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Abstract: In this paper, we will try to obtain the new exact solutions of the DSSH equation, the KP-BBM equation
and the (3+1) dimensional potential-YTSF equation. The three nonlinear equations are reduced to nonlinear ordi-
nary differential equations (ODE) by using a simple transformation respectively. Then we construct the traveling
wave solutions of the equations in terms of the hyperbolic functions, trigonometric functions and the rational func-

tions by the (G
′

G )-expansion method.
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1 Introduction

Nonlinear evolution equations (NLEEs) have been the
subject of study in various branches of mathematical-
Cphysical sciences such as physics, biology, chem-
istry, etc. The powerful and efficient methods to find
analytic solutions and numerical solutions of nonlin-
ear equations have drawn a lot of interest by many
authors. Many efficient methods have been presented
so far such as in [1-7].

In this paper, we pay attention to the analytical
method for getting the exact travelling wave solutions
of NLEES. Also there is a wide variety of approaches
to nonlinear problems for constructing traveling wave
solutions. Some of these approaches are the homo-
geneous balance method [8,9], the hyperbolic tangent
expansion method [10,11], the trial function method
[12], the tanh-method [13-15], the non-linear trans-
form method [16], the inverse scattering transform
[17], the Backlund transform [18,19], the Hirotas bi-
linear method [20,21], the generalized Riccati equa-
tion [22,23], the Weierstrass elliptic function method
[24], the theta function method [25-27], the sineCco-
sine method [28], the Jacobi elliptic function expan-
sion [29,30], the complex hyperbolic function method
[31-33], the truncated Painleve expansion [34], the F-
expansion method [35], the rank analysis method [36],
the exp-function expansion method [37] and so on.

Recently, the (G
′

G )-expansion method, firstly in-

troduced by Mingliang Wang [38], has become widely
used to search for various exact solutions of NLEEs
[39-42]. The value of the (G

′

G )-expansion method is
that one can treat nonlinear problems by essentially
linear methods.

Our aim in this paper is to present an applica-

tion of the (G
′

G )-expansion method to some nonlinear
problems. The rest of the paper is organized as fol-

lows. In Section 2, we give the main steps of the (G
′

G )-
expansion method. In the subsequent sections, we will
apply the method to the DSSH equation, the KP-BBM
equation and the (3+1) dimensional potential-YTSF

equation. The features of the (G
′

G )-expansion method
are briefly summarized at the end of the paper.

2 Description of the (G
′

G )-expansion
method

In this section we describe the (G
′

G )-expansion
method for finding traveling wave solutions of non-
linear evolution equations. Suppose that a nonlinear
equation, say in two independent variables x, t, is
given by

P (u, ut, ux, utt, uxt, uxx, ...) = 0, (2.1)
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or in three independent variables x, y and t, is
given by

P (u, ut, ux, uy, utt, uxt, uyt, uxx, uyy, ...) = 0,
(2.2)

where u = u(x, t) or u = u(x, y, t) is an
unknown function, P is a polynomial in u = u(x, t)
or u = u(x, y, t) and its various partial derivatives,
in which the highest order derivatives and nonlinear
terms are involved. In the following, we will give the

main steps of the (G
′

G )-expansion method.

Step 1. Suppose that

u(x, t) = u(ξ), ξ = ξ(x, t) (2.3)

or

u(x, y, t) = u(ξ), ξ = ξ(x, y, t) (2.4)

The traveling wave variable (2.3) or (2.4) per-
mits us reducing (2.1) or (2.2) to an ODE for u = u(ξ)

P (u, u′, u′′, ...) = 0. (2.5)

Step 2. Suppose that the solution of (2.5) can be

expressed by a polynomial in (G
′

G ) as follows:

u(ξ) = αm(
G′

G
)m + ... (2.6)

where G = G(ξ) satisfies the second order LODE
in the form

G′′ + λG′ + µG = 0 (2.7)

αm, ..., λ and µ are constants to be determined
later, αm 6= 0. The unwritten part in (2.6) is also a

polynomial in (G
′

G ), the degree of which is generally
equal to or less than m − 1. The positive integer m
can be determined by considering the homogeneous
balance between the highest order derivatives and
nonlinear terms appearing in (2.5).

