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Abstract: - Wireless sensor networks being a collection of numerous sensor nodes, each with sensing 
(temperature, humidity, sound level, light intensity, magnetism, etc.) and wireless communication capabilities, 
provide huge opportunities for monitoring and mathematical modeling of the time-evolution of the physical 
quantities under investigation. Starting from the measurements collected by the sensor nodes inside an 
investigated spatial distributed system, this paper offers an efficient methodology to identify time series. 
 
 
Key-Words: - time series, system identification, sensor networks, interpolation. 
 

1 Introduction 
A time series is a sequence of data, measured 

usually at consecutive times spaced at uniform time 
intervals. In normal conditions the measurement 
process of a time series is done using a sensor 
placed in a specified location. Sometimes, due to 
different reasons (impossibility of a sensor 
deployment in that specific location; a high rate of 
sensor failures; the high imprecision of sensor 
measurements; etc.) we need a distributed 
measurement system that can be implemented using 
wireless sensor networks (WSNs) technology. 

The WSN can be perceived as a particular 
category of mobile ad hoc network (MANET) and 
as one of the main examples of ubiquitous 
computing. This kind of network is typically a 
collection of hundreds or thousands of autonomic 
tiny devices called sensor nodes with limited 

resources in terms of energy power, computational 
capacities and radio bandwidth. Besides the fact that 
the nodes individually possess small computational 
and energy resources, the cooperation among them 
allows the fulfillment of larger tasks. Such a task 
can be the identification of time series mathematical 
model in any location within the WSN sensing 
coverage.  

This paper is focused on developing of an 
efficient methodology to solve this task using only 
the capabilities offered by WSN components: sensor 
nodes and base stations.  

On the sensor nodes level, we will deploy 
program code containing tasks like physical data 
measurement or data transmission written in low-
level language fulfilling the constraints of IEEE 
802.15.4 standard [1]. 
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On the base station level, complex software 
modules written in high-level languages will be 
deployed, including modules written in numerical 
computing environments. Our tactic will rely on 
specialized Matlab/Simulink functions for 2D 
interpolation (interp2, griddata) and parameter 
estimation (rarx) that can be run efficiently on the 
base station level (the base station is assumed to be 
a laptop class device). 

The rest of the paper is organized as follows. The 
second paragraph describes the time series 
identification methodology. The third section 
presents the data acquisition process when WSN is 
involved and the forth section depicts some sensor 
deployment considerations. The fifth and sixths 
paragraphs describe the use of Matlab/Simulink 
built-in functions in interpolating the sensor 
measurements and the time series model 
identification. Finally, in the sevenths section, 
conclusions are offered. 
 
 

2   Time Series Identification 
     Methodology using WSN 
System identification is a general term describing 
mathematical instruments and methods that build 
dynamical models from measured data. A 
dynamical mathematical model in this perception is 
a mathematical formalization of the dynamic 
behavior of a process or system in either the time or 
frequency domain. 

Various categories of systems have particular 
attributes that are important in their investigation, 
simulation, prediction, monitoring, diagnosis, and 
control system design. By properly identifying a 
system, we can establish which analysis techniques 
can be exploited with the system, and finally how to 
examine and manipulate those systems [2][3]. In 
other words, the first step in obtaining an efficient 
control of a particular process lies in its 
identification. 

Typically, a certain model structure is chosen by 
the researcher, which contains unknown parameters 

that will be obtained using dedicated estimation 
procedures. 

This paper presents a methodology that involves 
wireless sensor networks in identifying time series 
for localized points inside the area under 
investigation.  

