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Abstract: - The paper deals with design and performance analysis of algorithms that utilize parallel signal-processing 
methods and SIMD technology for multiply-and-add algorithm for digital audio signal processing. This algorithm is 
used for summing the gained input signals on output buses in applications for distributing, mixing, effect-processing, 
and switching multi-format digital audio signal in an audio signal network on desktop processors platforms. The 
subjective evaluation of latency caused by principle of the real-time digital audio processing is also studied in the paper 
Results of an analysis of speed-up and real-time performance of several summing algorithms are presented in the paper 
as well as subjective evaluation of the latency depending on the audio buffer size. 
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1   Introduction 
Embedded PCs with desktop processors are versatile, 
flexible and cost effective solutions for distributing, 
mixing, effect-processing, and switching multi-format 
digital audio signals in an audio signal network. Each 
available input and output can be processed by several 
audio processing algorithms, and each input signal can 
be sent to each output.  

In an audio signal processing system with many input 
and output channels, an algorithm performing the 
summation of input signals at output buses can have high 
computing demands. As a result, the real-time 
performance of the system decreases because the 
summing algorithm restrains the computing power 
available for incorporated digital audio effects for the 
processing of input and output signals.  

The summing algorithm is a simple loop of iterations 
that can run simultaneously without interfering with each 
other. This makes the summing algorithm a perfect tool 
for parallel processing, e.g. for parallel for or parallel 
reduce approaches. However, a parallel loop is generally 
useful for large-scale vectors and matrixes because it 
incurs overhead cost for every chunk of work that it 
schedules. If the chunks are too small, the overhead may 
exceed the useful work [1]. However, the audio signal 
buffers must be short for real-time processing, so the 
parallel processing efficiency may be reduced to nothing 
by its own overhead.  
 
 
2   Optimizing the Cross-Point Matrix 
Part of an audio signal flow diagram of a digital audio 
mixing application that performs summing input signals 
on output buses is often called the cross-point matrix. It 

is a simple multiply-and-add algorithm performed 
independently on each sample of each input channel for 
each output channel. It makes the summing algorithm 
perfect for parallel processing. 
 
 
2.1 Multiply-and-Add Algorithm 
The most time-consuming algorithm, which the cross-
point matrix performs, can be expressed using the 
equation 
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where yo[n] is signal of the output bus o, xi[n] is signal of 
the input channel i, g[n] is the time-dependent gain 
function, L is the number of input channels, M is the 
number of output buses, and 
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where Gio is the constant gain factor of a  given cross 
point, and pflio is the pre-fade setting of a given cross 
point. The g[n] function represents a soft-switch function 
that uses the fast-fade envelope generator to prevent 
clicks at step changes of the gain (e.g. pre/post fader 
switch, mute on/off). In a multi-format digital audio 
network, no input or output bus is monophonic; it 
consists of several audio channels (see Fig. 1). 
Fortunately, every multi-channel node (cross point) can 
be expanded into a corresponding number of single-

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 174 Issue 2, Volume 9, February 2010



channel nodes (see Fig. 2) if the pointers to audio signal 
buffers (in Figs 1 and 2 labelled as a, b,..., z, α, β,.., ω) 
of all buses (in Figs 1 and 2 labelled as A, B, C,..., Δ, Φ, 
Γ,...) are stored in pointer-to-pointer arrays. In that case, 
the pointers to audio signal buffers can be remapped 
accordingly only once – at an application start-up or in 
runtime when the bus configuration is changed. 
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Fig. 1: Symbolic representation of a multi-format cross-
point audio matrix. 
 

The most power-consuming situation occurs when a 
scene is recalled – the summing algorithm must perform 
the soft-switch on all nodes in which the gain and/or 
pre/post settings were changed. Equation (1) can be 
expressed as 
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or 
 

][][][ nngn Fxy = , (3) 
 
where y[n] is the vector of output signals at time n, x[n] 
is the vector of input signals at time n, g[n] is time-
dependent gain function, g[n] is the time-dependent gain 
function, and F is the matrix of node gains. 

Some solutions of matrix multiplications using 
parallel processing for the distributed systems and multi-
core processors are presented in [2] and [3]. However, 
equation (3) is special simpler case. 