Step 3. Substituting (2.6) into (2.5) and using
second order LODE (2.7), collecting all terms with

the same order of (G
′

G ) together, the left-hand side of

(2.5) is converted into another polynomial in (G
′

G ).
Equating each coefficient of this polynomial to zero,
yields a set of algebraic equations for αm, ..., λ and
µ.

Step 4. Assuming that the constants αm, ..., λ and
µ can be obtained by solving the algebraic equations
in Step 3. Since the general solutions of the second
order LODE (2.7) have been well known for us, then
substituting αm, ... and the general solutions of (2.7)
into (2.6) we have traveling wave solutions of the non-
linear evolution equation (2.1) or (2.2).

3 Application Of The (G
′

G )-
Expansion Method For The DSSH
Equation

In the subsequent sections, we will apply the (G
′

G )-
expansion method to construct the traveling wave
solutions for some nonlinear partial differential
equations in mathematical physics as follows:

First we will consider the DSSH equation [43]:

uxxxxxx − 9uxuxxxx − 18uxxuxxx

+18u2
xuxx −

1
2
utt +

1
2
uxxxt = 0 (3.1)

Similar to Section 3, we suppose that

u(x, t) = u(ξ), ξ = x− ct (3.2)

c is a constant that to be determined later.
Eq.(3.1) can be converted into an ODE

u(6)−9u′u(4)−18u′′u′′′+18(u′)2u′′−1
2
c2u′′−1

2
cu(4) = 0

(3.3)

Integrating the ODE (3.3) with respect to ξ once,
we obtain

u(5)−9u′u′′′− 9
2
(u′′)2 +6(u′)3− 1

2
c2u′− 1

2
cu′′′ = g

(3.4)
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where g is the integration constant that can be de-
termined later.

Suppose that the solution of the ODE (3.4) can

be expressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (3.5)

where ai are constants, G = G(ξ) satisfies the
second order LODE in the form:

G′′ + λG′ + µG = 0 (3.6)

where λ and µ are constants.

Balancing the order of u(5) and (u′)3 in Eq.(3.4),
we get that m + 5 = 3m + 3 ⇒ m = 1, so Eq.(3.5)
can be rewritten as

u(ξ) = a1(
G′

G
) + a0, a1 6= 0 (3.7)

a1, a0 are constants to be determined later.

Substituting (3.7) into (3.4) and collecting all the

terms with the same power of (G
′

G ) together, equating
each coefficient to zero, yields a set of simultaneous
algebraic equations as follows:

(
G′

G
)0 : −22a1λ

2µ2 +
1
2
c2a1µ−

27
2

a2
1λ

2µ2

+ca1µ
2 − 16a1µ

3 +
1
2
ca1λ

2µ

−18a2
1µ

3 − 6a3
1µ

3 − a1λ
4µ− g = 0

(
G′

G
)1 : −108a2

1λµ2 − 52a1λ
3µ− 27a2

1λ
3µ

+4ca1λµ +
1
2
c2a1λ +

1
2
ca1λ

3

−136a1λµ2 − 18a3
1λµ2 − a1λ

5 = 0

(
G′

G
)2 :

1
2
c2a1 −

27
2

a2
1λ

4 − 18a3
1µ

2

+
7
2
ca1λ

2 − 108a2
1µ

2 + 4ca1µ− 292a1λ
2µ

−189a2
1λ

2µ− 31a1λ
4 − 136a1µ

2 − 18a3
1λ

2µ = 0

(
G′

G
)3 : −324a2

1λµ + 6ca1λ− 36a3
1λµ

−99a2
1λ

3 − 480a1λµ− 6a3
1λ

3

−180a1λ
3 = 0

(
G′

G
)4 : 3ca1 − 162a2

1µ− 390a1λ
2

−18a3
1λ

2 − 240a1µ− 18a3
1µ

−459
2

a2
1λ

2 = 0

(
G′

G
)5 : −18a3

1λ− 216a2
1λ− 360a1λ = 0

(
G′

G
)6 : −120a1 − 72a2

1 − 6a3
1 = 0
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Solving the algebraic equations above yields:

a1 = −2, a0 = a0, g = 0, c = λ2 − 4µ (3.8)

where a0, λ, µ are arbitrary constants.

