

Enhancing Enterprise Service Bus Capability for Load Balancing

AIMRUDEE JONGTAVEESATAPORN, SHINGO TAKADA
School of Science for Open and Environmental Systems

Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522

JAPAN
aimrudee@doi.ics.keio.ac.jp, michigan@doi.ics.keio.ac.jp

Abstract: - ESB is a core middleware technology which can support the integration of services according to the
Service Oriented Architecture. A major responsibility of ESB is to route messages to heterogeneous services.
However, conventional ESBs support only static routing, i.e. the service to which a message is sent must be
fixed a priori. Thus, even if there are many services that can satisfy the same request, the request is always sent
to the same service without considering the service status, e.g., load, at that time. This situation may lead to a
low throughput performance on the service side and low satisfaction on the consumer side. This paper aims to
enhance the ESB capability by supporting load balancing. Our approach focuses on balancing among a group
of different services with the same function. We introduce the concept of service type and show the results of
an experiment.

Key-Words: - ESB, Middleware Message Balancing, Web Services, Load Balancing, SOA

1 Introduction
Service Oriented Architecture (SOA) is an
architectural design pattern in which the concept of
a “service” is an abstraction of a function used by an
application. SOA logically decouples the service
requester from the service provider by isolating the
service definition from a service implementation [1]
[2]. One enabling technology for SOA is the
enterprise service bus (ESB). ESB is an important
middleware tool for integrating services based on
various platforms. In Kambhampaty’s proposed
architecture for developing enterprise-wide SOA
[3], ESB is used to enable a smooth communication
between applications. In Panian’s work [4], ESB is
required to implement SOA, where the service
implementations can plug in and out, and which
supports multiple calling semantics (e.g.
synchronous and asynchronous) and features (e.g.,
transformation and routing).

One of the main capabilities of ESB is the
routing of messages among different services.
Current ESB implementations support several
message routing patterns, but can execute based
only on static configuration [5]. When a client sends
a message, that message will be dispatched to a
specified service, or endpoint, regardless of the
status of that service. At that moment, the service
may be unavailable or busy with many messages
and thus cannot immediately process the incoming
request. In the case of the service being busy, the

message is put into a queue and will be processed at
a later time. In such a case, it will be troublesome if
the request has a processing deadline, which cannot
be met. Since the service is fixed, the service
consumer cannot access other services that provide
the same function. If the number of requests
increases dramatically, it is better to distribute the
requests to other existing services that can satisfy
the same requests. For example, Mule [6] and
ServiceMix [7] are both ESB implementations that
support load balancing, but the target services
(specifically, endpoints) must be set in a
configuration file a priori and cannot be changed at
runtime. We need a way to solve this issue of “too
many” requests.

Many Web sites take a load balancing approach
to handle this issue of “too many” requests. The
simplest approach is for a hostname to have multiple
IP addresses. This is the case with google.com,
where the actual physical server one accesses will
differ depending on the load at that time [8]. This
same approach can also be taken in SOA if the
service provider replicates the service onto multiple
servers resulting in multiple physical services (Fig.
1 (a)). Thus, conventional load balancing approach
can be taken to satisfy the issue of “too many”
requests.

We take a different approach. Instead of
replicating a service, we group different services
having the same function. This is based on the
premise that there are multiple similar services that

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 299 Issue 3, Volume 9, March 2010

can be used to increase dependability [9]. In other
words, there may be multiple services that can
perform a given function that the user wants [10]. If
an error or no response is received after a certain
length of time, we can switch to an alternative
service.

In order to enable grouping of services, we
introduce the concept of service type. Services
belonging to the same service type have the same
function and same signature.

We also incorporate a load balancing feature into
an ESB implementation, specifically Mule. Our load
balancing mechanism dynamically selects the actual
target service at runtime based on a specified service
type (Fig. 1 (b)), using strategies such as random,
round-robin, threshold, minimum, and least load
[11]. What must be decided in advance is the service
type and not the actual service. Thus, this has the
added advantage to cope with the situation where
services belonging to the same service type may
change during runtime, i.e., a new service may be
added to a service type.

