
Interactive Compression of Books

BRUNO CARPENTIERI
Dipartimento di Informatica ed Applicazioni “R. M. Capocelli”

Università di Salerno
Via S. Allende – 84081 Fisciano (SA)

ITALY
bc@dia.unisa.it http://www.dia.unisa.it/professori/bc

Abstract: In this paper we study interactive data compression and present experimental results on the
interactive compression of textual data (books or electronic newspapers) in Italian or English language.
The main intuition is that when we have already compressed a large number of similar texts in the past, then we
can use this previous knowledge of the emitting source to increase the compression of the current text and we
can design algorithms that efficiently compress and decompress given this previous knowledge. By doing this
in the fundamental source coding theorem we substitute entropy with conditional entropy and we have a new
theoretical limit that allows for better compression. Moreover, if we assume the possibility of interaction
between the compressor and the decompressor then we can exploit the previous knowledge they have of the
source. The price we pay is a very low possibility of communication errors.

Key-Words: - Data Compression, Interaction, Dictionary based compression, Fingerprinting.

1 Introduction

Data Compression is the coding of data to
minimize its representation. This process is called
lossless compression (also reversible or noiseless
coding or redundancy reduction) if the original can
be exactly reconstructed from the compressed copy;
otherwise it is called lossy compression (also
irreversible or fidelity-reducing coding or entropy
reduction.

The theoretical background of the data
compression techniques is strong and well
established. It dates back to the seminal work of
Shannon who, more than half a century ago, gave
precise limits on the performance of any lossless
compression algorithm: this limit is the entropy of
the source we want to compress.

Data compression techniques are specifically
dependent on the type of data that has to be
compressed and on the desired performance.
Typical measures of performances are time and
space complexity, fidelity, compression ratio.
Typical data are text, images, speech, video.

Today state of the art lossless compressors are
efficient. While it is not possible to prove that they
always achieve the entropy limit, their effective
performances for specific types of data are often
very close to this limit.

One option we have to increase compression is to
use the knowledge of similar messages from the
same source that the two transmitting/compressing
sides have compressed in the past and to design

algorithms that efficiently compress and decompress
given this previous knowledge.

By doing this in the fundamental source coding
theorem we can substitute entropy with conditional
entropy and we have a new theoretical limit that
allows for better compression.

Moreover, if we assume the possibility of
interaction between the compressor and the
decompressor then we can exploit the previous
knowledge they both have of the source. The price
we might accept to pay is a very low possibility of
communication errors.

In this paper we review recent work that applies
previous knowledge and interactive approaches to
data compression and discuss this possibility.

In the next Section we remind the relationship
between compression and entropy. Section 3
reviews the dictionary based compression
approaches. Section 4 introduces the interactive
compression paradigm, Section 5 shows how to use
interactive compression to compress books and
Section 6 presents our conclusions.

2 Compression and Entropy
The amount of digital data being produced after the
beginning of the second millennium is increasing at
an exponential rate. To deal with digital data we
need data compression: without compression we
cannot store and/or transmit the huge amount of data
we treat every day.

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 278 Issue 3, Volume 9, March 2010

For example consider digital images and consider
the number of bits per image resulting from typical
sampling and quantization rates: a 24 x 35 mm
negative photograph scanned at 12 µm, 3000 x 2000
pixels/color, 8 bits / pixel, 3 colors, uses about
144.000.000 bits and a LANDSAT Thematic
Mapper scene, 6000 x 6000 pixels / spectral band, 8
bits / pixel, and 6 nonthermal spectral bands uses
1,7 x 109 bits. These images are often transmitted
in groups, where each group contains sequences of
images that are strictly correlated.
Data compression is therefore motivated by the
economic and logistic needs to save space in storage
media and bandwidth in communication: in
compressed form we can rapidly and efficiently
store and transmit data.
The theoretical background of data compression
techniques is strong and established. It dates back to
the seminal work of Shannon. This theoretical
background gives precise limits on the performance
of a compression algorithm.
Any process that generates information can be seen
as a source that emits a sequence of symbols from a
finite alphabet. For example we might consider an
n-bit image as generated by a source with alphabet
of 2n symbols representing the possible values for
every n-bits combination.
The source output can be viewed as a sequence of:
finite length sequences of alphabet symbols, often
called words. For example, a word of a source that
emits English sentences can be a sequence of one or
more common English words, including blanks,
punctuation marks, etc..
If we consider a Discrete Memoryless Source
(DMS) S, in which successive symbols are
statistically independent, Shannon and Weaver in
[1] showed that, given the set of probabilities P =
{p1, p2, ..., pn) for the source symbols, the optimal
expected number of code bits is:

!

i=1

n

" -pi log2 (pi)

a quantity which they called the Entropy of the
source S, usually denoted by H(S).
The entropy is a measure of uncertainty about an
event: it has a zero value, if and only if, there is
absolute certainty and it is maximum when all the
events are equiprobable: i.e. there is absolute
uncertainty.
The conditional entropy H(S1|S2) is the natural
analogue of the entropy H(S) but it is based on the
conditional probability. It can be shown that:
H(S1|S2) ≤ H(S1).
Because of the fundamental source coding theorem
(see Storer [2]) entropy is a limit to the length of

the string that we can use to lossless code a
message.
Today lossless compressors are very efficient, the
performance of the state of the art compressors for
specific data types are often close to this theoretical
limit.

3 Dictionary based compression
In this paper we are going to deal with lossless,
dictionary based, compression algorithms.
We can use static dictionary methods when the
source is known in advance.
When we use data compression to communicate
data, the Sender and the Receiver shall use the same
(static) dictionary and at the beginning of the
communication the Sender shall send the dictionary
to the Receiver.
For example in vector quantization algorithms the
compressor builds up a dictionary on a training set
of images and it uses this dictionary to compress the
new data. The decompressor needs the same
dictionary to decompress, therefore the compressor
shall transmit this dictionary to the decompressor.
The cost of making this dictionary available
depends on its dimensions. Generally this cost is not
considered in the analysis of a static dictionary
compression method by using the argument that this
constant cost can be amortized over time by
compressing a large amount of data.
In real life situations this is not always true: in many
cases the cost of sending the dictionary might have
an important impact on the total cost of the
communication making static compression methods
unpractical.
Dynamic dictionary methods build up the Sender
and the Receiver dictionary at run time, starting
with empty dictionaries and building up the
dictionaries in terms of the already compressed data.
In real life applications often we have as a
compression target small or medium size files, that
represent computer programs, images, text data,
music, videos, etc..
It would be obviously more effective to start up the
compression/decompression process with an
appropriate, complete, dictionary instead of an
empty one.
Mainstream methods that are based on dictionaries
are almost always dynamic dictionary methods: this
adaptive technique is flexible and can be easily used
in practical situations.

4 Interactive Compression
If the compressor and decompressor have already
compressed a large number of source messages (but

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 279 Issue 3, Volume 9, March 2010

not necessarily the same messages, see for example
Carpentieri [3]) and we can assume some degree of
interaction between the two communication parties,
then we can exploit the compression process when
data compression is used for data transmission. The
price we pay might be a low possibility of errors
that derives by the usage that the two sides make of
the knowledge they have of the source.
We can design interactive protocols that allow a
Sender and a Receiver to take advantage of the
knowledge they have of the source and that could
exploit the interaction to minimize the
communication cost.
This situation occurs in every day life. As an
example consider an internet user that has download
frequently a file (a newsletter, an image, a report,
etc.) from the same source, or a system manager that
has to download repetitively an update file for a
program or an antivirus, or an ftp mirroring site that
has to be periodically brought up to date, etc.
The compression algorithms involved might be
static or dynamic dictionary methods, Vector
Quantization in the case of images, etc..
El Gamal and Orlistky in [4] consider the following
problem: “Given two random variables X and Y
with entropies H(X) and H(Y) and joint entropy
H(X,Y), and two persons PX and PY, such that PX
knows X and PY knows Y, suppose that the two
persons wish to communicate over a noiseless two-
way channel so that at the end of the communication
process they both know X and Y . How many bits
on the average must they exchange and what are the
optimal codes?”
They prove that at least H(X|Y) + H(Y|X) bits must
be exchanged on the average and that H(X,Y) + 2
bits are sufficient and that if the joint probability
p(x,y) is uniform then the average number of bits
needed is close to H(X|Y) + H(Y|X).
They also discuss randomized protocols that can
reduce the amount of communication if some
probability of communication error is acceptable.
In Carpentieri [5] it is presented a communication
protocols that allow a “learned” Sender and a
“learned” Receiver to communicate, and to
compress files, with dictionaries that are initially
independently built, starting by previous (and may
be discordant) examples of communication
messages each of the two sides has available.
This communication protocol results in an
improvement in compression paid with a negligible
or almost null possibility of communication errors