Substituting (3.8) into (3.7), we get that

u(ξ) = −2(
G′

G
) + a0, ξ = x− (λ2 − 4µ)t (3.9)

where a0, λ, µ are arbitrary constants.

Substituting the general solutions of (3.6) into
(3.9), we will have three types of travelling wave
solutions of the DSSH equation (3.1) as follows:

Case (a): when λ2 − 4µ > 0

u1(ξ) = a0 + λ−
√

λ2 − 4µ

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)

where
ξ = x− (λ2 − 4µ)t,

C1, C2 are arbitrary constants.

In particular, if C1 = 1, C2 = 0, λ = 2, µ = 0,
then we have

u(x, t) = 2− 2tanh(x− 4t) + a0.

Case (b): when λ2 − 4µ < 0

u2(ξ) = a0 + λ−
√

4µ− λ2

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)

where
ξ = x− (λ2 − 4µ)t,

C1, C2 are arbitrary constants.

In particular, if C1 = 1, C2 = 0, λ = 0, µ = 1,
then

u(x, t) = 2tanh(x + 4t) + a0.

Case (c): when λ2 − 4µ = 0

u3(ξ) = −2
[
2C2 − C1λ− C2λξ

2(C1 + C2ξ)

]
+ a0

where
ξ = x− (λ2 − 4µ)t,

C1, C2 are arbitrary constants.

In particular, if C1 = C2 = 1, λ = 2, µ = 1,
then

u(x, t) = 2
1

1 + x
+ a0.

4 Application Of The (G
′

G )-
Expansion Method For The KP-
BBM Equation

we will consider the KP-BBM equation [44-45]:

(ut + ux − a(u2)x − buxxt)x + kuyy = 0 (4.1)

where a, b, k are constants.

Suppose that

u(x, y, t) = u(ξ), ξ = x + y − ct (4.2)

c is a constant that to be determined later.

By using the wave variable (4.2), Eq.(4.1) is
converted into an ODE

−cu′′ + u′′ − 2a(u′)2 − 2auu′′ + bcu(4) + ku′′ = 0
(4.3)

Integrating (4.3) once, we obtain

(−c + 1 + k)u′ + bcu(3) − 2auu′ = g (4.4)
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where g is the integration constant that can be
determined later.

Suppose that the solution of the ODE (4.4) can

be expressed by a polynomial in (G
′

G ) as follows:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (4.5)

where ai are constants, G = G(ξ) satisfies the
second order LODE in the form:

G′′ + λG′ + µG = 0 (4.6)

where λ and µ are constants.

Balancing the order of uu′ and u′′′ in Eq.(4.4),
we get that m + m + 1 = m + 3 ⇒ m = 2. So
Eq.(4.5) can be rewritten as

u(ξ) = a2(
G′

G
)2 + a1(

G′

G
) + a0, a2 6= 0 (4.7)

a2, a1, a0 are constants to be determined later.
Then it follows:

u′(ξ) = −2a2(
G′

G
)3 + (−a1 − 2a2λ)(

G′

G
)2

+(−a1λ− 2a2µ)(
G′

G
)− a1µ

u′′(ξ) = 6a2(
G′

G
)4 + (2a1 + 10a2λ)(

G′

G
)3

+(8a2µ + 3a1λ + 4a2λ
2)(

G′

G
)2

+(6a2λµ + 2a1µ + a1λ
2)(

G′

G
)

+2a2µ
2 + a1λµ

u′′′(ξ) = −24a2(
G′

G
)5 + (−54a2λ− 6a1)(

G′

G
)4

+(−12a1λ− 38a2λ
2 − 40a2µ)(

G′

G
)3

+(−52a2λµ− 7a1λ
2 − 8a2λ

3 − 8a1µ)(
G′

G
)2

+(−14a2λ
2µ− a1λ

3 − 16a2µ
2 − 8a1λµ)(

G′

G
)