 (a) Conventional (b) Our approach
 balancing

Fig. 1 Load balancing

The rest of this paper is organized as follows.
Section 2 discusses related work. Section 3
describes our concept of service type. Section 4 then
presents our balancing ESB mechanism along with
an overview of how it is implemented. Section 5
describes the experiment we conducted. Section 6
makes concluding remarks.

2 Related Work
Much research has been done recently on ESB for
supporting SOA integration. We briefly describe
three types: (1) dynamic service selection, (2) load
balancing, and (3) service substitution.

2.1 Dynamic service selection
The ASB project [12] proposed an adaptable service
bus that supports changes to business rules at
runtime, thus avoiding costly shutdowns to

applications. The service router component in ASB
is responsible for selecting the service to be used at
runtime. The target service selection is based on a
ranking which uses information such as execution
time and expected availability.

The DRESR project [5] allows the routing table
to be changed at runtime. DRESR defines the
Abstract Routing Path (ARP) using abstract service
names, which are instantiated at runtime by
replacing the abstract service names with the real
URIs. DRESR supports the specification of service
selection preferences such as response time.

B. Wu et al [13] proposed a method for dynamic
reliable service routing. They add the context of
application information related to the request
message for use in service discovery. Their
approach accepts a routing target list dynamically,
so that the routing can change at run time. If the
request does not respond within a suitable time, the
ESB will resend the request to another service.

All three above approaches consider dynamic
service selection, but they do not apply their
approaches to message balancing.

2.2 Load balancing
The Cygnus and TAO projects [11, 14] incorporate
balancing, which adapts to different load condition,
to CORBA [15]. Their approach uses object groups
each of which contains duplicates of a particular
object. Thus, their approach cannot support
heterogeneous services. Furthermore, some of their
balancing strategies use load migration, but
migration delay may cause problems.

Wang et al [16] and Roca et al [17] tried to avoid
unnecessary load migration. Wang et al [16]
proposed a load balancing middleware for service-
oriented application. It collects a service group from
resources that are registered in a service replica
repository, and adds a load agent into the server side
for providing load information. They balanced
resource allocation among different services which
is similar to our work but their approach uses
machine-learning to predict loading.

Roca et al [17] used a local load balancing
strategy, specifically nearest neighbor algorithm.
Their technique is based on computing the average
workload of nodes forming a neighborhood or
domain. Migration is done when certain conditions
are reached.

Karrio et al [18] focused on clusters of servers,
and introduced a QoS aware load balancing
algorithm (QoS-LB). The servers in each cluster
have identical or nearly identical content, and need
to be fixed a priori.

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 300 Issue 3, Volume 9, March 2010

Fernandez et al [19] introduced Semantic Web
technology to enable load balancing between
multimedia servers. A client uses ontology
information to determine which servers they can use.
Once a session has started between a client and
server, the QoS is monitored. If the QoS decreases
too much, then it will be redirected to another server
transparently. Our work can also switch to a new
service implicitly when the requested message
cannot reach the target endpoint.

2.3 Service substitution
Taher et al [20] proposed the concept of abstract
Web service (A.WS) and concrete Web service
(C.WS) for Web services substitution. Each A.WS
is classified into a category and links to a list of
similar concrete Web services. Our approach is
similar to this structure but we added service type
property such as QoS for advanced filtering of
services.

Pianwattanaphon et al [21] used the service type
ontology to describe the capability of Web services
such as signature, behavior for invoking a substitute
Web service in the case of invocation failure.
However, we are not interested in semantic
matching.

3 Service Type
Service information is normally stored in registries,
such as UDDI [17]. In UDDI, business information
(e.g., business name, contacts) and service
information (e.g., service name, access point) are
registered. These standard attributes in UDDI are

not enough for our purpose. We thus propose
“service type”.

3.1 Service type
In order to enable the dynamic selection of Web
services, we propose the concept of “service type”
which is used to group Web services with the same
function that can satisfy the same request.

Each service belongs to a service type. A type has
the following information:

 Service Type Name: Each service type has a
unique name.

 Service Signature: The signature consists of
the input parameter(s) and return type.

 Service Property: A property is optional
information, such as QoS attribute, which
can be used when searching for a suitable
service. Note that unlike the signature, this
is optional, and services that do not provide
property information may be included in the
same type.