The use of sensor networks as a complex 
measurement system brings some characteristics 
that have to be thoroughly considered, like: i) in the 
majority of cases, the point of interest described by 
the pair of coordinates (x,y) - P(x,y) - in which we 
want to obtain the time series model is not the 
location of a sensor node, therefore the value of the 
parameter belonging to (x,y) point has to be 
obtained using the values provided by adjacent 
sensor nodes; ii) using the inherent redundancy 
feature of WSNs, a set of sensor nodes involved in 
obtaining the measured value in the specific point 
P(x,y), can increase the precision of the 
measurement in that specific location situated inside 
the coverage of WSN, reducing the influence of 
sensors with faulty operation. The proposed 
methodology is divided in three major steps: 

1. WSN measurement data acquisition; this 
step implies the acquisition of a plethora of 
values provided by sensor nodes with a 
precise geographic distribution; 
2. Building of the time series using 
interpolation techniques; in this step, based on 
strongly localized measurement values, we 
can obtain at each moment in time the 
estimates of the value in every point inside 
the coverage area of WSN through 
interpolation. 
3. Obtaining the mathematical model of the 
time series; considering the point of interest 
to be P(x,y) situated inside the coverage area 
we can identify the mathematical model of 
the time series using specific system 
identification and parameter estimation 
procedures that can be applied in case of time 
series. This methodology is depicted in Fig. 1. 
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Fig.1 Time series identification methodology 

 
 

3   WSN Measurement Data 
     Acquisition 
The use of WSN is suitable for identifying the 
dynamic behavior of a spatial distributed system 
[4][5]. In this case, the plethora of sensor nodes 
collects measured data from diverse but relevant in-
field locations facilitating the identification 
process.      

In order to develop an identification procedure 
for time series in case the WSN is used as a 
geographically distributed measurement system it 
is appropriate to consider a well-suited sensor 
network topology relying on the following 
statements: 

a) The sensor network is static, i.e., sensor 
nodes are not mobile; each node knows its 
own position. If not, the nodes can acquire 
their own location through the location 
procedure depicted in [6]. This assumption is 
vital in all system identification strategies. 
b) The sensor nodes are similar in their 
computational and communication 
capabilities and power resources to the 
present generation sensor nodes.  
c) The base station is assumed to be a laptop 
class device and supplied with long-lasting 
power. We also assume that the base station 
will not be compromised in case of malicious 
activity and that its computational power is 
enough to run complex software procedures. 
d) Among the three main kinds of WSN 
topologies (star, cluster-tree and mesh), we 
selected the star architecture to be the most 
appropriate for developing identification 
procedures [7]. In this architecture, a number 
of base stations are previously deployed in 
the field. Each base station establishes a cell 
around itself that covers a certain part of the 
whole sensing area.  

 
 

 
Also, it is possible to extend our methodology to 

a SENMA (SEnsor Network with Mobile Access) 
architecture that was suggested by [8] for large-
scale sensor networks. The major difference related 
to the star architecture is that base stations are 
considered to be mobile, so each cell has 
changeable boundaries which imply that mobile 
wireless nodes and other appliances can 
communicate wirelessly, as long as they are at least 
within the area covered by the range of the mobile 
access point. 

The two types of architectures presented bellow 
(star and SENMA) have significant features that 
make them appropriate for low-energy 
identification methodologies: nodes communicate 
directly to base stations; no node-to-node 
communications; no multi-hop data transmissions; 
sensor synchronism is not compulsory; sensor do 
not listen, only transmit and only when polled for; 
complicated protocols avoided; reliability of 
individual sensors much less critical; system 
reconfiguration for mobile nodes not necessary. 
 
 

4   Sensor deployment aspects 
Sensor networks placement has received significant 
attention in the recent past [9]-[11]. Even if the 
sensor deployment doesn’t represent a key issue 
when interpolation techniques are involved, it has 
to reflect the cost and detection capability of a 
wireless sensor network. A high-quality 
deployment should consider both coverage and 
connectivity [12] and has to guarantee that the 
network nodes meet critical network objectives 
including coverage, load balancing, energy 
efficiency, etc.  

It is important to highlight that coverage is 
influenced by sensors’ sensitivity, while 
connectivity is affected by sensors’ communication 
ranges. Although lots of work had tackled this 
subject, most of them presume that the sensing 
field is an open area and there is a particular 
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relationship between the communication range and 
sensing range of sensors. 