−a1λ
2µ− 2a1µ

2 − 6a2λµ2

Substituting(4.7) into (4.4) and collecting all the

terms with the same power of (G
′

G ) together, equating
each coefficient to zero, yields a set of simultaneous
algebraic equations as follows:

(
G′

G
)0 : (c− k − 1)a1µ− g − 2bca1µ

2

+2aa0a1µ− 6bca2λµ2 − bca1λ
2µ = 0

(
G′

G
)1 : −a1λ− 16bca2µ

2 + 2ca2µ− bca1λ
3

+ca1λ− 2a2µ + 2aa2
1µ− 8bca1λµ

−2ka2µ + 2aa0a1λ− 14bca2λ
2µ

−ka1λ + 4aa0a2µ = 0

(
G′

G
)2 : −52bca2λµ + (2c− 2k − 2)a2λ

+2aa2
1λ− 7bca1λ

2 − a1 + ca1

−8bca1µ + 4aa0a2λ− ka1

+6aa1a2µ− 8bca2λ
3 + 2aa1a0 = 0

(
G′

G
)3 : (2c− 2k − 2)a2 − 40bca2µ + 4aa2

2µ
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+6aa1a2λ− 12bca1λ + 4aa0a2

−38bca2λ
2 + 2aa2

1 = 0

(
G′

G
)4 : −6bca1 − 54bca2λ + 4aa2

2λ + 6aa1a2 = 0

(
G′

G
)5 : −24bca2 + 4aa2

2 = 0

Solving the algebraic equations above yields:

a2 = a2, a1 = a2λ, a0 = a0, c =
1
6

aa2

b
, g = 0

(4.8)

where a0, a2, λ are arbitrary constants.

Substituting (4.8) into (4.7), we have

u(ξ) = a2(
G′

G
)2 + a2λ(

G′

G
) + a0

ξ = x + y − 1
6

aa2

b
t (4.9)

Substituting the general solutions of (4.6) into
(4.9), we will have three types of travelling wave
solutions of the Kadomtsev-Petviashvili equation
(4.1) as follows:

Case (a): When λ2 − 4µ > 0

u1(ξ) = a0 −
a2

4
λ2 +

a2

4
(λ2 − 4µ)

.(
C1 sinh

1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

)2

where
ξ = x + y − 1

6
aa2

b
t,

C1, C2 are arbitrary constants.

Case (b): When λ2 − 4µ < 0

u2(ξ) = a0 −
a2

4
λ2 +

a2

4
(4µ− λ2)

.(
−C1 sin

1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

)2

where
ξ = x + y − 1

6
aa2

b
t,

C1, C2 are arbitrary constants.

Case (c): When λ2 − 4µ = 0

u3(ξ) = −1
4
λ2a2 +

a2C
2
2

(C1 + C2ξ)2
+ a0

where
ξ = x + y − 1

6
aa2

b
t,

C1, C2 are arbitrary constants.

5 Application Of The (G
′

G )-
Expansion Method For The (3+1)
dimensional potential-YTSF equa-
tion

At last, we consider the (3+1) dimensional potential-
YTSF equation [46]:

−4uxt+uxxxz +4uxuxz +2uxxuz +3uyy = 0 (5.1)

Suppose that

u(x, y, z, t) = u(ξ), ξ = kx+ ly+mz+ωt (5.2)

k, l,m, ω are constants that to be determined later.
By using (5.2), (5.1) is converted into:

k3mu(4) + 6mk2u′u′′ + (3l2 − 4kω)u′′ = 0 (5.3)

Integrating (5.3) once, we obtain

k3mu′′′ + 3mk2(u′)2 + (3l2 − 4kω)u′ = g (5.4)
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where g is the integration constant that can be deter-
mined later.