Table 1 shows examples of service types. For
example, the MoviePreview type takes a string as an
input parameter, and returns a MediaFile. There is
one property “availability”.

The basic idea of incorporating a service type is
that services of the same service type may be
substituted with each other. For example, in Fig. 2,
Web Service #1 and Web Service #3 both have the
same service type A. Since this means that they
have the same functionality, they can be substituted
with each other; if Web Service #1 is unavailable,
then Web Service #3 can be called.

Table 1 Examples of service types.

Service Type Name Service Signature Service Type
Property Parameter Return Data Type

Hotel Reservation Location: String
Room:Int Boolean Availability

Flight Information
Departure:String
Arrive:String
Date:Date

List ExecutionTime

Restaurant Search City:String List Accessibility

Calculator
1st Num: Double
2ndNum: Double
Operation: String

Double ExecutionTime

Money Exchange
1stCurrency:String
2ndCurrency:String
Value:Double

Double ExecutionTime

Document Printer Document: File Boolean Availability
Photo Sharing Picture:File Boolean Security
Online Radio RadioName: String MediaFile Availability
Movie Preview MovieName: String MediaFile Availability

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 301 Issue 3, Volume 9, March 2010

Fig. 2 Sharing service type

3.2 Incorporating service type
The service provider defines the service information,
including the service type, and stores it into a
service registry. Although the provider can use any
name, it is recommended that when possible, a type
that is already included in the repository should be
used. In other words, when a service provider stores
service information in the service registry, he/she
first searches for a service type that matches the one
they have built. If there are no matching service
types, the provider can define a new service type.

If a property is defined for a service type, then all
services belonging to that type must have that
information. On the other hand, the actual services
may specify property information that is not defined
at the service type level.

Note that a service type with many services likely
indicates that (1) the service type can be considered
to be important because multiple service providers
provide the basic functionality, and (2) the chance
of load balancing increases.

4 Balancing mechanism
The basic idea of our mechanism is that, given a
service type, we send a message to the most suitable
service (belonging to the service type) based on the
specified balancing strategy.

The rest of this section gives details of our
balancing mechanism, which we have implemented
using Mule ESB.
4.1 Mechanism components
We describe each component in our mechanism
below (Fig. 3):
 Inbound router is provided by Mule, and it

receives messages from a channel. We currently
use JMS [22] channel. When a client sends a
message, the message is stored in a request

queue of ActiveMQ 5.2.0 [23] which is an open
source JMS.

 Message extractor is a module for extracting the
contents of the message and obtaining important
values such as service type, service type
property and request values. Note that this
component is important, as the service type is
included in the header. It is implemented using
JDOM (Java Document Object Model) [24],
which enables efficient manipulation of XML
data in Java form.

 Service group recognizer receives the service
type data from message extractor and then sends
this data to the service registry for discovering
the services belonging to this type. This results
in a list of endpoints, which is sent to the
balancing computing module. The service group
recognizer also has the responsibility of filtering
services if property information is available.

 Service registry is integrated with ESB for
supporting dynamic service selection. Dynamic
selection requires a list of services, each of
which can satisfy the same request. Our current
implementation is based on UDDI; we added
an extra attribute for service type. Service type
can be used to query a list of services that
belong to that type.

 Balance computing module is the component
for managing the sending of messages. The
actual destination of a message is decided using
a balancing strategy. The balancing strategy is
set by the ESB administrator before running
Mule. There are currently five strategies
implemented (section 4.5). This module
connects to the load monitor module for getting
load information, and uses the obtained data to
check which service application has the least
amount of load at that time.

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 302 Issue 3, Volume 9, March 2010

Fig. 3 ESB enhanced with balancing mechanism

 Load info is information concerning the load on

the service. It should be updated by the service
provider frequently. In our current
implementation, it is calculated by the number
of completed process messages subtracted from
the number of incoming messages into the
service.

 Load monitor is the module that connects to the
service provider to obtain load info. We can
configure a time interval for updating the load
info data.

