);
	}
	// overrided virtual event handler
	void MyCanvas::OnLeftDown(wxMouseEvent &event)
	{
	 // your custom code
	 // invoke original handler
	 wxSFShapeCanvas::OnLeftDown(event);
	}
	// custom frame class
	class MyFrame : public wxFrame
	{
	 public:
	 MyFrame();
	 protected:
	 wxSFShapeCanvas *m_Canvas;
	 // overrided virtual functions
	 void OnLeftDown(wxMouseEvent &event);
	};
	MyFrame::MyFrame()
	{
	 // create and initialize shape canvas here...
	 // bind desired events to user-defined handlers
	 m_pCanvas->Connect(wxEVT_LEFT_DOWN, wxMouseEventHandler(MyFrame::OnLeftDown), NULL, this);
	}
	// custom event handler
	void MyFrame::OnLeftDown(wxMouseEvent &event)
	{
	 // your custom code
	 // invoke original handler
	 event.Skip();
	}

	 4.4.2 Shape events

	// pShape is a pointer of type wxSFShapeBase or derived
	
	pShape->AddStyle(wxSFShapeBase::sfsEMIT_EVENTS);
	// m_pCanvas is pointer to wxSFShapeCanvas class instance
	m_pCanvas->Connect(wxEVT_SF_SHAPE_HANDLE, wxSFShapeHandleEventHandler(MyFrame::OnShapeHandleEvent), NULL, this);
	// user-defined event handler
	void MyFrame::OnShapeHandleEvent(wxSFShapeHandleEvent& event)
	{
	 // get reference to dragged shape handle
	 wxSFShapeHandle &hnd = event.GetHandle();
	 // perform desired operations here ...
	 // invoke default handler if needed
	 event.Skip();
	}
	Figure 6: Shape events demonstration
	Figure 7: Shape events demonstration
	// create new control shape
	wxSFControlShape* pShape = (wxSFControlShape*) m_Manager.AddShape(CLASSINFO(wxSFControlShape), event.GetPosition());
	// set properties
	if(pShape)
	{
	 // disable accepted child shapes
	 pShape->ClearAcceptedChilds();
	 // set some visual aspects here:
	 pShape->SetControlOffset(5);
	 //pShape->SetModBorder (*wxTRANSPARENT_PEN);
	 //pShape->SetModFill(wxBrush(*wxRED, wxCROSSDIAG_HATCH));
	 // Assign managed GUI control to the canvas. Remember the control shape now owns the GUI control and it is
	 // deleted by the shape control in its destructor. If you want to remove the GUI control from the parent shape
	 // just assign a new control or NULL value to it. You can also specify whether managed GUI control
	 // is resized in accordance to dimensions of its parent control shape or vice versa.
	 pShape->SetControl(new wxButton(m_pCanvas, wxID_ANY, wxT("Hello World!")), sfFIT_SHAPE_TO_CONTROL);
	 //pShape->SetControl(new wxButton(m_pCanvas, wxID_ANY, wxT("Hello World!")), sfFIT_CONTROL_TO_SHAPE);
	 // You can specify whether events generated by the managed control are processed by the shape canvas
	 // or/and the widget as well. Note that GUI controls differ in a way how they process events
	 // so the behaviour can be different for various widgets.
	 pShape->SetEventProcessing (wxSFControlShape::evtMOUSE2CANVAS | wxSFControlShape::evtKEY2CANVAS);
	 //pShape->SetEventProcessing (wxSFControlShape::evtMOUSE2GUI | wxSFControlShape::evtKEY2GUI);
	}

	89-410
	89-419
	89-442
	89-445