Similar to the last example, suppose:

u(ξ) =
m∑

i=0

ai(
G′

G
)i (5.5)

where ai are constants, G = G(ξ) satisfies the second
order LODE in the form:

G′′ + λG′ + µG = 0 (5.6)

where λ and µ are constants.
Balancing the order of u′′′ and (u′)2 in Eq.(5.24),

we have m + 3 = 2 + 2m ⇒ m = 1. So

u(ξ) = a1(
G′

G
) + a0, a1 6= 0 (5.7)

a1, a0 are constants to be determined later.
Substituting (5.7) into (5.4) and collecting all

the terms with the same power of (G
′

G ) together
and equating each coefficient to zero, yields a set of
simultaneous algebraic equations as follows:

(
G′

G
)0 : −g + 4a1kωµ− 3a1l

2µ− 2k3ma1µ
2

−k3ma1λ
2µ + 3k2ma2

1µ
2 = 0

(
G′

G
)1 : 4a1kωλ− 8k3ma1λµ− k3ma1λ

3

+6k2ma2
1λµ− 3a1l

2λ = 0

(
G′

G
)2 : −7k3ma1λ

2 + 3k2ma2
1λ

2 − 8k3ma1µ

+4a1kω + 6k2ma2
1µ− 3a1l

2 = 0

(
G′

G
)3 : 6k2ma2

1λ− 12k3ma1λ = 0

(
G′

G
)4 : 3k2ma2

1 − 6k3ma1 = 0

Solving the algebraic equations above, yields

a1 = 2k,

a0 = a0,

k = k,

l = l,

m = m,

ω =
k3mλ2 − 4k3mµ + 3l2

4k
,

g = 0 (5.8)

Then

u(ξ) = 2k(
G′

G
) + a0

ξ = kx+ ly+mz +
k3mλ2 − 4k3mµ + 3l2

4k
t (5.9)

where k, l,m, a0 are arbitrary constants.
Substituting the general solutions of Eq.(5.6) into

(5.9), we have:

When λ2 − 4µ > 0

u1(ξ) = −kλ + k
√

λ2 − 4µC1 sinh
1
2

√
λ2 − 4µξ + C2 cosh

1
2

√
λ2 − 4µξ

C1 cosh
1
2

√
λ2 − 4µξ + C2 sinh

1
2

√
λ2 − 4µξ

+a0

where

ξ = kx + ly + mz +
k3mλ2 − 4k3mµ + 3l2

4k
t,
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C1, C2, k, l,m, a0 are arbitrary constants.

When λ2 − 4µ < 0

u2(ξ) = −kλ + k
√

4µ− λ2

−C1 sin
1
2

√
4µ− λ2ξ + C2 cos

1
2

√
4µ− λ2ξ

C1 cos
1
2

√
4µ− λ2ξ + C2 sin

1
2

√
4µ− λ2ξ

+a0

where

ξ = kx + ly + mz +
k3mλ2 − 4k3mµ + 3l2

4k
t,

C1, C2, k, l,m, a0 are arbitrary constants.

When λ2 − 4µ = 0

u3(ξ) =
k(2C2 − C1λ− C2λξ)

(C1 + C2ξ)
+ a0

where

ξ = kx + ly + mz +
k3mλ2 − 4k3mµ + 3l2

4k
t,

C1, C2, k, l,m, a0 are arbitrary constants.

6 Conclusions
In this paper we have seen that the traveling wave so-
lutions of the DSSH equation, the KP-BBM equation
and the (3+1) dimensional potential-YTSF equation

are successfully found by using the (G
′

G )-expansion
method.

This study shows that the (G
′

G )-expansion method
is quite efficient and practically well suited for use
in finding exact solutions for the problems considered
here.

Being concise and effective, the method can also
be used to many other nonlinear equations.