 Extended outbound router is a component that
is extended from the standard Mule outbound
router. The endpoint can be set at runtime for
dispatching messages. If the outbound router
catches an exception because the system cannot
connect to the target endpoint as shown in Fig.
4, another service from the same service type is
chosen. The ESB then resends the request to
this service, and sends a signal to the service
registry to temporarily block the broken
endpoint. Meanwhile, the ESB will send a
heartbeat to check if the service becomes
“alive” again. If the service recovers, the ESB
adds the endpoint back to the service list.

Fig. 4 Alive service checking

4.2 Balancing procedure
The steps in balancing are given below (Fig. 5):

1. A client sends a message to invoke a service.
The actual service is not specified, rather
the service type is specified in the header of
the message. Service properties such as
availability and execution time can also be
attached in the header for use in filtering
candidate services.

2. The inbound router of ESB catches the
incoming request message, and forwards it
to the message extractor component.

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 303 Issue 3, Volume 9, March 2010

Fig. 5 Interactions between components

3. The message extractor extracts the service
type value from the message header, and
then sends it to the service group recognizer.

4. The service group recognizer queries the
service registry using the service type value
as a query parameter. The service registry
returns a list of services belonging to the
same service type to the service group
recognizer.

5. If the service type in the message header
contained properties, then when possible,
the service group recognizer filters the list
of services. Then, the service group
recognizer obtains the endpoint of each
service in the list, and sends them to the
balancing module.

6. The balancing module requests the load
information (loadInfo) from the load
monitor module.

7. The load monitor module asks for the
current loadInfo from the service providers.
The service providers return the current load
information to the load monitor. Then, the
load monitor forwards the load information
to the balancing module.

8. The balance computing module determines
the target service using the balancing
strategy, and forwards the endpoint to the
extended outbound router.

9. The extended outbound router sends the
message to the actual destination service.

4.3 Message header
In the previous section, we described how our
mechanism works. The service type information is

encoded in the header of a request message as
shown in Fig. 6.

<env:Envelope xmlns:env="…">
 <!--Header part -->
 <env:Header>
 <requestInfo>
 <serviceType>
 <name>
 FlightInformation ... (1)
 </name>
 <property>
 <executionTime>
 <value>10ms</value> ... (2)
 <evaluation>LT</evaluation>
 </executionTime>
 </property>
 </serviceType>
 <requestInfo>
 </env:Header>
 <!--Body part -->
 <env:Body>
 <messageInfo>
 <departure>tokyo<departure> ... (3)
 <arrive>boston</arrive>
 <date>27</date>
 <month>01</month>
 <year>2010</year>
 <messageInfo>
 </env:Body>
</ env:Envelope >

Fig. 6 Message example

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 304 Issue 3, Volume 9, March 2010

Table 2. Evaluation attribute value in service
property type

Value Symbol Meaning

EQ = equal
LT < less than
GT > greater than
LE <= less than or equal
GE >= greater than or equal

MIN no symbol minimum
MAX no symbol maximum

<mule xmlns-="…">
<jms:activemq-connector name="localhost"

brokerURL="tcp://localhost:61616" /> … (1)
 <model>
 <service name="BalancingESBProject">
 <inbound>
 <jms:inbound-endpoint queue="request.queue"

 synchronous="false"/> … (2)
 </inbound>
 <component class="org.my.balancer"/> … (3)
 <outbound >
 <custom-outbound-router class

="ExtendedOutboundRouter" >
 <outbound-endpoint address=" " /> … (4)
 <reply-to address="jms://receive.queue"/>

…(5)
 </custom-outbound-router>
 </outbound>
 </service>
 </model>
<mule>

Fig 8. Mule configuration

In the header part, the serviceType name
attribute is declared in the serviceType element, e.g.
FlightInformation (1) in Fig. 6. A service consumer
can add a serviceType property value (2) to filter
candidate services after the message extractor
component receives the service list from the service
registry. This property is optional, so the service
consumer can send the request with or without the
property information. Only services that match the
consumer specified properties will be returned. In
Fig. 6, the service consumer requests the
FlightInformation service and asks for an execution
time of less than 10 milliseconds. Table 2 shows a
list of evaluation value meaning.

In the body part of the message, the messageInfo
element is the tag for collecting the parameter

values to invoke the FlightInformation service such
as departure place, arrival place and the travel date
(3).

