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Abstract: - In this paper a prototype of automated quantitative assessment of perifollicular vascularisation is described. 
Assessment of perifollicular vascularisation is important in the research, perfomed by medical team at the Teaching 
Hospital of Maribor, if the application of hormonal therapy after follicle puncture in natural cycles is really always 
needed. The proposed algorithm works with 3D power Doppler ultrasound images and consists of several steps. At the 
first step the position and shape of the dominant follicle is determined. The procedure based on the continuous wavelet 
transform is utilized. Then vessels contained in 5 mm thick layer around the follicle are categorized according to their 
diameter. The vessel thickness at certain point is defined as diameter of the largest sphere which includes points and 
fits entirely inside vessels. The results are statistically evaluated by the histograms of vessel diameters. To improve the 
visual results the vessel reconstruction, based on minimal spanning trees, is done at the end. 
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1   Introduction 
Prior to ovulation, the vascular layer of the follicle plays 
a significant role in ensuring the conditions for normal 
oocyte development, and after ovulation in the 
development of the gland (corpus luteum), which is 
important in creating the conditions required for 
conception. In assisted reproduction technology 
procedures (ART), the contents of the ovarian follicle 
are aspirated, whereby some granulosa cells are removed 
and the vessels developing around the follicle are 
damaged (perifollicular vascularization). This is 
particularly important in ART in natural cycles, when 
only one follicle is present and its function is important 
for the outcome of the therapeutic procedure. In the last 
20 years, the literature does not report what kind of 
vascular damage occurs during follicle puncture and how 
it affects corpus luteum development. Assuming that the 
functional disturbance does occur, all women receive 
medication to support the corpus luteum activity after 
the ART procedure. By analyzing the characteristics of 
vascularization in the corpus luteum, which develops 
after ART in a natural cycle, it would be possible to 
objectivize its function as well as any vascular damage 
caused by the puncture. This would guide the medical 
personnel to objectively appraise the need for application 
of hormonal therapy after follicle puncture in natural 
cycles. Also, it would mean an option for objective 
comparison between the corpora lutea characteristics 
developed in spontaneous, natural ovulation and those 

developed after the ART puncture of the dominant 
follicle in a natural cycle. 
     In this paper, we propose computer-based techniques 
helping the medical experts to accomplish this study. 
Our solution is based on 3D colour Doppler ultrasound 
(US) images. Colour Doppler US investigation is a safe, 
fast and noninvasive method used to measure the blood 
flow rate. The 3D colour US images can serve the 
estimation of the volume and the position of individual 
vessels. 
     The algorithms we developed so far detect the 
position, volume and diameter of the vessels surrounding 
the ovarian follicles. Using procedures based on wavelet 
transform, we first find the position of the follicle in 
every image, as it is described in Section 2. After the 
position of the follicle is known, we can determine the 
area to be searched for the vessels. The vessels are 
categorized according to their diameter and the results 
are statistically evaluated by the histograms of vessel 
diameters and spatial vessel distribution, as explained in 
Section 3. In Section 4, we describe our novel algorithm 
for vessel reconstruction based on the minimal spanning 
trees. In Section 5 the results are summarized. This is 
followed by conclusions. 
 

 

2   Detection of follicles 
Ovarian follicles are spherical-like fluid-filled structures. 
Their growth stops at 8 to 10 mm on average, only the 
dominant follicle can reach as much as 17-25 mm in 
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diameter [3]. A follicle in 3D US images is seen as a 
spherical homogenous region whose average greyness is 
darker than the surroundings. However, other objects 
with similar characteristics exist in the image (e.g. 
veins). This aggravates the segmentation of follicles, 
which means the initial step for automated quantitative 
assessment of perifollicular vascularization. Therefore, 
we paid particular attention to finding the position and 
the shape of follicles using ordinary 3D US imaging, i.e. 
US volumes. Length of one voxel is around 0.2 mm in 
such images, thus expected diameter of the fully grown 
dominant follicle is around 85 voxels or more. The 
example of 3D ultrasound volume is depicted in Fig. 1. 
 