7 Acknowledgements
I would like to thank the anonymous referees for their
useful and valuable suggestions.

References:

[1] Damelys Zabala, Aura L. Lopez De Ramos, Ef-
fect of the Finite Difference Solution Scheme
in a Free Boundary Convective Mass Transfer
Model, WSEAS Transactions on Mathematics,
Vol. 6, No. 6, 2007, pp. 693-701

[2] Raimonds Vilums, Andris Buikis, Conservative
Averaging and Finite Difference Methods for
Transient Heat Conduction in 3D Fuse, WSEAS
Transactions on Heat and Mass Transfer, Vol 3,
No. 1, 2008

[3] Mastorakis N E., An Extended Crank-Nicholson
Method and its Applications in the Solution
of Partial Differential Equations: 1-D and 3-D
Conduction Equations, WSEAS Transactions on
Mathematics, Vol. 6, No. 1, 2007, pp 215-225

[4] Nikos E. Mastorakis, Numerical Solution of
Non-Linear Ordinary Differential Equations via
Collocation Method (Finite Elements) and Ge-
netic Algorithm, WSEAS Transactions on Infor-
mation Science and Applications, Vol. 2, No. 5,
2005, pp. 467-473

[5] Z. Huiqun, Commun. Nonlinear Sci. Numer.
Simul. 12 (5) (2007) 627-635.

[6] Wazwa Abdul-Majid. New solitary wave and pe-
riodic wave solutions to the (2+1)-dimensional
Nizhnik-Nivikov-veselov system. Appl. Math.
Comput. 187 (2007) 1584-1591.

[7] Senthil kumar C, Radha R, lakshmanan M. Tri-
linearization and localized coherent structures
and periodic solutions for the (2+1) dimensional
K-dv and NNV equations. Chaos, Solitons and
Fractals. 39 (2009) 942-955.

[8] M. Wang, Solitary wave solutions for variant
Boussinesq equations, Phys. Lett. A 199 (1995)
169-172.

[9] E.M.E. Zayed, H.A. Zedan, K.A. Gepreel, On
the solitary wave solutions for nonlinear Hirota-
Satsuma coupled KdV equations, Chaos, Soli-
tons and Fractals 22 (2004) 285-303.

[10] L. Yang, J. Liu, K. Yang, Exact solutions of
nonlinear PDE nonlinear transformations and re-
duction of nonlinear PDE to a quadrature, Phys.
Lett. A 278 (2001) 267-270.

[11] E.M.E. Zayed, H.A. Zedan, K.A. Gepreel,
Group analysis and modified tanh-function to
find the invariant solutions and soliton solution

WSEAS TRANSACTIONS on COMPUTERS Qinghua Feng, Bin Zheng

ISSN: 1109-2750 232 Issue 3, Volume 9, March 2010



for nonlinear Euler equations, Int. J. Nonlinear
Sci. Numer. Simul. 5 (2004) 221-234.

[12] M. Inc, D.J. Evans, On traveling wave solutions
of some nonlinear evolution equations, Int. J.
Comput. Math. 81 (2004) 191-202.

[13] M.A. Abdou, The extended tanh-method and its
applications for solving nonlinear physical mod-
els, Appl. Math. Comput. 190 (2007) 988-996

[14] E.G. Fan, Extended tanh-function method and its
applications to nonlinear equations, Phys. Lett.
A 277 (2000) 212-218.

[15] W. Malfliet, Solitary wave solutions of nonlin-
ear wave equations, Am. J. Phys. 60 (1992) 650-
654.

[16] J.L. Hu, A new method of exact traveling wave
solution for coupled nonlinear differential equa-
tions, Phys. Lett. A 322 (2004) 211-216.

[17] M.J. Ablowitz, P.A. Clarkson, Solitons, Non-
linear Evolution Equations and Inverse Scat-
tering Transform, Cambridge University Press,
Cambridge, 1991.

[18] M.R. Miura, Backlund Transformation,
Springer-Verlag, Berlin, 1978.

[19] C. Rogers, W.F. Shadwick, Backlund Transfor-
mations, Academic Press, New York, 1982.

[20] R. Hirota, Exact envelope soliton solutions of
a nonlinear wave equation, J. Math. Phys. 14
(1973) 805-810.

[21] R. Hirota, J. Satsuma, Soliton solution of a cou-
pled KdV equation, Phys. Lett. A 85 (1981) 407-
408.

[22] Z.Y. Yan, H.Q. Zhang, New explicit solitary
wave solutions and periodic wave solutions for
WhithamCBroerCKaup equation in shallow wa-
ter, Phys. Lett. A 285 (2001) 355-362.