The interpolation method is suitable even when 
sensors are sparsely deployed inside the area under 
investigation. Due to the smaller number of sensor 
nodes positioned in the field some advantages can 
be underlined: a) cost reduction; b) a smaller 
amount of transmitted messages inside the network; 
and, by this, c) decrease of the energy consumption 
of each sensor network node. On the other side, a 
dense sensor network offers a better interpolation 
precision and a greater degree of redundancy, 
which implies higher operational reliability and a 
higher degree of accuracy due to a more efficient 
data aggregation. Basically, we have to solve the 
compromise between costs and accuracy. 

There are two relevant ways to implement the 
deployment process: in a uniform (controlled) 
fashion or in a random (stochastic) fashion. 
 
 
4.1   Uniform sensor deployment 
The uniform sensor deployment offers a 
homogeneous coverage of the entire area under 
investigation and, by this, a better observation of 
processes characterized by small apriori knowledge 
that are happening in the field.  

Definition: We say that a sensor deployment 
method is uniform if the sensors are exactly in the 
spots of a uniform grid (Fig.2).  

This definition describes ideal sensor 
deployment conditions because precise control of 
sensor locations may not be possible in practice. 
 

 

Fig. 2 Uniform sensor deployment 
 
 

4.2   Random sensor deployment 
The random deployment (fig.3) is suitable for 
unknown, dangerous or harsh environments where 
a uniform deployment is impossible. In these 
circumstances, the sensor placement may be done 
using aerial scattering involving aircrafts, cannons, 
balloons, and so on. Another situation in which a 
random deployment is preferred is when we have 
significant information about the observed process 
that is developed in the field – in these 
circumstances we will densely deploy the sensors 
in the regions with a higher probability of 
measurement variations.  

There are many practical circumstances in 
which, due to diverse phenomena (sensors 
malfunction, exhausting the node’s batteries, etc.) 
the uniform deployment is transformed into a 
random one (sensors may not be placed exactly in 
their desired locations because of wind or 
inaccurate localization; sensors may fail from 
impact of deployment, fire or extreme heat, animal 
or vehicular accidents, malicious activity, or simply 
from extended use; etc.) Obviously, to attain the 
same quality of service requirement, the random 
deployment tactic wastes more resources than the 
uniform placement approach. 
Using the WSN with the characteristics previously 
presented (paragraph 3 and 4), we will collect the 
measured data provided by each sensor node, at 
each moment in time, in order to obtain the 
localized time series, through 2-D interpolation 
techniques, for every place inside the area under 
investigation. 
 

 

Fig. 3 Random sensor deployment 
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5.   Interpolation Techniques for 
      Time Series Construction 
Wireless sensor nodes, as a complex and spatially 
spread measurement system can gather physical 
quantities from a set of locations in a defined area. 
In order to obtain the value in a precise spot P(x,y) 
inside the coverage area we will be able to apply 
diverse strategies for computing it using the values 
provided by the adjacent sensor nodes.  

Solving this class of problems relies 
unavoidably on interpolation/extrapolation between 
the localized measurement values. This could 
extend the information gathered from a finite 
number of sensor nodes using analytical techniques 
that involve data collected from the entire 
investigated area. This kind of process of spreading 
localized information in neighboring area is known 
as space-filling phenomena and creates surfaces or 
statistical surfaces. 

In 1997, DeMers [13] asserts that any 
measurable value occurring throughout an area can 
be considered as a surface and measurements act as 
Z-values i.e. adding the vertical dimension. To 
estimate the level of that particular physical 
quantity (measured by sensor nodes) in any user 
defined point location, which is the goal of the 
second step of our methodology, we need to know 
first whether the point of interest is exactly the 
location point of a sensor node, or in between. In 
the first case, the value can be taken directly from 
the WSN measurement database. In the second 
situation we need to apply an 
interpolation/extrapolation method to obtain it. 

Interpolation is described as the analytical 
technique of estimating output values within the 
range of discrete set of known/measured data 
points. On the other hand, extrapolation is 
described as the analytical technique of estimating 
output values outside the range of discrete set of 
known/measured data points. 

