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Abstract: In this paper we study interactive data compression and present experimental results on the 
interactive compression of textual data (books or electronic newspapers) in Italian or English language. 
The main intuition is that when we have already compressed a large number of similar texts in the past, then we 
can use this previous knowledge of the emitting source to increase the compression of the current text and we 
can design algorithms that efficiently compress and decompress given this previous knowledge. By doing this 
in the fundamental source coding theorem we substitute entropy with conditional entropy and we have a new 
theoretical limit that allows for better compression. Moreover, if we assume the possibility of interaction 
between the compressor and the decompressor then we can exploit the previous knowledge they have of the 
source. The price we pay is a very low possibility of communication errors.  
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1 Introduction 

Data Compression is the coding of data to 
minimize its representation. This process is called 
lossless compression (also reversible or noiseless 
coding or redundancy reduction) if the original can 
be exactly reconstructed from the compressed copy; 
otherwise it is called lossy compression (also 
irreversible or fidelity-reducing coding or entropy 
reduction. 

The theoretical background of the data 
compression techniques is strong and well 
established. It dates back to the seminal work of 
Shannon who, more than half a century ago, gave 
precise limits on the performance of any lossless 
compression algorithm: this limit is the entropy of 
the source we want to compress. 

Data compression techniques are specifically 
dependent on the type of data that has to be 
compressed and on the desired performance. 
Typical measures of performances are time and 
space complexity, fidelity, compression ratio. 
Typical data are text, images, speech, video.  

Today state of the art lossless compressors are 
efficient. While it is not possible to prove that they 
always achieve the entropy limit, their effective 
performances for specific types of data are often 
very close to this limit. 

One option we have to increase compression is to 
use the knowledge of similar messages from the 
same source that the two transmitting/compressing 
sides have compressed in the past and to design 

algorithms that efficiently compress and decompress 
given this previous knowledge.  

By doing this in the fundamental source coding 
theorem we can substitute entropy with conditional 
entropy and we have a new theoretical limit that 
allows for better compression. 

Moreover, if we assume the possibility of 
interaction between the compressor and the 
decompressor then we can exploit the previous 
knowledge they both have of the source. The price 
we might  accept to pay is a very low possibility of 
communication errors.  

In this paper we review recent work that applies 
previous knowledge and interactive approaches to 
data compression and discuss this possibility. 

In the next Section we remind the relationship 
between compression and entropy. Section 3 
reviews the dictionary based compression 
approaches. Section 4 introduces the interactive 
compression paradigm, Section 5 shows how to use 
interactive compression to compress books and 
Section 6 presents our conclusions. 
 
 
2 Compression and Entropy 
The amount of digital data being produced after the 
beginning of the second millennium is increasing at 
an exponential rate. To deal with digital data we 
need data compression: without compression we 
cannot store and/or transmit the huge amount of data 
we treat every day.  
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For example consider digital images and consider 
the number of bits per image resulting from typical 
sampling and quantization rates: a 24 x 35 mm 
negative photograph scanned at 12 µm, 3000 x 2000   
pixels/color, 8  bits / pixel, 3  colors, uses about 
144.000.000 bits and a LANDSAT Thematic 
Mapper scene, 6000 x 6000  pixels / spectral band, 8 
bits / pixel, and 6 nonthermal spectral bands uses 
1,7 x 109  bits. These images are often transmitted 
in groups, where each group contains sequences of 
images that are strictly correlated.  
Data compression is therefore motivated by the 
economic and logistic needs to save space in storage 
media and bandwidth in communication: in 
compressed form we can rapidly and efficiently 
store and transmit data. 
The theoretical background of data compression 
techniques is strong and established. It dates back to 
the seminal work of Shannon. This theoretical 
background gives precise limits on the performance 
of a compression algorithm. 
Any process that generates information can be seen 
as a source that emits a sequence of symbols from a 
finite alphabet. For example we might consider an 
n-bit image as generated by a source with alphabet 
of 2n symbols representing the possible values for 
every n-bits combination. 
The source output can be viewed as a sequence of: 
finite length sequences of alphabet symbols, often 
called words. For example, a word of a source that 
emits English sentences can be a sequence of one or 
more common English words, including blanks, 
punctuation marks, etc.. 
If we consider a Discrete Memoryless Source 
(DMS) S, in which successive symbols are 
statistically independent, Shannon and Weaver in 
[1] showed that, given the set of probabilities P = 
{p1, p2, ..., pn)  for the source symbols, the optimal 
expected number of code bits is: 