5 Interactive compression of books.
In this section we consider the interactive
compression/transmission of natural language

textual data, as electronic newspapers or books,
which have to be sent from a remote source to a
client destination.
We might improve the transmission/compression
process by taking into account the common rules of
the specific natural language (i.e. the set of common
words of the natural language, the syntax, etc.).
All these rules might be considered as shared
knowledge between a Sender (that sends the book)
and a Receiver (that receives the data).
Another option, if the Receiver has already received
a consistent number of messages form the source, is
to use those messages to build, independently from
the Sender that might not have the same messages
available, a dictionary to be used in the
decompression process.
Otherwise, when the Receiver receives the book it
can use a standard on line dictionary of the language
in which the book is written to decode the Sender’s
messages.
The Sender does not know which (static) dictionary
the Receiver is using.
The Sender can send the message words as pointers
that the Receiver could try to decode by using its
dictionary.
We have experimented with this dictionary based
approach by digitizing six books: three of them are
in the Italian language and the other three are in
English.
We have used two standard, on line, dictionaries (an
English dictionary and an Italian dictionary) in the
decompression process.
In our experiments the Sender sends a book to the
Receiver a word at a time.
If the word is long enough, instead of the raw word,
the Sender sends a token including the initial
character of that word, the length of the word and a
hash value (in our implementation a Karp and Rabin
hash, see Karp and Rabin [6]) for that word.
The Receiver will receive the token and will try to
decode the word by using its local dictionary that
the Receiver has already organized in terms of the
hashing function used.
If the token sent by the Sender cannot be decoded
by the Receiver because for the hash value it has
received there is a collision in the Receiver’s
dictionary, then the Receiver asks the Sender to
send a fresh new token for the same word with a
different letter (may be the middle letter of the
word) and a different hash.
If the Receiver finds a unique word that matches the
token in the dictionary then it decodes the word and
eventually acknowledges the Sender.
If the Receiver does not find any word that matches
the token in the dictionary, then it sends a request to

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 280 Issue 3, Volume 9, March 2010

have the word (entropy coded and) sent directly as
raw data to the Sender.
There is a possibility of communication errors, i.e.
situations in which the Receiver believes it can
decode correctly the word but the word that it finds
in its dictionary it is not the correct one.
If the probability of an error is very low then the
Receiver might accept to have a few words
incorrectly decoded: it will be still possible to read
and understand the book.
For example this might be the situation of an
electronic newspaper that is constantly updated at
the Receiver’s side. If a few words are misspelled
but the text is still readable it is not a big deal for
the reader (that is already used to find a few
misspelled words in the paper newspapers…).
If we assume that the dictionary used by the
Receiver is the correct dictionary for that specific
book language, then the probability of an error
depends on the choice and length of the hash value.
Figure 1 outlines our communication model, where
there is a communication line that goes from the
Sender to the Receiver and an acknowledgment line
that goes from the Receiver to Sender.
In many real life situations the communication line
is bidirectional: there is the possibility of interaction
between Sender and Receiver in communication via
modem on a telephone line, on a radio or satellite
link, etc.. Moreover often the bandwidth of the line
is not fully used in a single direction but it is
automatically divided in two separate lines of half
bandwidth each to allow messages in both
directions; for example this was the case of the
previous generation modems.
In these cases it might even be considered that the
acknowledgment line of our model, and all the tra±c
on that line, comes almost for free, because it does
not slow up the communication on the
communication line. However in what we will
assume that the cost of the communication between
the Sender and the Receiver is the sum of the cost of
the traffics on the two lines, assuming that the
messages on the acknowledgment line have the
same cost of the ones on the communication line.
In Table 1 we show the results obtained by
compressing six books and by using Karp and Rabin
hashes of length 12 bits.
The results obtained are compared with the “off of
the shelves” standard dictionary based compressors
Zip and Gzip.
These results are very encouraging: with this
approach we have implicitly set a strong limit on the
length of any matched string that is copied into the
output stream (the maximum length of a match will
be the length of the longest word in the static