4.4 Mule configuration
Fig. 8 shows a basic template for the Mule
configuration file using our approach. First of all,
we must configure the destination of JMS
connection (1). Then, we set the inbound router to
connect to the JMS queue named “request.queue”
for getting the incoming message (2). The incoming
messages are processed by the balancer component
(3). This corresponds to the balance computing
module in Fig. 3. The target service is left blank
because the ESB extracts “ServiceType” from the
header of request messages and sets up the service
endpoint later (4). Since this is an asynchronous
message, we set the reply destination (5).

4.5 Balancing strategies
The selection of the actual destination service
depends on the balancing strategy. The following
strategies are available in our current
implementation:

 Round-Robin: This strategy keeps an
endpoint list of a given service type
containing at least one endpoint, and selects
an endpoint iteratively through the service
list.

 Random: This strategy randomly chooses an
endpoint from an endpoint list.

 Threshold: This strategy allows a service to
continue receiving requests until a threshold
value is reached. Once the threshold value is
reached, subsequent requests are sent to
another endpoint with the same service
type. The next endpoint is chosen based on
round-robin strategy. This next endpoint
will be used until its threshold value is
reached. Then the third endpoint is selected
based on round-robin strategy, etc. If all
services are over the threshold, then the
round-robin strategy is employed for each
message.

 Minimum: This strategy selects the service
which has the least number of messages in
the message queue.

 LeastLoad: This strategy is similar to
threshold; it allows a service to continue
receiving requests until a threshold value is
reached. However it is different from
threshold strategy in that once the threshold
value is reached, subsequent requests are
sent to the service with the least load. If all

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 305 Issue 3, Volume 9, March 2010

services are over the threshold, then the
system will send the message to the service
server with the least load even though it has
reached the threshold limit.

5 Evaluation
This section first describes an experiment that
evaluates the performance, specifically response
time, of our load balancing ESB. We then describe
limitations to our approach.

5.1 Experiment environment
We used the open source Java-based ESB software
Mule 2.2.1. Our load balancing ESB ran on Intel
Core2Duo 2.4GHz PC with RAM 2 GB.

We deployed four services with the same service
type and set up Apache server 2.2.11 [26] for
publishing load information in VirtualBox V.2.2.4
on host CPU Intel Core2Duo 1.6 GHz, all running
on Ubuntu 9.04 with RAM 128 MB. All PCs were
connected over a 100 Mbps LAN as shown in Fig. 9.

The services that are used in our experiment all
computer permutations of 10 elements. For example,
given “abcdefghij”, what are the possible ways that
these characters can be ordered?

Fig. 9 Experiment testbed

5.2 Experiment method
In our experiment, a client sends a message every
second to a service type. The client sends the
messages to the ActiveMQ queue and Mule will
retrieve the incoming request from the message pool.
The time is recorded as StartTime. When the client
receives a reply, the time (ReplyTime) is recorded,
and finally the response time for that interaction is
recorded as follows:

ResponseTime = ReplyTime – StartTime

 StartTime: Time when message is sent from
the client side.

 ReplyTime: Time when the client receives a
return message.

 ResponseTime: The amount of time
between sending the request and receiving a
response.

The frequency of message sending was

determined so that the message pool would always
be full. Thus, adding more clients would basically
have had no effect on the outcome of our
experiment.

Finally, for the threshold and leastLoad strategies,
the threshold value was set at six messages.

5.3 Experiment result and discussion
Fig. 10 shows the result of the average response
time for 100 messages for each of the balancing
strategy. It shows that sequencing, i.e., when no
load balancing was conducted, had the worst result.
Thus, we can conclude that our load balancing
approach was able to make better use of the
available services.

Fig. 10 Average response time

Fig. 10 also shows that the LeastLoad balancing

strategy was the most effective strategy for
balancing. On the surface it would seem that the
Minimum balancing approach should have the best
result. The reason for LeastLoad strategy being
better is likely due to the extra processing that
occurs when switching to (and/or finding) another
service. When the Minimum balancing approach is
taken, each time that a message is sent from the
client, the “best” service (i.e., the service currently
handling the least number of messages) is searched
for and then chosen. For the LeastLoad strategy, the
previous endpoint and its current message handling
count (which have been cached) is first checked. If

496 532 483
427 389

1038

0

200

400

600

800

1000

1200

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

/m
es

sa
ge

)

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 306 Issue 3, Volume 9, March 2010

the current message handling count is under the
threshold, then the message is sent to that endpoint.
However, if it is over the threshold, then the next
service that the message should be sent to needs to
be computed in the same way as the Minimum
approach. This difference in the frequency of
computing which service to send to is the likely
reason why LeastLoad balancing performed better
than the Minimum strategy.