Interpolation problem is depicted as follows: 
Specifying rectangular grid { }lk y,x and the 

associated set of numbers klz  with mk1 ≤≤  and 

nl1 ≤≤ , find a bivariate function ( )y,xfz =  that 

interpolates the data, i.e. ( ) kllk zy,xf =  for all 
values of k and l.  

Using appropriate interpolation techniques [14], 
at every instant in time we will obtain a surface 
representing the spatial distribution of the measured 
physical quantity.  

To obtain the interpolation surface in the form 
( )yxfz ,=  starting from distributed 

measurements represented by the triplet ( )zyx ,,  

we use the interp2 Matlab function (uniform sensor 
deployment) or griddata Matlab function (random 
sensor deployment), which encloses linear, cubic or 
nearest-neighbor interpolation techniques. We have 
to mention that the surface always passes through 
the data points. 

The implementation of our methodology can be 
done in a simple manner by writing the code in 
Matlab (there we already have functions for 
interpolation and parameter estimation), export this 
program to C# using Matlab Builder NE tool and 
deploying the C# code on the base station of the 
wireless sensor network.  

The decision to implement the interpolation 
technique on base station level is done regarding 
the following assumption: interpolation is a 
complex methodology that cannot be implemented 
on the sensor node level in a distributed fashion due 
to known constraints (CPU speed, energy, memory, 
etc.). Assuming that base station is a laptop class 
device, the implementation can be efficiently done 
relying on Matlab environment. 
 
 
5.1. Uniform sensor deployment case 
In order to interpolate the measurements provided 
by the uniform deployed sensors, we used a 
Matlab’s built-in function that performs two-
dimensional interpolation and has the following 
most general form: 
 

zi = interp2(x, y, z, xi, yi, 'method') 
 

It offers a bivariate interpolant on the 
rectangular grids. Z is an array containing the 
values of a two-dimensional function, and X and Y 
are arrays of the same size containing the points for 
which the values in Z are given. The interp2 
function requires that X and Y be monotonic. XI 
and YI are matrices containing the points at which 
to interpolate the data. 

Sixth input parameter 'method' is an optional 
string specifying an interpolation method. 
Available methods are: 

 'nearest' - nearest neighbor interpolation; 
This method fits a piecewise constant surface 
through the data values. The value of an 
interpolated point is the value of the nearest 
point. Nearest neighbor interpolation is the 
fastest method. However, it provides the 
worst results in terms of smoothness. 
 'linear' - bilinear interpolation (default 

option); This method fits a bilinear surface 
through existing data points. The value of an 
interpolated point is a combination of the 
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values of the four closest points. This method 
is piecewise bilinear, and is faster and less 
memory-intensive than bicubic interpolation. 
Linear interpolation uses more memory than 
the nearest neighbor method, and requires 
slightly more execution time. Unlike nearest 
neighbor interpolation its results are 
continuous, but the slope changes at the 
vertex points. 
 'cubic' - bicubic interpolation; This 

method fits a bicubic surface through existing 
data points. The value of an interpolated 
point is a combination of the values of the 
sixteen closest points. This method is 
piecewise bicubic, and produces a much 
smoother surface than bilinear interpolation. 
Cubic interpolation requires more memory 
and execution time than either the nearest 
neighbor or linear methods. However, both 
the interpolated data and its derivative are 
continuous. 
 'spline' - spline interpolation; Cubic spline 

interpolation has the longest relative 
execution time, although it requires less 
memory than cubic interpolation. It produces 
the smoothest results of all the interpolation 
methods. You may obtain unexpected results, 
however, if your input data is non-uniform 
and some points are much closer together 
than others. 

Even if the spline or cubic methods produce 
smoother contours, for some applications, e.g. 
when presence sensors are involved, a method like 
nearest neighbor may be preferred because it 
doesn’t generate any “new” data values.  