Receiver’s dictionary) but nevertheless the results
are competitive with respect to the standard zip and
gzip compressors.
Possible improvements are therefore foreseen if we
allow the matches to have longer lengths.
The price we pay is the possibility of small
communication errors.
These communication errors shall not propagate as
in standard dictionary based compression, because
here we use a static dictionary.
With the above settings we have a very limited
communication error: i.e. only a very few words
(often less than ten) are mismatched in a whole
book which therefore maintains its readability.
There is a strong relationship between the length of
the hash value, the compression results, and the
compression errors.
With a longer hash we have less compression errors
but a worst compression, with a shorter hash we
improve compression but we pay the price of more
compression errors.
Figures 2, 3 and 4 picture out the relationship
between the length of the hash value, the size of the
compressed file and the error percentage for the
books “Decamerone”, “Promessi Sposi” and
“Gomorra”.
In the (a) part of the pictures we have on the x-axis
the lengths of the hash value in bits and on the y-
axis the corresponding sizes in Kb of the
compressed file.
In the (b) part of the pictures on the x-axis we have
again the lengths of the hash value in bits, but on
the y-axis we have the corresponding error
percentages.
Figure 2 shows that, in the case of “Decamerone”
compression results are better for a hash value that
has a length of 9 bits, but also that this length is not
good enough to cope with transmission errors.
Instead a hash of length 15 bits gives a compression
that is almost lossless but the compression obtained
is not competitive.
The right compromise for the hash length here is 12
bits.
The behavior for the other books is very similar to
the one in Figure 1.

6 Conclusion
If we assume the possibility of interaction between
the compressor and the decompressor then we can
exploit the previous knowledge they might have of
the source. The price we pay is a very low
possibility of communication errors.
In this paper we study interactive data compression
and present experimental results on the interactive
compression of textual data.

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 281 Issue 3, Volume 9, March 2010

Future work will focus on the improvement of the
algorithms presented and on a wider testing of the
approaches described.

Acknowledgements
I would like to thank Prof. James A. Storer for
fruitful discussions we had on interactive data
compression, and my students Mario Immobile
Molaro and Vincenzo Viola for carrying out some
of the experimental work described in this paper.

References:
[1] C. S. Shannon and W. Weaver, The

mathematical theory of communication.
University of Illinois Press, Urbana, IL., 1949.

[2] J. A. Storer, Data compression: methods and
theory. Computer Science Press, 1988.

[3] B. Carpentieri, Conditional data compression:
the lossless case. WSEAS Trans. on Systems,
Vol. 2, n. 4, 2003, pp. 856-860.

[4] A. El Gamal, A. Orlitsky, Interactive data
compression. In: Proceedings 25th Ann. Symp.
Foundations Computer Science, 1984, pp. 100–
108.

[5] B. Carpentieri, Sending compressed messages
to a learned receiver on a bidirectional line.
Information Processing Letters, Vol. 83, n.2,
2002, pp. 63-70.

[6] R. M. Karp, M. O. Rabin, Efficient randomized
pattern-matching algorithms. IBM J. Res.
Develop. 31 (2), 1987, pp. 249–260.

[7] B. Carpentieri and J. A. Storer, Video
Compression and The Complexity of Aligning
Vectors, International Journal of Foundations
of Computer Science, vol. 5, N. 2, 1994, pp.
165-177.

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 282 Issue 3, Volume 9, March 2010

Figure 1: The Communication Model

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 283 Issue 3, Volume 9, March 2010

Book title Original

Dimensions

Interactive Protocol

(12 bits hash)

Zip Gzip

 Compresed

size

Compression

ratio

Compresed

size

Compression

ra t io

Compresed

size

Compression

ra t io

Decamerone 1638,2 KB 544,6 KB 3,00 577,2 KB 2,83 551,7 KB 2,96

Gomorra 663,0 KB 240,2 KB 2,76 251,4 KB 2,63 241,3 KB 2,74

Promessi

Sposi

1394,9 KB 490,1 KB 2,84 520,2 KB 2,68 498,5 KB 2,79

20000

Legues

Under The

Sea

875,5 KB

306,2 KB 2,85 336,1 KB 2,60 323,4 KB 2,70

The Wealth

Of Nations

2273,1 KB

602,9 KB 3.77 688,1 KB 3,30 652,8 KB 3.48

For Whom

The Bell

Tolls

937,4 KB 288,2 KB 3,25 326,3 KB 2,87 310,1 KB 3,02

 Table 1. Compression results

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 284 Issue 3, Volume 9, March 2010

Figure 2 (a)-(b): Compression and hash length for “Decamerone”

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 285 Issue 3, Volume 9, March 2010

Figure 3 (a)-(b): Compression and hash length for “Promessi Sposi”

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 286 Issue 3, Volume 9, March 2010

Figure 4 (a)-(b): Compression and hash length for “Gomorra”

WSEAS TRANSACTIONS on COMPUTERS Bruno Carpentieri

ISSN: 1109-2750 287 Issue 3, Volume 9, March 2010