! 

i=1

n

" -pi  log2 (pi ) 

a quantity which they called the Entropy of the 
source S, usually denoted by H(S).  
The entropy is a measure of uncertainty about an 
event: it has a zero value, if and only if, there is 
absolute certainty and it is maximum when all the 
events are equiprobable: i.e. there is absolute 
uncertainty. 
The conditional entropy H(S1|S2) is the natural 
analogue of the entropy H(S) but it is based on the 
conditional probability. It can be shown that: 
H(S1|S2) ≤ H(S1). 
Because of the fundamental source coding theorem 
(see  Storer [2]) entropy is a limit to the length of 

the string that we can use to lossless code a 
message.  
Today lossless compressors are very efficient, the 
performance of the state of the art compressors for 
specific data types are often close to this theoretical 
limit. 
 
3 Dictionary based compression 
In this paper we are going to deal with lossless, 
dictionary based, compression algorithms. 
We can use static dictionary methods when the 
source is known in advance.  
When we use data compression to communicate 
data, the Sender and the Receiver shall use the same 
(static) dictionary and at the beginning of the 
communication the Sender shall send the dictionary 
to the Receiver.  
For example in vector quantization algorithms the 
compressor builds up a dictionary on a training set 
of images and it uses this dictionary to compress the 
new data. The decompressor needs the same 
dictionary to decompress, therefore the compressor 
shall transmit this dictionary to the decompressor. 
The cost of making this dictionary available 
depends on its dimensions. Generally this cost is not 
considered in the analysis of a static dictionary 
compression method by using the argument that this 
constant cost can be amortized over time by 
compressing a large amount of data. 
In real life situations this is not always true: in many 
cases the cost of sending the dictionary might have 
an important impact on the total cost of the 
communication making static compression methods 
unpractical. 
Dynamic dictionary methods build up the Sender 
and the Receiver dictionary at run time, starting 
with empty dictionaries and building up the 
dictionaries in terms of the already compressed data. 
In real life applications often we have as a 
compression target small or medium size files, that 
represent computer programs, images, text data, 
music, videos, etc..  
It would be obviously more effective to start up the 
compression/decompression process with an 
appropriate, complete, dictionary instead of an 
empty one. 
Mainstream methods that are based on dictionaries 
are almost always dynamic dictionary methods: this 
adaptive technique is flexible and can be easily used 
in practical situations.  
 
4 Interactive Compression 
If the compressor and decompressor have already 
compressed a large number of source messages (but 
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not necessarily the same messages, see for example 
Carpentieri [3]) and we can assume some degree of 
interaction between the two communication parties, 
then we can exploit the compression process when 
data compression is used for data transmission. The 
price we pay might be a low possibility of errors 
that derives by the usage that the two sides make of 
the knowledge they have of the source. 
We can design interactive protocols that allow a 
Sender and a Receiver to take advantage of the 
knowledge they have of the source and that could 
exploit the interaction to minimize the 
communication cost.  
This situation occurs in every day life. As an 
example consider an internet user that has download 
frequently a file (a newsletter, an image, a report, 
etc.) from the same source, or a system manager that 
has to download repetitively an update file for a 
program or an antivirus, or an ftp mirroring site that 
has to be periodically brought up to date, etc. 
The compression algorithms involved might be 
static or dynamic dictionary methods, Vector 
Quantization in the case of images, etc..  
El Gamal and Orlistky in [4] consider the following 
problem: “Given two random variables X and Y 
with entropies H(X) and H(Y) and joint entropy 
H(X,Y), and two persons PX and PY, such that PX 
knows X and PY knows Y, suppose that the two 
persons wish to communicate over a noiseless two-
way channel so that at the end of the communication 
process they both know X and Y . How many bits 
on the average must they exchange and what are the 
optimal codes?” 
They prove that at least H(X|Y) + H(Y|X) bits must 
be exchanged on the average and that H(X,Y) + 2 
bits are sufficient and that if the joint probability 
p(x,y) is uniform then the average number of bits 
needed is close to H(X|Y) + H(Y|X). 
They also discuss randomized protocols that can 
reduce the amount of communication if some 
probability of communication error is acceptable. 
In Carpentieri [5] it is presented a communication 
protocols that allow a “learned” Sender and a 
“learned” Receiver to communicate, and to 
compress files, with dictionaries that are initially 
independently built, starting by previous (and may 
be discordant) examples of communication 
messages each of the two sides has available.  
This communication protocol results in an 
improvement in compression paid with a negligible 
or almost null possibility of communication errors 
 