The most direct implementation of equation (3) in the 
C++ programming language uses nested loops like this: 

 
for (int o = 0; o < M; ++o) 

for (int i = 0; i < L; ++i) 
for (int n = 0; n < N; ++n) 

y[o][n] += F[i][o]*g[n]*x[i][n]; 
 
where N is the number of samples of processed audio 
signal buffers. However, this is a less effective solution. 
It is possible to use more effective implementations 
using one-, two- or three-dimensional scalable 
parallelism. The speed-up of all implementations 
mentioned below will be with respect to this nested-loop 
implementation. 
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Fig. 2: Symbolic representation of a multi-format cross-
point audio matrix with remapped audio channels. 
 
The algorithm is performed independently on each 
sample of each input channel for each output channel, 
i.e. the dependencies are not irregular, which simplifies 
the parallelization. For Transformations techniques for 
extracting parallelism in irregular nested loops are 
described in [4]. 
 
 
2.2 Testing Conditions  
The testing of the implementation methods was 
performed on three desktop computers with the 
Windows XP® operating system (see Tab. 1). 
 
Tab. 1: Testing computers 

PC1 Intel® Core™2 T7200 @ 2 GHz 
PC2 Intel® Core™2 Quad CPU Q9400 @ 2.66 GHz 
PC3 Intel® Core™2 6600 @ 2.4 GHz 
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All unnecessary operating system services were disabled 
to minimize the influence of other running processes on 
the results. For the same reason, the minimal value of the 
processing time from ten tests was taken as the result. 
The Microsoft® Visual C++ 2005 was used to 
implement the testing Win32 console application. 

The implementation methods were tested for the 
IEEE 754 single- and double-precision floating point 
data format [5]. All variables were defined as local and 
the overhead of the implementation was minimized. 

The input signal buffers x[n] were loaded with 
random numbers from the range of 〈–1; 1〉, gain matrix F 
was generated using random numbers from the range of 
(0; 1〉, and gain function g[n] was implemented as a 
look-up table of linear function g[n] = n/(N – 1) for 
n = 0, ..., N – 1, where N is the buffer length.  

The generated random numbers were thresholded to 
eliminate the occurrence of denormalized numbers in the 
whole processing and thus reducing computing power of 
the processor [6]. Denormalized numbers represent an 
underflow condition and they are computed using the 
gradual underflow technique [7]. This causes that 
arithmetical operations with denormalized numbers are 
much slower than those with normalized numbers [7]. 

The processing time of each method was measured as 
the so-called wall clock time using the Intel® TBB 
template tick_count class.  The resolution of tick_count 
corresponds to the highest resolution timing service on 
the platform that is valid across all threads in the same 
process [1].  

The cross-point matrix for testing consists of 128 
input channels and 128 output channels, which 
represents a large routing system. A theoretical situation 
of a scene switch with soft-fade change of all gains was 
simulated. 

 
 

2.3 Implementation Methods 
A speed-up of implementation methods described below 
was measured relatively to the wall clock time of the 
direct implementation described above, which uses 
nested loops. All compiler optimizations were disabled 
in order to minimize the compiler influence on the 
results. The influence of compiler optimizations and 
real-time performance of implementation methods will 
be discussed later. Fig. 3 shows the dependence of the 
speed-up of implementation methods described in the 
following paragraphs on the size of audio signal buffers 
for double-precision floating point data at PC1, Fig. 4 at 
PC2, and Fig. 5 at PC3 (see Tab. 1). Fig. 6 also shows 
the dependence of the speed-up of implementation 
methods on the size of audio signal buffers for single-
precision floating point data at PC3. 
 
 

2.3.1   Serial Implementation Using Iterators  
The most common serial method of optimization of 
loops that decreases the algorithm overhead is using the 
C-language while statement and pointer iterators:  
 
py=&y[o]; px=&x[i]; pF=&F[i][o]; pf=&f; 
 int n=N; 
while(--i >= 0) 

*py++ = *pF * *pf++ * *px++; 
 

The first method (in Figs 3 to 6 labelled as “Serial”) 
implements all three loops using this method. 
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Fig. 3: Speed-up of the cross-point matrix implementa-
tion methods for a double-precision floating point data at 
PC1. 
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Fig. 4: Speedup of the cross-point matrix implementa-
tion methods for a double-precision floating point data at 
PC2. 
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2.3.2   Serial Implementation Using SSE 
The advantage of the Streaming SIMD Extension [7] 
implementation is obvious at the first sight. Its 
performance analysis is presented e.g. in [8]. However, 
loading and storing the vector data types from and into 
floating-point unit registers have to be performed with 
each audio signal sample if we want to use the cross-
point matrix algorithm for other-party audio 
technologies, for example Audio Streaming Input/Output 
[9] or Virtual Studio Technology [10], which uses the 
floating-point unit data types. Such overhead reduces the 
efficiency of the SIMD implementation (in Figs 3 to 6 
labelled as “Serial SSE”). 
 