In the figures 4, 5 and 6 the above presented 
interpolation methodology is exemplified. 
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Fig. 4 The uniform deployment of the sensor nodes 
within the investigated area 
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Fig. 5 Measurement data gathered from the sensors 
regularly deployed inside the investigated area 
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Fig. 6 Interpolation surface obtained using interp2 
function 

 
 
5.2.   Random sensor deployment case 
In order to interpolate the measurements provided 
by random deployed sensors, we can use a 
Matlab’s built-in function that performs two-
dimensional interpolation from scattered data. It 
has the following general form: 
 

zi = griddata(x, y, z, xi, yi, 'method') 
 

The function griddata offers an interpolation 
surface based on known measurements z provided 
by sensors deployed in the points specified by 
coordinates x and y. The surface always goes 
through the data points. xi and yi are usually a 
uniform grid (as produced by meshgrid Matlab 
function). 

The last parameter of griddata function is 
‘method’, which defines the type of surface fit to 
the data and has the following values: 
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• 'linear' - Triangle-based linear 
interpolation (default method) 
• 'cubic' - Triangle-based cubic interpolation 
• 'nearest' - Nearest neighbor interpolation 
• 'v4' - Matlab4 griddata method 

 
   The 'cubic' and 'v4' methods generate smooth 
surfaces while 'linear' and 'nearest' have 
discontinuities in the first and zero-th derivative 
respectively. All the methods except 'v4' are based 
on a Delaunay triangulation of the data [15]. 

In Fig.7-9 it is depicted an example on how the 
map of physical values is estimated using 
interpolation techniques. Starting from the random 
sensor deployment in the field (Fig.7), the 
measurements provided at a specified instant in 
time (Fig. 8) are interpolated obtaining the surface 
presented in Fig.9. 
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Fig. 7 The random deployment of the sensor nodes 
within the investigated area 
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Fig. 8 Measurement data gathered from all the 
sensors deployed inside the investigated area at a 

specified moment in time 
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Fig. 9 Interpolation surface obtained using griddata 

function 

 

5.3   Vector Data Interpolation 
Another type of data that in some cases might be 
gathered from sensor nodes is described using 
vector fields. An example of such an application is 
the measurement in diverse locations of the wind 
speed and its direction. This type of measurement 
data are represented by vectors within the 
investigated area (an example is presented in 
Fig.11, having the sensors deployment schema as in 
Fig.10) and, using interpolation techniques (based 
on superposition of two interpolations), an 
estimated vector field can be obtained (Fig.12). 

In order to interpolate vector fields, first we 
have to decompose the vectors into their 
components along x, y or in case of 3D vectors, on 
z-axis, too. After that we will apply similar 
techniques to the ones depicted in sections 5.1 or 
5.2.  
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Fig. 10 Sensor deployment 
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Fig. 11 Vector Measurements within the             
investigating area at a specified moment in time 
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Fig. 12 Vector field obtained by 

interpolation/extrapolation techniques 
 
 

6   Time Series Model Identification 
In order to identify a time series, first, we have to 
choose a structure of the mathematical model. We 
consider that an autoregressive (AR) model can 
efficiently approximate the time evolution of the 
physical quantity in a precise spot P(x,y). An 
autoregressive or AR model, also known as an 
infinite impulse response filter or all-pole model, 
describes the evolution of a variable measured over 
the same sample period as a linear function of only 
its past evolution. This kind of systems evolves due 
to its "memory", generating internal dynamics. The 
AR model definition is as follows: 
 

)(ξ+)(+...+)(=)( tntzatzatz n1 (1)

 
where z(t) is the series under investigation (in our 
case is the series of values obtained using 
interpolation technique) for the location P(x,y), ai 
are the autoregression coefficients, n is the order of 

the autoregression and ξ  is the noise which is 
almost always assumed to be a Gaussian white 
noise. By convention the time series z(t) is assumed 
to be zero mean. If not, another term (a0) is added 
in the right member of equation (1). 

If the ai coefficients are time-varying, the 
equation (1) can be rewritten as: 
 

)(ξ+)()(+...+)()(=)( tntztatztatz n11  (2) 
 

There is no simple method to establish the 
correct model order in case of an AR model. In our 
case there are two parameters that influence our 
decision: the type of data measured by sensors and 
the computing limitations of the base stations. 
Because both of them are a priori known we 
propose the use of an off-line methodology 
presented in [16]. Realistic values are between 3 
and 6. 