 
Figure 1: 3D view on the ultrasound volume 
 
     Many algorithms exist for the segmentation of 
ultrasound images [1-6]. Most of the algorithms enable 
automated or semi-automated segmentation of 2D 
ovarian ultrasound images [1-3], but only a few of them 
[4-6] can be extended to 3D images that provide more 
information. We implemented a variation of the method 
[6] based on continuous wavelet transform. 
     The detection of follicles consists of two consecutive 
steps; firstly, the follicle centroid is determined using 
continuous wavelet transform and, secondly, the shape 
of previously detected follicle is outlined. 
 
 
2.1 Detection of the follicle centroid 
Since follicles have spherical shape in 3D, they are very 
suitable for the detection by the 3D Mexican hat (MH) 
wavelet (depicted in Fig. 2), which is isotropic and, 
therefore, has spherical shape. In 3D, point (x, y, z) in 
MH is defined as: 
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Continuous wavelet transform of function f(x,y,z) is 
defined as: 
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where f*

(x,y,z) denotes the complex conjugate of f(x,y,z). 
 

 
Figure 2: Mexican hat in 3D 
      
     When modelling the follicle as a sphere S with 
greyness 1 and the surrounding tissue with greyness 0, it 
can be proved [6] that its wavelet transform exhibits a 
local extreme in the follicle’s centroid. We denote the 
radius of the sphere with C. For a’s that squeeze the 
wavelet inside the follicle, a local minimum appears at 
the follicle’s centroid position (Fig. 3 and 4). When scale 
a is much smaller than follicle (when scales a<(C-

0.5)/3.5), then values of the wavelet transform in the 
centroid position and its neighbourhood limits toward 0 
in the ideal theoretical case. On real data even values 
smaller than 0 can be obtained in the centroid. The 
experiments showed that the results of the wavelet 
transform are very sensitive to the noise at such scales. 
We showed in [6] that the most suitable scales for the 
detection of the follicle centre is when scale a is in the 
interval: 
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The wavelet transform at such scales still has the local 
minimum in the follicle's centroid, but the result is not so 
sensitive to the noise anymore. The extreme in the 
centroid corresponds to a maximum when the scale a 
expands the MH wavelet outside the follicle’s borders 
(Fig. 5).  
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Figure 3: Wavelet transform of the follicle model with radius 8 
at scale 2. 
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Figure 4: Wavelet transform of the follicle model with radius 8 
at scale 3. 
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Figure 5: Wavelet transform of the follicle model with radius 8 
at scale 4. 

     Our algorithm for the detection of centroids in 
dominant follicles is based on the tracking of local 
extremes through the different scales. Local maximums 
are not taken into account because they are very error 
prone due to the noise which is severely present in real 
follicle recordings, where follicle’s surrounding is not 
monotonic as assumed in the theoretical model. 
     The procedure begins at the highest scale ab, in which 
we try to detect the largest follicles, and ends at scale ae, 
where we try to detect the smallest ones. The coordinates 
of all local minimums in a US volume at scale at are 
stored into a dataset Ct. Each minimum in Ct is tested for 
adequacy by checking the voxel in original image at the 
same coordinates. If the greyness of the voxel exceeds a 
preselected threshold T, the minimum is dropped from 
the set Ct. Then, for each coordinate ki

t in Ct the nearest 
coordinate kj

t+1 in the set Ct+1 is found. The coordinate 
kj

t+1 and scale t+1 are added to the set of local 
minimums, M, if Euclidian distance |ki

t - kj
t+1| < H, where 

H stands for a maximum allowed distance (usually 5). In 
general, the minimum which can be traced successively 
through three different scales is a good candidate for a 
follicle’s centroid position. However, when dealing with 
dominant follicles, as in the described application, we 
can safely assume the follicle is the greatest object in the 
US volume. Hence, the sequence of minimums, which 
starts at the highest scale an can be traced through three 
different scales, is declared as follicle centroid.  
     Pseudocode of the algorithm is depicted in Fig. 6. 
 
