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Abstract:- Based on accelerometer, we propose a 3D handwriting recognition system in this paper. The system
is consists of 4 main parts: (1) data collection: a single tri-axis accelerometer is mounted on a handheld device
to collect different handwriting data. A set of key patterns have to be written using the handheld device several
times for consequential processing and training. (2) data preprocessing: time series are mapped into eight octant
of three-dimensional Euclidean coordinate system. (3) data training: weighted LCS and SVM are combined to
perform the classification task. (4) pattern recognition: using the trained SVM model to carry out the prediction
task. To evaluate the performance of our handwriting recognition model, we choose the experiment of recognizing
a set of English words. The accuracy of classification could be achieved at about 96.85%.
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1 Introduction

In recent years mobile devices have become popular
as a result of the growth of sensor-enabled mobile de-
vices. Users can utilize diverse digital contents any-
where, anytime due to its portability. If the mobile ter-
minal can aware of user’s current context then it could
react in some appropriate manner to suit the user with-
out the need of user interaction.

To implement the handwriting recognition sys-
tem, many different techniques, such as glove-based
devices (e.g., CyberGlove), or vision-based gesture
recognition [3], [11] have been utilized. In recent
years, a new kind of interaction technology that recog-
nizes users’ movement has emerged due to the rapid
development of sensor technology. An accelerome-
ter measures the amount of acceleration of a device in
motion. Analysis of acceleration signals enables three
kinds of gesture interaction methods: tilt detection,
shake detection and gesture recognition [2], [6], [7],
[8], [10].

Although in the literature there are already exist
some approaches of using acceleration signals for ges-
tures recognition, most work focuses on recognizing
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the simple gestures such as Arabic numerals [6], [7],
[8], simple linear movements and direction [10]. In
our work, we attempt to recognize a set of handwrit-
ten English words.

We propose a 3D handwriting recognition sys-
tem in this paper. The system is consists of 4 main
parts: (1) data collection: a single tri-axis accelerom-
eter is mounted on a handheld device to collect dif-
ferent handwriting data. A set of key patterns have to
be written using the handheld device several times for
consequential processing and training. (2) data pre-
processing: time series are mapped into eight octant
of three-dimensional Euclidean coordinate system.
(3) data training: weighted longest common subse-
quence (LCS) and support vector machine (SVM) are
combined to perform the classification task. (4) pat-
tern recognition: using the trained SVM model to
carry out the prediction task. To evaluate the per-
formance of our handwriting recognition model, we
choose the experiment of recognizing a set of En-
glish words. The accuracy of classification could be
achieved at about 96.85%.

The rest of this paper is organized as follows.
Theoretical backgrounds, including the weighted LCS
and SVM are described in Section 2. In Section 3, we
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discuss the feasibility of applying weighted LCS in
3D handwriting recognition. The proposed recogni-
tion system is presented in Section 4. Then, the effec-
tiveness of this scheme is demonstrated through ex-
perimental analysis in Section 5 followed by Conclu-
sions in Section 6.

2 Theoretical Backgrounds

2.1 The Weighted LCS Algorithm

Given a sequence X =< x1, x2, . . . , xm >, another
sequence Z =< z1, z2, . . . , zk > is a subsequence
of X if there exists a strictly increasing sequence
< i1, i2, . . . , ik > of indices of X such that for all
j = 1, 2, . . . , k, we have xij = zj . Given two se-
quences X and Y , we say that a sequence Z is a com-
mon subsequence of X and Y if Z is a subsequence
of both X and Y .

In the longest common subsequence problem, we
are given two sequences X =< x1, x2, . . . , xm > and
Y =< y1, y2, . . . , yn > and wish to find a maximum
length common subsequence of Xand Y . The LCS
problem has an optimal structure property as below
[4].

Proposition 1 Let X =< x1, x2, . . . , xm > and
Y =< y1, y2, . . . , yn > be sequences, and let Z =<
z1, z2, . . . , zk > be any LCS of X and Y .

• If xm = yn, then zk = xm = yn and Zk−1 is an
LCS of Xm−1 and Yn−1.

• If xm 6= yn, then zk 6= xm implies that Z is an
LCS of Xm−1 and Y .

• If xm 6= yn, then zk 6= yn implies that Z is an
LCS of X and Yn−1.

The characterization of Proposition 1 states that
an LCS of two sequences contains within it an LCS of
prefixes of the two sequences. Thus, the LCS problem
has an optimal substructure property. A recursive so-
lution also has the overlapping-substructure property,
as we will see in below.