In Fig. 11, we compare the average response
times for the LeastLoad strategy, when the threshold
takes a value between 4 and 12. The results show
that the response time was best when the threshold
was 6 messages. Excluding when the threshold was
4 messages, the results show that the response time
was better when the threshold was lower. This is
because if the threshold is set high, then the same
service must handle more messages before a
message is sent to another service. This means that
there are services that are not doing anything. It is
obviously better if the messages are distributed, and
of course this is the point of load balancing.

Fig. 11 Performance of the LeastLoad strategy
under different threshold values

The exception is when the number of messages

was four. The reason for this is the same as the
difference between Minimum strategy and
LeastLoad strategy. When the threshold is four, the
switching occurs more frequently than when the
threshold is six. This is where the overhead for
computing which alternate service to send a
message to can no longer be ignored. Thus, the
response time for threshold value four was worse
than when the threshold value was six.

Our proposed service type is based on the service
property model of CORBA trader. The result of our
experiment is similar to the result in [11]. The
results in [11] also showed that the LeastLoad
strategy was the most effective.

5.4 Limitations
There are several inherent limitations to our
approach.

First, there must be multiple services of the same
type for our approach to have any affect at all.
Currently, we require the services to have the same
parameter and return data type to belong to the same
service type. We are considering if there are other
ways to define a service type such as using ontology,
so that the number of services belonging to the same
type will increase leading to more candidates for
load balancing.

Second, the granularity of services must be
considered when registering, or else stateful services
will become problematic. For example, if the client
starts using a hotel reservation service, then all
messages must be sent to the same service. A
similar issue exists for services that require
membership.

Third, providers must register their service
according to a service type, i.e., although small,
there is some extra work for the provider.

6 Conclusion
In this paper, we proposed a load balancing
mechanism for ESB, which enables the dynamic
selection of services which messages should be sent
to. The key to this mechanism is the introduction of
service types. Services belonging to the same
service type have the same function and signature.
Thus, messages can be sent to any service belonging
to the specified service type. We implemented our
approach, and conducted an experiment.

Our main contributions are as follows:
1. Our proposed load balancing is done

between different services with the same
function, not between replicated services.

2. Our “service type” enables the dynamic
selection of the target service. The candidate
services are not listed in an ESB
configuration file a priori.

3. We compared and discussed the differences
between balancing strategies

As for future work, we are considering how we
can handle the first two issues that were given in
section 5.4, specifically other ways to define a
service type, and how stateful services can be
handled. Furthermore, we plan on incorporating
QoS in dynamic service selection. We also consider
other information that can be sent, such as service
consumer information for use with service property
attribute to enable more powerful service selection.

421

389 395
403

539

300

350

400

450

500

550

600

4 6 8 10 12

Re
sp

on
se

 T
im

e
(s

/m
es

sa
ge

)

Threshold(messages)

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 307 Issue 3, Volume 9, March 2010

References:
[1] ESB Interoperability Standards. Available

from:
http://www.ibm.com/developerworks/library/sp
ecification/ws-esb-interop/index.html

[2] F. Ismaili, B. Sisediev, Web Services Research
Challenges, Limitations and Opportunities,
WSEAS Transactions on Information Science &
Applications, Volume 5, Issue 10, 2008.

[3] S. Kambhampaty, S. Chandra, Service Oriented
Architecture for Enterprise Applications, Proc.
of 5th WSEAS Intl. Conf. on Software
Engineering, Parallel and Distributed Systems,
2006, pp. 48-54.

[4] Z. Panian, Requirements-driven Approach to
Service-oriented Architecture Implementation,
Proc. of the 6th WSEAS Intl. Conf. on
Multimedia, Internet & Video Technologies,
2006, pp. 90-95.