function DetectionOfDominantCentroid(volume, ab,ae) 
  for at = ab to ae step -1 
    W=calculateCWT(volume, at) 
    Ct=localMinimums(W) 
    foreach coordinate ki

t in Ct 
      if volume(ki

t)> T 
        drop ki

t from Ct 
      else 
        kj

t+1=findNearest(ki
t, Ct+1) 

        if euclidianDistance (ki
t, kj

t+1) < H 
          M = addToSet(M,at,ki

t, kj
t+1) 

        else 
          M = addToSet(M,at,ki

t, 0) 
        end if 
        if M(end,4)==3  // if the centroid can be traced 
           return ki

t            
  // through 3 scales, return it 

        end if 
      end if 
    next c 
  next a 
  return DominantCentroidNotDetected 
end 

 

function cm=findNearest(k,C) 
  minD=maxValue; 
  foreach coordinate c in C 
    if euclidianDistance(c,k)<minD 
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      cm=c     
    end if 
  next c 
end 

 
function M=addToSet(M,a,s,f) 
// function adds new connection to the set M. 
// M is 2D table, first column represents scale a, 
// second columen the coordinates of the centroid 
// s and third column the row in M where the coordinates 
// of centroid at scale a-1 are stored 
// in fourth column we track the number od scales at which 
// the center was detected  
  indf=find(M(:,1)==a-1 & M(:,1)==f) 
  M(end+1,:)=[a s indf M(indf,4)+1] // append new row to M 
end 

Figure 6: Algorithm for detection of the follicle centroid 
 
 
2.2 Outlining the follicle 
After the follicle centroid is detected the follicle shape 
must be outlined. Our method for outlining was again 
inspired by the study of wavelet behavior. It can be seen 
from Figs. 3, 4 that if we travel from point b=0 in either 
direction, we eventually hit the local maximum, when 
scale a decreases below the follicle’s size. It has been 
proved [6] that this maximum is roughly positioned at 
the point b=r-a, where r means follicle’s radius. The 
distance of the follicle’s edge from the centroid can be 
thus calculated as: 
 

abr += .                                                                       (4) 
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Figure 7: Transformed values sampled along ray on real data 
 
     This phenomenon provides us with a tool for the 
calculation of the follicle border points. We calculate the 
border points from the wavelet transform in scale a in 
which the centroid was found. We generate 132 radial 
rays in homogeneous orientation distribution [7], casted 

outwards from each detected centroid. The radial rays 
casted from the centroid are not new approach to the 
shape outlining. The similar approach in the filed of the 
ovarian 3D ultrasound image segmentation was 
published in [4].  The transform values are sampled 
along the rays at integer distances n, beginning from the 
centroid’s coordinates kj

t+1 in the direction of spherical 
angles θ and φ. Thus, rθ,φ(n) designates the weighted-
average greyness of voxels in a US sub-volume, defined 
by the wavelet scale, at radius n in the direction θ and φ. 
In such a way, a graph similar to one depicted in Fig. 7 is 
obtained, and the distance of the follicle border points in 
given direction can be calculated. 
     All border voxels are organized into triangular mesh 
which is then smoothed by mesh smoothing method [8]. 
The result of the segmentation is depicted in Fig. 8 and 
the pseudocode of the algorithm is depicted in Fig. 9. 
 

 
                    (a)                   (b) 

Figure 8: Annotated position of follicle in one slice (a), 
reconstructed 3D model of follicle (b). 
 
function FollicleOutlining(volume, ab,k) 
   W=calculateCWT(volume, at) 
   AngThPh=getAngles132EqualyDistributedSphericalPnts() 
   foreach angle theta,phi in AngThPh 
     line=sampleLine(volume, k, theta, phi) 
     b=findPositionOfFirstMinimum(line) 
     r = b + ab 
     xb= r*cos(theta)*sin(phi) 
     yb= r*sin(theta)*sin(phi) 
     zb= r*cos(phi) 
     borderPoints(theta,phi)=[ xb, yb, zb] 
   next theta,phi 
end 

 

Figure 9: Algorithm for detection of the follicle outlining 
 
 