Let us define c[i, j] to be the length of an LCS of
the sequences Xi and Yj . If either i = 0 or j = 0, one
of the sequences has length 0, so the LCS has length
0. The optimal substructure of the LCS problem gives

the recursive formula

c[i, j] =



0
if i = 0 or j = 0,

c[i − 1, j − 1] + 1
if i, j > 0 and xi = yj ,

max(c[i, j − 1], c[i − 1, j])
if i, j > 0 and xi 6= yj .

(1)
Based on equation (1), we have an recursive al-

gorithm to compute the length of an LCS of two se-
quences.

LCS-Length(X,Y)
1 m =length[X]
2 n =length[Y]
3 for i=1 to m
4 c[i,0]=0
5 for j=0 to n
6 c[0,j]=0
7 for i=1 to m
8 for j=1 to n
9 if x(i)=y(j)
10 c[i,j]=c[i-1,j-1]+1
11 b[i,j]=‘up-left’
12 elseif c[i-1,j]>=c[i,j-1]
13 c[i,j]=c[i-1,j]
14 b[i,j]=‘up’
15 else
16 c[i,j]=c[i,j-1]
17 b[i,j]=‘left’
18 return(c)

Print-LCS(b,X,i,j)
1 if i==0 or j==0
2 return
3 if b[i,j]==‘up-left’
4 Print-LCS(b,X,i-1,j-1)
5 print x(i)
6 elseif b[i,j]==‘up’
7 Print-LCS(b,X,i-1,j)
8 else
9 Print-LCS(b,X,i,j-1)

Another structure, useful in molecular biology, is
the weighted sequence [1], [13]. This is defined as
a sequence S = s1, s2, . . . , sl where a value is asso-
ciated to each si for i = 1, . . . , l. While comparing
two weighted sequences we define a weighted func-
tion, W , assigning a value to each possible match be-
tween two characters one from the first sequence and
the other from the second sequence. The LCS vari-
ant for these weighted sequences aims at maximizing
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the weight of the common subsequence, instead of its
length as follows.

Definition 2 (WLCS) Given two sequences X =<
x1, x2, . . . , xm > and Y =< y1, y2, . . . , yn > and
a weight function

W : xi × yj → w.

The weighted LCS (WLCS) problem is to find a com-
mon subsequence Z =< z1, z2, . . . , zl > of X and Y
such that

l∑
k=1

W (xik, yjk)

is maximal.

2.2 SVM for Classification

In this subsection we briefly review the basis of the
theory of SVM in classification problems [5], [12].
Suppose we are given a set of labeled training data:

{(x1, y1) , (x2, y2) , . . . , (xl, yl)} ⊂ X × {±1}, (2)

where X denotes the space of the input patterns. For
each input pattern xi ∈ X belongs to either of two
classes and is given a label yi ∈ {±1} for i = 1, . . . , l.
In a support vector classification problem [5], the goal
is to find a optimal hyperplane f(x) that separates the
training data with a maximal margin. That is, we want
to find a linear function f taking the form

f(x) = w · x + b with w ∈ X , b ∈ R (3)

and satisfying the following constraints

yi(w · xi + b) ≥ 1, i = 1, . . . , l. (4)

The task can be written as a optimization problem:

minimize Φ = w · w
subject to yi(w · xi + b) ≥ 1, i = 1, . . . , l. (5)

The key idea to solve (5) is to construct a Lagrangian
function

L(w, b,Λ) =
1
2
w · w−

l∑
i=1

λi [yi (w · xi + b) − 1] ,

(6)
where ΛT = (λ1, λ2, . . . , λl) is the vector of non-
negative Lagrangian multipliers corresponding to the
constraints (4).

For the cases where the training data cannot be
separated without error, one may want to find a soft
margin hyperplane to separate the training data set

with a minimal number of errors. That is, minimize
the penalty for outliers

Φ(ξ) =
l∑

i=1

ξi,

subject to the constraints

yi(w · xi + b) ≥ 1 − ξi, i = 1, . . . , l, (7)

ξi ≥ 0, i = 1, . . . , l. (8)

The Lagrangian functional for this problem is

L(w, ξ, b,Λ,R)

=
1
2
w · w + C

l∑
i=1

ξi

−
l∑

i=1

λi [yi (w · xi + b) − 1 + ξi]

−
l∑

i=1

riξi,

where ΛT = (λ1, λ2, . . . , λl) and RT =
(r1, r2, . . . , rl) are the vectors of nonnegative La-
grangian multipliers associated with the constraint (7)
and (8), respectively.