0

2

4

6

8

10

12

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

sp
ee

du
p

Serial Serial SSE Parallel for
Parallel for SSE Parallel reduce Parallel reduce SSE
Parallel reduce 2D Parallel for 2D SSE

 
Fig. 5: Speed-up of the cross-point matrix implementa-
tion methods for a double-precision floating point data at 
PC3. 
 

0

5

10

15

20

25

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

sp
ee

du
p

Serial Serial SSE Parallel for
Parallel for SSE Parallel reduce Parallel reduce SSE
Parallel reduce 2D Parallel for 2D SSE

 
Fig. 6: Speedup of the cross-point matrix implementa-
tion methods for a single-precision floating point data at 
PC3. 
 

2.3.3   Parallel For Implementations  
The iteration space of the input buffer index i, output 
buffer index o and number of sample frame n goes from 
0 to L−1, M−1, or N−1, respectively. The Intel® 
Threading Building Blocks parallel_for template [11] 
was used for one-dimensional division of one of the 
iteration spaces into chunks and for running each chunk 
on a separate thread.  

The first method (in Figs 3 and 4 labelled as “Parallel 
for”) breaks the n iteration space (sample frames) and 
uses the serial C-language while statement 
implementation described above for outer loops (output 
and input buffer indexes).  

We can combine the parallel for implementation with 
the SIMD extension. However, we have to analyze 
influence of the overhead of both methods. The 
methodology of combining two types of parallel 
processing mechanism and study of the performance is 
presented in [12]. The second method (in Figs 3 to 6 
labelled as “Parallel for SSE”) uses both approaches and 
breaks the i iteration space (input buffer indexes) and 
uses the SSE2 implementation for the inner loop (sample 
frames) and serial C-language while statement 
implementation for the outer loop (output buffer 
indexes). The parallel_for construct incurs an overhead 
cost for every chunk of work that it schedules [1]. So the 
Intel® TBB templates allow controlling the grain size of 
parallel loop. To ensure sufficient system bandwidth 
between the processor and the memory, an automatic 
grain size optimized for cache affinity [11] was chosen. 
The influence of explicitly defined grain sizes on the 
algorithm performance will be discussed later. 

 
2.3.4   Parallel Reduce Implementations 
The cross-point matrix algorithm is also a typical 
example of algorithm suitable for the parallel split/join 
approach [1]. The Intel® TBB parallel_reduce template 
generalizes any associative operation by splitting the 
iteration space into chunks and performing summation of 
each chunk on a separate thread. The join method 
performs the corresponding merges of the results [11]. 

In the cross-point matrix algorithm, the addition of 
samples is performed over the i iteration space (input 
buffer index). The first implemented method (in Figs 3 
to 6 labelled as “Parallel reduce”) breaks the i iteration 
space and uses the serial C-language while statement 
implementation for the outer loop (output buffer 
indexes) and the inner loop (sample frames) as well. 
Second method (in Fig. 3 and 4 labelled as “Parallel 
reduce SSE”) breaks the i iteration space and uses the 
SSE2 implementation for the inner loop and serial C-
language while statement implementation for the outer 
loop. Automatic grain-size optimized for the cache 
affinity is used again. 
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2.3.5   Implementations with 2D Iteration Spaces 
The iteration spaces i, o, and n are independent and 
computations can run simultaneously without interfering 
with each other. So we can break the whole iteration 
space into two-dimensional chunks. The Intel® TBB 
blocked_range2d template class [11] represents 
recursively divisible two-dimensional half-open interval. 
Each axis of the range has its own splitting threshold [1].  

The first implemented method (in Figs 3 to 6 labelled 
as “Parallel reduce 2D”) breaks the n and i iteration 
spaces (sample frames and input buffer indexes), 
performs partial summation on each chunk, and uses the 
serial C-language while statement implementation for 
the outer loop (output buffer indexes). This 
implementation method does not use the SSE2 on 
purpose so that it could be compared with the “Parallel 
reduce SSE” implementation. 