3 Quantitative Assesment of 

Perifollicular Vascularization 
Aiming at the final detection of perifullicular 
vascularisation, we deploy US imaging of two 
modalities. Ordinary 3D US images are used for the 
dominant follicle detection, while power Doppler images 
show the areas with blood flow, i.e. blood vessels the 
observed dominant follicle. 
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     Only the vessels that surround the follicle in a 5 mm 
thick layer are taken into consideration, as explained in 
the sequel. Prior that step the Doppler image is binarised 
by threshold function to reduce noise. 
     We first assess the thickness of blood vessels. They 
provide us with enough information to calculate a simple 
quantitative measure of perifollicular vascularization. 
Centroids of the so called maximal balls [9], which are 
the side result of the vessel thickness assessment, are 
further used in the vessel reconstruction algorithm. 
     Denote a set of voxels positioned in vessels, by F and 
a voxel i in this set by pi. The 3×3×3 neighbourhood of 
voxel pi is denoted by N(pi). N26(pi)=N(pi)- pi  denotes 
the set of 26 voxels adjacent to pi. 
 

 
Figure 10: Typical input to the vessel thickness assessment 
procedure. In the centre is annotated position of follicle, the 5 
mm thick layer around follicle is also annotated. The position 
of vessels surrounding the follicle is shown.  
 
3.1 Vessel thickness assessment 
We are interested in thickness of vessels surrounding the 
follicle. In [10], authors define the local thickness at 
given voxel pi inside a structure as the diameter of the 
largest sphere which includes the voxel and which fits 
entirely the structure. Brute force search for such spheres 
could be very time demanding, therefore more refined 
approach were developed. A solution comes in the form 
of maximal balls, i.e. spheres, lying entirely inside the 
observed structure and being disjunctive with all other 
spheres. Such maximal balls form a set of candidate 
spheres. 
     Each voxel from the structure is then tested for 
inclusion into one of maximal balls. The sphere with 
maximum radius is chosen from all the maximal spheres 
containing the tested voxel. 
 
3.1.1 Centroids of maximal balls 

To each voxel pi in F we can append a sphere (usually 
referred to as a ball) si with its centroid in pi and radius ri 
representing the Euclidean distance from the voxel pi to 
the nearest voxel lying outside of vessels. Therefore, all 
voxels positioned inside the ball belong to the vessels. 

Maximal balls, comprising a subset of balls, are those 
that are not completely contained in any other ball. The 
centroids of maximal balls (CMB) are usually positioned 
in the centroids of objects.  
     Many algorithms exist for the calculation of the 
CMB. We used the algorithm published in [9]. This 
algorithm uses Chamfer distance instead of the 
Euclidean one. This speeds up the algorithm since the 
calculation of the Euclidean distance is much more time 
consuming. 
     Chamfer distance is the approximation of Euclidian 
distance, where the distance from voxel pi to the nearest 
voxel positioned outside of the vessels is computed with 
the help of neighbouring points [11]. The distance is 
defined recursively as: 
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It has been shown in [9] that centroids ci of maximal 
balls satisfy 
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3.2 Calculation of statistics 
In order to assess perifollicular vascularization 
statistically we introduced two histograms. The 
histograms are important for medical diagnosing and 
treatment.  
     The first histogram shows the number of voxels 
belonging to blood vessels with the certain thickness. 
This gives us a general idea about the structure of the 
vessels that surround the dominant follicle (i.e. the 
quantity of thin vessels versus the thick ones). The 
histogram is obtained from the vessel thickness 
assessment and example is depicted in Fig. 11. 
     Another histogram shows the spatial distribution of 
vessels around the follicle. It gives an impression 
whether the distribution is uniform around the follicle or 
concentrations appear in parts of the follicle. The 
histogram is constructed based on 117 equally sized 
sectors surrounding the follicle’s centroid. For each 
vessel thickness, the portion of sectors containing such 
vessels is depicted in Fig. 11. 
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(g) (h) 