The Kuhn-Tucker theorem plays an important
role in the theory of optimization. According to this
theorem, complementarity conditions are provided

λi [yi (w · xi + b) − 1 + ξi] = 0,

riξi = (C − λi)ξi = 0.

Patterns for which λi > 0 are termed the support vec-
tors. Non-zero slack variables can only occur when
λi = C. In this case, the point xi are mis-classified if
ξi > 1. If ξi < 1, they are classified correctly, but lie
closer to the separating hyperplane 1/ |w|.

For the cases of nonlinear classification, the train-
ing patterns xi are preprocessed by a mapping φ :
X → F into some feature space F and applying the
standard SV classification algorithm. The mapping φ
need not to be known since it is implicitly defined by
the choice of kernel functions K:

K(xi,xj) = 〈φ(xi), φ(xj)〉 , (9)

where 〈·, ·〉 means a dot product. The decision func-
tion f in (3) becomes

f(x) = φ(w) · x + b

=
l∑

i=1

yiλiφ(x) · φ(xi) + b

=
l∑

i=1

yiλiK(x,xi) + b, (10)
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where xi is the image of a support vector in input
space and λi is the weight of a support vector in the
feature space.

Functions that satisfy the Mercer’s theorem [12]
can be used as dot-products and thus can be used as
kernels. Common examples of kernel functions are
the polynomial kernel

K(xi,xj) = (xi · xj + 1)d

and the Gaussian kernel

K(xi,xj) = exp
(
− 1

σ2
‖xi − xj‖2

)
.

3 The Feasibility of Applying
Weighted LCS in 3D Handwriting
Recognition

3.1 Data Sets and Data Preprocessing

Data is collected from an handheld device with ac-
celerometer, such as Apple iPhone, Google HTC
Phone, etc. Since acceleration signals are sampled in
equal-time interval, the length of raw data is variable
according to different key pattern and different input
speed. Data from the accelerometer has the following
attributes: time, acceleration along x-axis, y-axis, and
z-axis.

We obtain three acceleration time series ax, ay,
az from the previous step. In order to obtain the
position time series, we can use integration calcu-
lus twice on the acceleration time series. That is,
vx =

∫ tN
t0

axdt and sx =
∫ tN
t0

vxdt, where vx and
sx are respectively the velocity and position time se-
ries of x-axis. The other two position time series sy

and sz could be derived using the same method.
In order to use a single sequence instead of three

to represent a letter of alphabet or a word, we have
further transform the three position time series into
one sequence. The method is described as follows.
Suppose that

sx = {sx(1), sx(2), . . . , sx(n)}
sy = {sy(1), sy(2), . . . , sy(n)}
sz = {sz(1), sz(2), . . . , sz(n)}

are given, we could have a difference sequence as be-
low

dsX(t) = {τ (sX(t) − sX(t − 1)) :

t = 2, . . . , n},
X ∈ {x, y, z},

where τ : R → {0, 1} is defined as

τ(x) =
{

1, if x ≥ 0,
0, if x < 0.

Then, we can transform dsX(t), X ∈ {x, y, z} into a
single sequence composed of {0, 1, . . . , 7} as follows:

S(ti) = dsx(ti) · 20 + dsy(ti) · 21 + dsy(ti) · 22.

3.2 Performance Criteria

The classification performance can be evaluated us-
ing mis-classification rate such as apparent error rate
and/or graphical representation tools such as the re-
ceiver operating characteristic (ROC) curve [9].

Let the training data be denoted by Y =
{yi : i = 1, . . . , n}, the pattern yi consisting of two
parts, yT

i =
(
xT

i , zT
i

)
, where {xi : i = 1, . . . , n}

are the measurements and {zi : i = 1, . . . , n} are the
corresponding class labels, now coded as a vector,
(zi)j = 1 if x ∈ classωj and zero otherwise. Let
ω(zi) be the corresponding categorical class label. Let
the decision rule designed using the training data be
η(x;Y ) and let Q(ω(z), η(x;Y )) be the loss function

Q(ω(z), η(x;Y )) =
{

0 if ω(z) = η(x;Y )
1 otherwise.

The apparent error rate, eA , is obtained by using the
design set to estimate the error rate,

eA =
1
n

n∑
i=1

Q(ω(z), η(x; Y )).