The second implemented method (in Figs 3 to 6 
labelled as “Parallel for 2D SSE”) breaks the o and i 
iteration spaces (buffer indexes) and uses the SSE2 
implementation for the inner loop (sample frames). 
 
 
2.4 Real-Time Algorithm Performance 
Only the speed-up of the implementation methods was 
discussed in the previous section. However, the most 
important thing from the practical viewpoint is whether 
the implementation is able to work in real-time with the 
double-buffering technique. It means that computing all 
buffer samples by the cross-point matrix algorithm must 
be finished before next buffers are recorded. The time 
for computing all buffer samples t must fulfil the 
condition 
 
t < NT, (4) 
 
where T is the sampling period and N is the number of 
buffer sample frames. 
 

Compiler optimization is therefore used to optimize 
the method overhead and also the algorithm itself. Intel 
compiler 10.0.654 and Microsoft® Visual C++ 2005 
compiler were used with the following settings: 

 
Microsoft® Visual C++ 2005 compiler: 

– Maximize speed 
– Enable Intrinsic functions 
– Whole program optimization 

 
Intel® compiler 10.0.654: 

– Maximize Speed 
– Enable Intrinsic Functions 
– Global Optimization 
– Use Intel® Processor Extensions: P4 SSE3 
– Enable Parallelization 

– Floating-Point Speculation: Fast 
– Flush Denormal Results to Zero: No 
– Floating-Point Precision Improvement: None 
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Fig. 7: Relative time of computing cross-point matrix 
algorithm for double-precision floating point numbers at 
PC1 with Microsoft® Visual C++ 2005 compiler. 
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Fig. 8: Relative time of computing cross-point matrix 
algorithm for double-precision floating point numbers at 
PC1 with Intel® compiler 10.0.654. 
 

Figs 5 to 12 show the dependence of the relative time 
t/NT in percent points on the number of buffer sample 
frames for double-precision floating point data and  
sampling frequency of 48 kHz at PC1, PC2, and PC3 
(see Tab. 1) when Microsoft® Visual C++ 2005 
compiler and Intel® compiler 10.0.654 is used. Figs 13 
and 14 also show the dependence for single-precision 
floating point data at PC3. Relative times for sampling 
frequency of 96 kHz will be doubled in all cases. 
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Fig. 9: Relative time of computing cross-point matrix 
algorithm for double-precision floating point numbers at 
PC2 with Microsoft® Visual C++ 2005 compiler. 
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Fig. 10: Relative time of computing cross-point matrix 
algorithm for double-precision floating point numbers at 
PC2 with Intel® compiler 10.0.654. 
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Fig. 11: Relative time of computing cross-point matrix 
algorithm for double-precision floating point numbers at 
PC3 with Microsoft® Visual C++ 2005 compiler. 
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Fig. 12: Relative time of computing the cross-point 
matrix algorithm for double-precision floating point 
numbers at PC3 with Intel® compiler 10.0.654. 
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Fig. 13: Relative time of computing cross-point matrix 
algorithm for single-precision floating point numbers at 
PC3 with Microsoft® Visual C++ 2005 compiler. 
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Fig. 14: Relative time of computing the cross-point 
matrix algorithm for single-precision floating point 
numbers at PC3 with Intel® compiler 10.0.654. 
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3   Subjective Evaluation of Latency 
This chapter will discuss selection of the buffer size for 
real-time audio processing with the double-buffering 
technique from a musician point of view.  
 
 
3.1 Real-Time Audio Processing Latency 
If an in-place processing of audio signal buffer is used, 
an audio signal latency tL is introduced between an input 
and output 
 

1L NtNTt += , (5) 
 
where T is the sampling period, N is the number of the 
buffer sample frames, and t1 is an average time of 
processing of one sample frame. Professional real-time 
audio technologies for desktop computers, for example 
Audio Streaming Input/Output [9] from Steinberg, use 
one callback for synchronous buffer switching for input 
and output buffers. The audio signal latency in such 
systems is not dependent on computing demands of an 
algorithm and it equals to 
 

NTt 2L = . (6) 
 

For real-time audio processing we try to keep the 
latency as small as possible in all its applications. Live 
music performance is the application, which is most 
sensitive to the latency introduced by the real-time 
digital audio processing.  
 