The second phase in determining the model of 
the time series after the shape of AR model is 
chosen, is the estimation of the parameters ai(t) 
using a recursive parameter estimation method. 
There are a large number of methods for obtaining 
AR coefficients. The three main categories rely on: 
a)computing the autocorrelation estimates, where 
an important factor is the truncation threshold 
(maximum leg); b) calculating the partial 
autocorrelation (reflection) coefficients, where an 
important role is played by the specific definition 
of the reflection coefficient; and c) least-square 
matrix formulas. In our case we consider that a 
recursive least square method (RLS) is the most 
appropriate to solve this problem in an efficient 
manner since it produce the best spectral estimates. 
Taking into consideration that the basic RLS 
algorithm cannot be chosen due to its poor 
numerical properties and due to the demanding 
computational requirements, we decided to use a 
numerically robust RLS variant adapted for (1) 
model: RARX (Recursive Auto Regressive 
eXogenous), implemented in Matlab environment 
(System Identification Toolbox) as rarx.m file. This 
estimation method can be implemented efficiently 
on the base stations level (laptop class device) [17]. 

To understand how rarx parameter estimation is 
done, we start from a variant of equation (2), that 
can be reshaped as: 

 

)(ξ+)()(=)( ∑
=

titztatz
n

i
i

1
 

(3) 

 
Equation (3) can be written as: 
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( ) ( ) )(ξ+θ̂φ=)( ttttz T  (4) 

 
where, the regression vector )(tφ encloses old 
values of the time series under investigation 

[ ]( )Tntztztzt )(...),2(),1()( −−−=φ , and the 

parameter vector )(ˆ tθ encloses the parameters that 
should be estimated: 
 

[ ]Tn tatatat )(...),(),(=)(θ̂ 21  (5) 

 
   RARX recursive parameter estimation method 
discounts older observations; therefore the model 
adopts the changing situation dynamically, with a 
forgetting factor λ  i.e. an observation that is 

τ samples old is considered to have a τλ weight of 
the weight of the most recent observation (that data 
from some time ago is considered less important 
than the most recent data.). A typical selection of 
λ  is included in the interval [0.97; 0.995] which 
means that 33 to 200 last observations are 
considered. 

The complete RARX algorithm is described 
by the following set of equations [18]: 

 
( )

)(φ)()(φ+λ

)()(φ)(φ)(
)(=)(

)(φ)()(φ+λ

)(
=)(

)(φ)(=)(

)(θ̂)(φ=)(ˆ

)(ˆ)()(+)(θ̂=)(θ̂

ttPt
tPtttP

tPtP

ttPt
tP

tQ

ttQtK
tttz

tztztKtt

T

T

T

T

1
11

1

1
1

1
1

 

 
 
 
(6) 

 
The Matlab built-in function rarx has the 

following syntax: 
 

[thm,yhat,P,phi] = rarx(z,n,adm,adg,th0,P0,phi0) 
 
and estimates the parameters thm (previously 

denoted by θ̂ ), the predicted output yhat ( ẑ , final 
values of the scaled covariance matrix of the 
parameters P, and final values of the data vector phi 
(φ ) of single-output AR model from z and model 
order n using the algorithm specified by adm and 
adg (e.g. adm = 'ff' and adg = 0.98 for RLS with a 
forgetting factor λ =0.98). 

After obtaining the estimated parameters of AR 
model (1) we conclude that the time series under 
investigation is completely modeled.  

The same methodology can be applied when 
vector data are involved, with the note that the 

identification process must be applied to each 
component along x, y and z-axis., obtained after 
decomposing the vectors. 
 
 

7   Conclusion 
This paper presented a time series identification 
methodology using a wireless sensor network as a 
complex measurement system. After acquiring the 
measured values from the area covered by sensor 
networks, an interpolation technique is involved in 
obtaining the value of the physical quantity in a 
specific location.  After this, an AR model will be 
identified for the time series using efficient 
parameter estimation techniques. This methodology 
can be efficiently implemented by WSN’s base 
stations, so there is no need for other hardware 
resources. 
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