Another assessment tool for performance is the
ROC curve. For a given classifier and an instance,
there are four possible outcomes: true positive, false
negative, true negative, and false positive. The true
positive rate is

tp rate =
Positive correctly classified

Total positives
.

The false positive rate is

fp rate =
Negatives incorrectly classified

Total negatives.
Additional terms associated with ROC curves are

sensitivity = recall

specificity =
True negatives

False positives+True negatives
= 1 − fp rate.

Then, ROC curves are two-dimensional graphs in
which tp rate is plotted on the Y axis and fp rate
is plotted on the X axis. All the ROC curves pass
throughout (0, 0) and (1, 1) points and as the separa-
tion increases the curve moves into the top left corner.
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3.3 Experimental Results

We choose some letters of alphabet for testing the sig-
nificance of LCS-based pattern matching method. In
the first experiment, signals for four capital letters ‘A’,
‘B’, ‘C’, and ‘D’ are collected. For each letter, 10
patterns are collected. Then, utilizing the data pre-
processing method mentioned in Sec. 3.1, the acceler-
ation data are transformed into a sequence composed
of {0, 1, . . . , 7}. We name these sequences as SA,i,
SB,i, SC,i, and SD,i, where i ∈ {1, . . . , 10} indicates
the pattern number. Using the weighted LCS algo-
rithm, we compute the following length of WLCS:

WLCS(SX,i, SX,j), X ∈ {A,B,C},
i, j ∈ {1, . . . , 10},

i 6= j,

WLCS(SX,i, SY,i), X, Y ∈ {A,B,C},
X 6= Y,

i ∈ {1, . . . , 10}.

The average length of the longest common subse-
quences between two letters are shown in Table 1 and
the histograms are shown in Figure 1. Besides, the
ROC curve are shown in Figure 2. The cut-off point
for best Sensitivity and Specificity is 88.00. Using the
cut-off, accuracy can be achieved at 82.62%. From
these experimental results, we find that the LCS-based
pattern matching method for 3D handwriting recogni-
tion is feasible. In next section, we will propose the
system architecture based on WLCS and SVM for the
3D handwriting recognition.

4 The Proposed 3D Handwriting
Recognition System

The architecture of the proposed 3D handwriting
recognition system is presented as shown in Figure 3
which consists of 4 main parts: data collection, data
preprocessing, data training, and pattern recognition.
We detail them in what follows.

4.1 Data Collection

A single tri-axis accelerometer is mounted on a hand-
held device to collect different handwriting data. A
set of key patterns have to be written using the hand-
held device several times for consequential processing
and training. In order to acquire an adequate train-
ing result, we collect larger than 10 samples for each
key pattern. The output signal of the accelerometer
is sampled at 300Hz. Since acceleration signals are

sampled in equal-time interval, the length of raw data
is variable according to different key pattern and dif-
ferent input speed. Data from the accelerometer has
the following attributes: time, acceleration along x-
axis, y-axis, and z-axis.

4.2 Data Preprocessing

We obtain three acceleration time series ax, ay, az

from the previous step. In order to obtain the position
time series, we can use integration calculus twice on
the acceleration time series as mentioned in Sec. 3.1.

While the position time series sx, sy, and sz have
been derived, we have to transform them into a se-
quence which composed of a finite set of symbols.
Suppose that {sX(t)}tN

t=t0
, X ∈ {x, y, z} are given,

we could have a difference sequence as below

dsX(t) = {τ (sX(t) − sX(t − 1)) :

t = (t0 + 1) , . . . , tN}, (11)

X ∈ {x, y, z}, (12)

where τ : R → {0, 1} is defined as

τ(x) =
{

1, if x ≥ 0,
0, if x < 0.

Then, we can transform dsX(t), X ∈ {x, y, z} into a
sequence composed of {0, 1, . . . , 7} as follows:

S(ti) = dsx(ti) ·20 +dsy(ti) ·21 +dsy(ti) ·22. (13)

The geometric meaning of transformation (13) is to
mapping the difference sequence (11) into eight oc-
tant of three-dimensional Euclidean coordinate sys-
tem. The above steps are depicted as shown in Figure
4.

4.3 Data Training

For data training, we have to prepare two sets of time
series: key patterns and non-key patters. After pre-
processing, we have two sets of sequences, named
KEY and NONKEY . Then, we apply WLCS to all
pairs of sequences selected from {KEY × KEY } ∪
{KEY × NONKEY } and we get a weight value
for each pair of sequences. For example,

KEY = {k1, k2, . . . , km}

and

NONKEY = {nk1, nk2, . . . , nkn},

any selected pair of sequences can be one of the fol-
lowing type:

(ki, kj), i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
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or

(ki, nkj), i ∈ {1, . . . ,m}, j ∈ {1, . . . ,m}.