[5] X. Bai, J. Xie, B. Chen, S. Xiao, DRESR:
Dynamic Routing in Enterprise Service Bus,
Proc. of Intl. Conf. on e-Business Engineering,
2007, pp. 528-531.

[6] Mule open source ESB. from: http://www.
mulesoft.org/display/MULE2USER/Outbound
+Routers#OutboundRouters-RoundRobin

[7] Apache ServiceMix. The agile open source
ESB. from: http://servicemix.apache.org/how-
do-i-configure-an-endpoint-resolverpolicy.html

[8] Google platform. from: http://en.wikipedia.org
/wiki/ Google_platform

[9] A. Gorbenko, V. S. Kharchenko, A.
Romanovsky, Using Inherent Service
Redundancy and Diversity to Ensure Web
Services Dependability, LNCS 5454, Methods,
Models and Tools for Fault Tolerance, 2009,
pp. 324-341.

[10] Y. Kono, S. Takada, N. Doi, A Framework for
Multiple Service Discovery and Robustness,
Proc. of the 8th IASTED Intl. Conf. on
Software Engineering and Applications, 2004,
pp.546-551.

[11] J. Balasubramanian, D. C. Schmidt, L. W.
Dowdy, O. Othman, Evaluating the
Performance of Middleware Load Balancing
Strategies, Proc. of 8th Intl.. Conf. on
Enterprise Distributed Object Computing,
2004, pp. 135-146.

[12] I.-Y. Chen, G.-K. Ni, C.-Y. Lin, A runtime-
adaptable service bus design for telecom
operations support systems, IBM Systems
Journal, Vol.47, No.3, 2008, pp. 445-456.

[13] B. Wu, S. Liu, L. Wu, Dynamic Reliable
Service Routing in Enterprise Service Bus,

Proc. of Asia-Pacific Service Computing Conf.,
2008, pp. 349-354.

[14] O. Othman, C. O'Ryan, D. C. Schmidt,
Designing an Adaptive CORBA Load
Balancing Service Using TAO, IEEE
Distributed Systems Online 2(4), 2001.

[15] Object Management Group. CORBAservices:
Common object specification. Version 1.0,
May 10, 1996.

[16] J. Wang, Y. Ren, D. Zheng, Q. Wu, Agent
Based Load Balancing Middleware for Service-
Oriented Applications, Proc. of the 7th Intl.
Conf. on Computational Science Part2, 2007,
pp. 974-977.

[17] J. Roca, J. C. Ortega, J. Antonio Alvarez, J.
Mateo, Data Neighboring in Local Load
Balancing Operations, Proc. of 9th WSEAS Intl.
Conf. on COMPUTERS , 2005, pp. 497-533.

[18] K. Kaario, T. Hämäläinen, P. Raatikainen,
Adaptive Parameter Setting for QoS Aware
Load Balancing Algorithm, WSEAS
Transactions on Communications, Vol. 1, Issue
1, 2002,pp. 144-149.

[19] G. G. Fernandez, J. S. Carrion, L. J. Aguilar, I.
M. Collado, A New Approach to Dynamic
Load Balancing across Multimedia Servers,
WSEAS Transactions on Computers, Vol. 5,
Issue 11, 2006, pp.2758―2764

[20] Y. Taher, D. Benslimane , M. Fauvet, Z.
Maamar, Toward an approach for web
services substitution, 10th Database
Engineering and Applications Symposium,
2006, pp. 166-173.

[21] R. Pianwattanaphon, T. Senivongse,
Compatibility by service type model for
automatic web service substitution , Proc. of
9th Intl. Conf. on Advanced Communication
Technology, 2007, pp. 76-81.

[22] uddi.org. UDDI. from: http://uddi.xml.org/
[23] Java Message Service from: http://java.sun.

com/products/jms/overview.html
[24] The Apache software foundation. Apache

Active MQ open source message broker, from:
http://active mq.apache.org/

[25] JDOM Available from: http://www.jdom
.org/

[26] Apache HTTP server project from: http://httpd.
apache.org/

WSEAS TRANSACTIONS on COMPUTERS Aimrudee Jongtaveesataporn, Shingo Takada

ISSN: 1109-2750 308 Issue 3, Volume 9, March 2010