Figure 11: The number of voxels belonging to blood vessels with the certain thickness for images 1 (a), 2 (c), 3 (e) and 4 (g). The 
portion of sectors containing the vessels with certain radius for images 1 (b), 2 (d), 3 (f) and 4 (h). Images 1 and 2 belong to the same 
patient.  
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4  Vessel reconstruction 
Power Doppler images show the areas with blood flow, 
however usually not all vessels are equally visible. The 
most visible are wide vessels with high pressure. Thus 
most of the arteries are discovered, but not all veins and 
capillaries. 
     Another problem is that vessel is sometimes not 
perceived entirely, but only on regions where the 
pressure is highest, for example where vessel splits into 
two or more vessels.  
     Therefore a method which will reconstruct the vessels 
from power Doppler images is desired. Such 
reconstruction will not affect much the statistical results 
(i.e. the portion of sectors containing the vessels) 
however it will ease the interpretation of the results to 
the patients. 
 
 
4.1 Algorithm 
Our novel vessel reconstruction algorithm is based on 
minimal spanning trees [12]. It consists of several steps 
as shown in Fig. 12. The input to the algorithm is 
binarized power Doppler image.  
 
function VesselReconstruction(volume, radius) 
  // compute Chamfer distances on voxels  
  chD = chamferDistance(volume); 
  // find only local maximums since we are interested only on  
  // vessel centres 
  LMVertices = findLocalMaximums(chD, radius); 
  // compute Euclidian distances between all local maximums 
  distance = computeDistances(chD); 
  // Prim’s algorithm to compute minimum spanning tree of  
  // local maximums and their mutual distances 
  minTree = minimumSpanningTree(LMVertices, distance); 
  // Bresenham rasterization on nodes of a given minimum  
  // spanning tree 
  oVolume = computeBresenham(minTree, chD); 
  // reconstruction of vessels in new volume 
  sVolume = createSphereVolume(oVolume, chD); 
end 

 

function oVolume = computeBresenham(minTree, chD) 
  // minTree is a set of connected nodes – two vertices in 
  // minimum spanning tree 
  foreach node in minTree 
    // Euclidian distance between node vertices 
    d = distance(node); 
    // size of vessel in first vertex 
    s0 = getVesselSize(node[0]); 
    // size of vessel in second vertex 
    s1 = getVesselSize(node[1]); 
    // compute raster voxels according to Bresenham 
    // algorithm 
    b = Bresenham(node); 
    foreach rasterVoxel in b 
      // compute Euclidian distance between starting vertex and  
      // rasterVoxel 

      d1 = distance(node[0], rasterVoxel); 
      // compute vessel size in rasterVoxel 
      oVolume[rasterVoxel[X][Y][Z] = d1/d * (abs(s1-s2))+s1; 
    next rasterVoxel  
  next node 
end 

Figure 12: Algorithm for vessel reconstruction 
 
     At the beginning we calculate the Chamfer distances 
for voxels representing the vessels as described in 3.1.1. 
     In second stage all local maximums are identified in 
Chamfer distance matrix. Local maximums define the 
centres of vessels. To reduce the noise (i.e. falsely 
indentified centres) all returned maximums are required 
to be the global ones in predefined radius. 
     Matrix of local maximums is sparse matrix with only 
a few of the elements – vessel centers. Since we know 
the radius for each element in sparse matrix the initial 
volume could be reconstructed. Cardio vascular system 
of a human body is very similar to set of trees, especially 
if arteries and veins are observed separately. As 
mentioned before, Doppler image perceives mostly 
arteries and some of the larger veins. To create a model 
of cardio vascular system around the follicle minimum 
spanning tree from identified vessels centres is created 
[13]. Since matrix of local maximums is sparse matrix, 
only small amount of voxels has to be processed. 
Algorithm used in this stage is so called Prim’s 
algorithm which gives optimal result in short amount of 
time [14]. Searching criteria to compute minimum 
spanning tree is Euclidian distance between local 
maximums voxels in volume. 
     Result of Prim’s algorithm is a set of connected pairs 
of vertices, where connection simulates the vessel path. 
All joined pairs define 3-dimensional tree. In the 
resulting set only edges - nodes of a tree are defined and 
additional rasterization has to be performed. For each 
resulting pair of vertices 3D version of Bresenham 
rasterization [15], [16] is calculated. Special care is taken 
thereby since the vertices of the pair usually do not 
belong to the vessels with the same radius. For all 
rasterized vertices between all nodes linear 
approximation of vessel size is computed, according to 
the distance between raster and starting vertex and size 
of vertices of a node.     Resulting volume with edge and 
raster vertices represent the centres of reconstructed 
vessels. For each vertex a radius was calculated in 
previous step. The sphere’s radius is equal to the 
vertex’s Chamfer distance and the centre of such a 
sphere lies on vertex. All spheres are merged into new 
volume - volume of reconstructed vessels.  
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Figure 13: Follicle and reconstructed vessels 
 