Then, the type associated with the weight values form
a set for the input of support vector classifier. Thai is,
the training process is performed by WLCS and SVC.

4.4 Pattern Recognition

After the step of data training, we have an SVM model
with the form as equation (10). For a new input pat-
tern, a0x, a0y, a0z , we have to process them using the
data preprocessing method and we could get a se-
quence S0(t). Then, the LCS algorithm could be ap-
plied. We compute the length l of the longest common
subsequence between S0(t) and a particular key word,
K. Using the length l as the input of SVM model (10),
the model would tell us whether the new pattern is the
key word K or not.

5 Experimental Analysis

To evaluate the performance of our handwriting
recognition model, we choose the experiment of rec-
ognizing a set of English words. The set of English
words contains {Kimble, Apple, Test, Nathan, Won-
derful}. For each word, we collect at least 10 patterns
from the handheld device (HTC G1 mobile phone).
Figure 5 shows the three axes acceleration data of pat-
tern ‘Kimble’. Table 2 is a statistic of the average
length of the LCS between these words. It is easy
to see that the patterns indicating the same word have
larger length than the patterns indicating the differ-
ent words. Then, using SVM, the average accuracy
of classification could be achieved at about 96.85%.
The performance of each classifier could be found
through the ROC curves as shown in Figure 6 to Fig-
ure 10. The average accuracy of classification could
be achieved at about 96.85%.

6 Conclusions

In this paper, we propose a handwriting recogni-
tion system based on a single tri-axis accelerometer
mounted on a cell phone for human computer interac-
tion. The system is consists of 4 main parts: (1) data
collection: a single tri-axis accelerometer is mounted
on a handheld device to collect different handwrit-
ing data. A set of key patterns have to be written
using the handheld device several times for conse-
quential processing and training. (2) data prepro-
cessing: time series are mapped into eight octant of
three-dimensional Euclidean coordinate system. (3)

data training: weighted LCS and SVM are combined
to perform the classification task. (4) pattern recog-
nition: using the trained SVM model to carry out
the prediction task. The experimental results show
that the average accuracy of classification could be
achieved at about 96.85%.
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Table 1: The average length of the longest common subsequence between two words in the KEY WORD set.

Average length of LCS A B C D
A 109 88 60 80
B — 83 59 74
C — — 71 55
D — — — 97

Table 2: The average length of the longest common subsequence between two words in the KEY WORD set.

Average length of LCS Kimble Apple Test Nathan Wonderful
Kimble 274 222 146 220 224

Apple — 249 150 206 208
Test — — 192 154 167

Nathan — — — 279 254
Wonderful — — — — 328
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Figure 1: Histograms. (a) Of sequences between letters ‘A’ and ‘A’. (b) Of sequences between letters ‘A’ and ‘B’.
(c) Of sequences between letters ‘A’ and ‘C’. (d) Of sequences between letters ‘A’ and ‘D’.
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Figure 2: Performance assessment using the ROC curve.
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Figure 3: The architecture of the proposed 3D handwriting recognition system.
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Figure 4: Data Preprocessing.
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Figure 5: Three axes acceleration data of pattern ‘Kimble’. (a) x-axis acceleration data. (b) y-axis acceleration
data. (c) z-axis acceleration data.
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Figure 6: The ROC curve for the classifier recognizing the word ’Kimble’. Cut-off point for best Sensitivity and
Specificity is 248. Accuracy for these trials could be achieved at 100%.
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Figure 7: The ROC curve for the classifier recognizing the word ’Apple’. Cut-off point for best Sensitivity and
Specificity is 236. Accuracy for these trials could be achieved at 98.65%.
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Figure 8: The ROC curve for the classifier recognizing the word ’Test’. Cut-off point for best Sensitivity and
Specificity is 178. Accuracy for these trials could be achieved at 98.43%.
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Figure 9: The ROC curve for the classifier recognizing the word ’Nathan’. Cut-off point for best Sensitivity and
Specificity is 255. Accuracy for these trials could be achieved at 87.19%.
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Figure 10: The ROC curve for the classifier recognizing the word ’Wonderful’. Cut-off point for best Sensitivity
and Specificity is 280. Accuracy for these trials could be achieved at 100%.
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