5 Interactive compression of books. 
In this section we consider the interactive 
compression/transmission of natural language 

textual data, as electronic newspapers or books, 
which have to be sent from a remote source to a 
client destination.  
We might improve the transmission/compression 
process by taking into account the common rules of 
the specific natural language (i.e. the set of common 
words of the natural language, the syntax, etc.).  
All these rules might be considered as shared 
knowledge between a Sender (that sends the book) 
and a Receiver (that receives the data).  
Another option, if the Receiver has already received 
a consistent number of messages form the source, is 
to use those messages to build, independently from 
the Sender that might not have the same messages 
available, a dictionary to be used in the 
decompression process. 
Otherwise, when the Receiver receives the book it 
can use a standard on line dictionary of the language 
in which the book is written to decode the Sender’s 
messages.  
The Sender does not know which (static) dictionary 
the Receiver is using.  
The Sender can send the message words as pointers 
that the Receiver could try to decode by using its 
dictionary. 
We have experimented with this dictionary based 
approach by digitizing six books: three of them are 
in the Italian language and the other three are in 
English.  
We have used two standard, on line, dictionaries (an 
English dictionary and an Italian dictionary) in the 
decompression process. 
In our experiments the Sender sends a book to the 
Receiver a word at a time.  
If the word is long enough, instead of the raw word, 
the Sender sends a token including the initial 
character of that word, the length of the word and a 
hash value (in our implementation a Karp and Rabin 
hash, see Karp and Rabin [6]) for that word.  
The Receiver will receive the token and will try to 
decode the word by using its local dictionary that 
the Receiver has already organized in terms of the 
hashing function used.  
If the token sent by the Sender cannot be decoded 
by the Receiver because for the hash value it has 
received there is a collision in the Receiver’s 
dictionary, then the Receiver asks the Sender to 
send a fresh new token for the same word with a 
different letter (may be the middle letter of the 
word) and a different hash.  
If the Receiver finds a unique word that matches the 
token in the dictionary then it decodes the word and 
eventually acknowledges the Sender.  
If the Receiver does not find any word that matches 
the token in the dictionary, then it sends a request to 
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have the word (entropy coded and) sent directly as 
raw data to the Sender. 
There is a possibility of communication errors, i.e. 
situations in which the Receiver believes it can 
decode correctly the word but the word that it finds 
in its dictionary it is not the correct one.  
If the probability of an error is very low then the 
Receiver might accept to have a few words 
incorrectly decoded: it will be still possible to read 
and understand the book. 
For example this might be the situation of an 
electronic newspaper that is constantly updated at 
the Receiver’s side. If a few words are misspelled 
but the text is still readable it is not  a big deal for 
the reader (that is already used to find a few 
misspelled words in the paper newspapers…). 
If we assume that the dictionary used by the 
Receiver is the correct dictionary for that specific 
book language, then the probability of an error 
depends on the choice and length of the hash value.  
Figure 1 outlines our communication model, where 
there is a communication line that goes from the 
Sender to the Receiver and an acknowledgment line 
that goes from the Receiver to Sender. 
In many real life situations the communication line 
is bidirectional: there is the possibility of interaction 
between Sender and Receiver in communication via 
modem on a telephone line, on a radio or satellite 
link, etc.. Moreover often the bandwidth of the line 
is not fully used in a single direction but it is 
automatically divided in two separate lines of half 
bandwidth each to allow messages in both 
directions; for example this was the case of the 
previous generation modems.  
In these cases it might even be considered that the 
acknowledgment line of our model, and all the tra±c 
on that line, comes almost for free, because it does 
not slow up the communication on the 
communication line. However in what we will 
assume that the cost of the communication between 
the Sender and the Receiver is the sum of the cost of 
the traffics on the two lines, assuming that the 
messages on the acknowledgment line have the 
same cost of the ones on the communication line. 
In Table 1 we show the results obtained by 
compressing six books and by using Karp and Rabin 
hashes of length 12 bits.  
The results obtained are compared with the “off of 
the shelves” standard dictionary based compressors 
Zip and Gzip.  
These results are very encouraging: with this 
approach we have implicitly set a strong limit on the 
length of any matched string that is copied into the 
output stream (the maximum length of a match will 
be the length of the longest word in the static 