[23] A.V. Porubov, Periodical solution to the nonlin-
ear dissipative equation for surface waves in a
convecting liquid layer, Phys. Lett. A 221 (1996)
391-394.

[24] K.W. Chow, A class of exact periodic solutions
of nonlinear envelope equation, J. Math. Phys.
36 (1995) 4125-4137.

[25] E.G. Fan, Extended tanh-function method and its
applications to nonlinear equations, Phys. Lett.
A 277 (2000) 212-218.

[26] Engui Fan, Multiple traveling wave solutions
of nonlinear evolution equations using a unifiex
algebraic method, J. Phys. A, Math. Gen. 35
(2002) 6853-6872.

[27] Z.Y. Yan, H.Q. Zhang, New explicit and exact
traveling wave solutions for a system of variant
Boussinesq equations in mathematical physics,
Phys. Lett. A 252 (1999) 291-296.

[28] S.K. Liu, Z.T. Fu, S.D. Liu, Q. Zhao, Jacobi el-
liptic function expansion method and periodic
wave solutions of nonlinear wave equations,
Phys. Lett. A 289 (2001) 69-74.

[29] Z. Yan, Abundant families of Jacobi ellip-
tic functions of the (2 + 1)-dimensional inte-
grable DaveyCStawartson-type equation via a
new method, Chaos, Solitons and Fractals 18
(2003) 299-309.

[30] C. Bai, H. Zhao, Complex hyperbolic-function
method and its applications to nonlinear equa-
tions, Phys. Lett. A 355 (2006) 22-30.

[31] E.M.E. Zayed, A.M. Abourabia, K.A. Gepreel,
M.M. Horbaty, On the rational solitary wave so-
lutions for the nonlinear HirotaCSatsuma cou-
pled KdV system, Appl. Anal. 85 (2006) 751-
768.

[32] K.W. Chow, A class of exact periodic solutions
of nonlinear envelope equation, J. Math. Phys.
36 (1995) 4125-4137.

[33] M.L. Wang, Y.B. Zhou, The periodic wave equa-
tions for the KleinCGordonCSchordinger equa-
tions, Phys. Lett. A 318 (2003) 84-92.

[34] M.L. Wang, X.Z. Li, Extended F-expansion and
periodic wave solutions for the generalized Za-
kharov equations, Phys. Lett. A 343 (2005) 48-
54.

[35] M.L. Wang, X.Z. Li, Applications of F-
expansion to periodic wave solutions for a new
Hamiltonian amplitude equation, Chaos, Soli-
tons and Fractals 24 (2005) 1257-1268.

[36] X. Feng, Exploratory approach to explicit so-
lution of nonlinear evolutions equations, Int. J.
Theo. Phys. 39 (2000) 207-222.

[37] J.H. He, X.H. Wu, Exp-function method for non-
linear wave equations, Chaos, Solitons and Frac-
tals 30 (2006) 700-708.

WSEAS TRANSACTIONS on COMPUTERS Qinghua Feng, Bin Zheng

ISSN: 1109-2750 233 Issue 3, Volume 9, March 2010



[38] Mingliang Wang, Xiangzheng Li, Jinliang

Zhang, The (G
′

G )-expansion method and travel-
ling wave solutions of nonlinear evolution equa-
tions in mathematical physics. Physics Letters
A, 372 (2008) 417-423.

[39] Mingliang Wang, Jinliang Zhang, Xiangzheng

Li, Application of the (G
′

G )-expansion to trav-
elling wave solutions of the Broer-Kaup and the
approximate long water wave equations. Appl.
Math. Comput. , 206 (2008) 321-326.

[40] Ismail Aslan, Exact and explicit solutions to
some nonlinear evolution equations by utilizing

the (G
′

G )-expansion method. Appl. Math. Com-
put. In press, (2009).

[41] Xun Liu, Lixin Tian, Yuhai Wu, Application of

(G
′

G )-expansion method to two nonlinear evolu-
tion equations. Appl. Math. Comput. , in press,
(2009).

[42] Ismail Aslan, Turgut Özis, Analytic study on
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