 
4.2 Analysis 
It was shown that cardio vascular reconstruction around 
and inside follicle is possible from a Doppler image. 
However more extensive testing should be performed. 
The problem is that we did not know the ground truth, 
i.e. the actual vessel state, but medical personnel 
confirmed that reconstructed state is very close to the 
state as it should be. One example is depicted in Fig. 6 
which shows the volume at early stage, where only one 
artery encircles the follicle.  
     Nodes of our reconstructed tree indicate the 
separation of a vessel and lists of our tree points out to 
the connections of the artery with capillaries.  
    Time complexity for described vessel reconstruction 
is O(n2), where n is number of local maximums vertices. 
Measurements show that for a given Doppler volume 
number of local maximums vertices is much smaller 
according to the volume vertices. Most time consuming 
step of the algorithm is computing Euclidian distances 
between local maximums. In future, this step will be 
reduced, since distances of all pair do not have to be 
computed. To achieve similar results only distances 
between vertices in some local region has to be 
computed. 
 
 

5 Results 
The algorithm was tested on the four images provided by 
the Teaching Hospital of Maribor and the results were 
also visually evaluated by medical personnel. 
      The position of the dominant follicle was 
automatically detected on all images. The threshold for 
power Doppler images was set manually for each image.  
     The quantitative assesment of perifollicular 
vascularization for all four images is depicted in Fig. 11. 
Especially interested are the results for images 1 and 2, 
since they belong to the same patient. It can be seen, that 

the shape of the histogram is similar, however not equal. 
This can be explained by the nature of power Doppler 
imaging where the vessels are not always equally visible. 
     The results of the vessels reconstruction algorithm is 
depicted in Figs. 13 and 14. Again the special attention 
should be paid to images 1 and 2 in Fig. 14, since they 
belong to the same patient. It can be easily seen that the 
reconstructed vessels are similar.   
 
 

6 Conclusions 
The first prototype of the automatic procedure for 
quantitative assessment of perifollicular vascularisation 
is described in this paper. The procedure work perfectly 
on test images provided to us although more extensive 
testing must be perform especially with the trained 
medical personnel. 
     Our future work will focus on building the nicer user 
interface, designed specially for the use of medical 
personnel. We will also add additional statistics if the 
medical research will show that it is required. 
     Due to the nature of Doppler ultrasound its resolution 
is smaller than the resolution of normal ultrasound and 
usually not all vessels are equally visible. We believe 
that power Doppler result could be improved by 
combining the information of several ultrasound images 
obtained consecutively in the same examinations. This 
could be done using rigid image registration, where the 
follicles in the normal US would be registered firstly. 
With obtained transformation the power Doppler US 
could be also registered. For the registration the 
algorithm [17] could be used. 
     We will also try to improve vessel reconstruction part 
of our procedure. By doing so it will be possible to use 
non-rigid registration of medical images and thus we 
will be able to visualize the vessel development on daily 
basis which will undoubtedly help the medical expert to 
understand the behaviour of perifollicular vascularisation 
more thoroughly. 
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Figure 14: Follicle and vessels from binarised power Doppler for images 1 (a), 2 (c) and 3 (e). Follicle and reconstructed vessels for 
images 1 (b), 2 (d) and 3 (f). Images 1 and 2 belong to the same patient. 
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