Receiver’s dictionary) but nevertheless the results 
are competitive with respect to the standard zip and 
gzip compressors.  
Possible improvements are therefore foreseen if we 
allow the matches to have longer lengths. 
The price we pay is the possibility of small 
communication errors. 
These communication errors shall not propagate as 
in standard dictionary based compression, because 
here we use a static dictionary. 
With the above settings we have a very limited 
communication error: i.e. only a very few words 
(often less than ten) are mismatched in a whole 
book which therefore maintains its readability. 
There is a strong relationship between the length of 
the hash value, the compression results, and the 
compression errors.  
With a longer hash we have less compression errors 
but a worst compression, with a shorter hash we 
improve compression but we pay the price of more 
compression errors. 
Figures 2, 3 and 4 picture out the relationship 
between the length of the hash value, the size of the 
compressed file and the error percentage for the 
books “Decamerone”, “Promessi Sposi” and 
“Gomorra”.  
In the (a) part of the pictures we have on the x-axis 
the lengths of the hash value in bits and on the y-
axis the corresponding sizes in Kb of the 
compressed file.  
In the (b) part of the pictures on the x-axis we have 
again the lengths of the hash value in bits,  but on 
the y-axis we have the corresponding error 
percentages. 
Figure 2 shows that, in the case of “Decamerone” 
compression results are better for a hash value that 
has a length of 9 bits, but also that this length is not 
good enough to cope with transmission errors.  
Instead a hash of length 15 bits gives a compression 
that is almost lossless but the compression obtained 
is not competitive.  
The right compromise for the hash length here is 12 
bits.  
The behavior for the other books is very similar to 
the one in Figure 1. 
 
6 Conclusion 
If we assume the possibility of interaction between 
the compressor and the decompressor then we can 
exploit the previous knowledge they might have of 
the source. The price we pay is a very low 
possibility of communication errors.  
In this paper we study interactive data compression 
and present experimental results on the interactive 
compression of textual data. 
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Future work will focus on the improvement of the 
algorithms presented and on a wider testing of the 
approaches described. 
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Figure 1: The Communication Model 
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Book title Original 

Dimensions 

Interactive Protocol 

(12 bits hash) 

Zip Gzip 

 Compresed 

size 

Compression 

ratio 

Compresed 

size  

Compression 

ra t io  

Compresed 

size  

Compression 

ra t io  

Decamerone 1638,2 KB 544,6 KB 3,00 577,2 KB 2,83 551,7 KB 2,96 

Gomorra 663,0 KB 240,2 KB 2,76 251,4 KB 2,63 241,3 KB 2,74 

Promessi 

Sposi 

1394,9 KB 490,1 KB 2,84 520,2 KB 2,68 498,5 KB 2,79 

20000 

Legues 

Under The 

Sea 

875,5 KB 

 

306,2 KB 2,85 336,1 KB 2,60 323,4 KB 2,70 

The Wealth 

Of Nations 

2273,1 KB 

 

602,9 KB 3.77 688,1 KB 3,30 652,8 KB 3.48 

For Whom 

The Bell 

Tolls 

937,4 KB 288,2 KB 3,25 326,3 KB 2,87 310,1 KB 3,02 

 

 Table 1. Compression results 
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Figure 2 (a)-(b): Compression and hash length for “Decamerone” 
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Figure 3 (a)-(b): Compression and hash length for “Promessi Sposi” 
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Figure 4 (a)-(b): Compression and hash length for “Gomorra” 
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