 
3.2 Latency in Live Music Performance 
If we want to find a maximum latency of real-time audio 
processing system that is acceptable for a live music 
performance, we have to investigate the time gap 
between physical stimulus of sound and its sensation. In 
a live music performance, the stimulus is action of a 
musician (hitting drum, pressing key on keyboard, 
plucking string, etc.) and the sensation is musician’s 
perception of the sound. There are several factors that 
forms the overall sound latency in real-time processing 
of digital audio signal. These are shown in Fig. 15. 
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Fig. 15: Overall sound latency in real-time processing of 
digital audio signal of live electronic music performance. 

Latency, which can be named natural, consists of 
latency of a sound generator and of a delay caused by 
propagation of sound waves from loudspeaker to 
musician. The former one is typical for electronic music 
instruments and it is caused by group delay of 
incorporated audio signal processing algorithms and by 
latency of control signals. The farther one is about 3 ms 
per one meter, it means up to 9 ms for a typical distances 
of floor monitors at the concert stage. 

The real-time processing of audio signal introduces 
additional latency, that consists of a processing latency 
defined by (5) or (6) and conversion latency that is 
mostly determined by internal buffering in used audio 
interface. The internal buffering is typical for audio 
interfaces that use isochronous serial buses. They have to 
perform the internal buffering when small processing 
buffers are used by an application in order to 
synchronize digital audio stream with isochronous 
timeslots. 
 
 
3.3 Experiment Design and Results 
Two experiments were performed with fifteen musicians 
playing on electronic instruments in order to find 
minimum size of the additional latency that is not 
perceived by the musician. Electronic drums Roland V-
Drums, electric guitar, electronic wind instrument AKAI 
EWI 4000s, and MIDI master keyboard with Roland XV 
5050 sound module were played.  

Specially designed console application for Windows 
XP was used to delay the audio signal between input of a 
PC audio interface and its output. The audio interface 
used for the experiment allowed minimum additional 
latency of 4 ms at sampling frequency of 96 kHz and 
operator could increase this latency by steps of one 
sample frame, i.e. 10 μs. Headphones were used in order 
to eliminate the sound propagation delay. The 
responders were asked to accompany a piece of jazz 
music with rhythm of 90 BPM. 

In first experiment, the hidden reference and anchor 
methodology was used. Responders were asked whether 
they can or cannot recognize time gap between their 
action and perception of the sound in two cases. In one 
case, the audio signal was delayed with additional 
latency set by the operator. In the other case, responders 
were listening to a reference signal with no additional 
latency (audio interface was bypassed to eliminate 
conversion delay). The responders did not know in 
which case they listen to the reference signal and the 
delayed signal. 

In second experiment, the responders was simply 
asked to set-up such amount of the additional latency, 
that starts to be uneasy for their performance, e.g. they 
start to have problems to follow the rhythm of the song 
that they accompany. 
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Actual value of the additional latency was measured 
afterwards using a sweep-sine generator and an audio 
analyzer. It was determined as mean value of measured 
group delay. The generator output was connected instead 
of the electronic instrument output and the analyzer 
input was connected to the headphone amplifier output. 
Difference between theoretical value of the additional 
latency computed from buffer sizes and user delay and 
its actual measured value was about 0.3 ms and thus 
negligible. 

Fig. 16 to 18 show results of both experiments for all 
electronic instruments used in the experiment. The box 
has lines at the lower quartile, median, and upper 
quartile values. Lines extending from each end of the 
box show the extent of the rest of the data.  
 

 
Fig. 16: Perception of additional latency for clean (left) 
and metal (right) electric guitar. 
 

 
Fig. 17: Perception of additional latency for electronic 
drums (left) and electronic keyboard (right). 

 
It can be seen that low boundary of just-recognized 

additional latency is about 20 ms for almost all 
instruments. Furthermore, the minimum value and the 
range of just-recognized additional latency depend on 
the instrument type, strictly speaking on the playing 

style. For example, minimal value for electrical violin 
was recognized for a pizzicato. It can be seen from Fig. 
17 that variance of just-recognized additional latency for 
electronic keyboard players is minimal.  
 

 
Fig. 18: Perception of additional latency for electronic 
wind instrument (left) and electronic violin (right). 

 
Since the headphones were used during experiments, 

the sound propagation delay about 9 ms has to be 
subtracted from the results in for typical distances of 
floor monitors at the concert stage or studio. 

According to these results, it can be recommended to 
use maximum audio buffer size for the real-time audio 
processing with the double-buffering technique from (6); 
it corresponds to 528 sample frames at sampling 
frequency of 96 kHz, 264 sample frames at sampling 
frequency of 48 kHz, and 242 sample frames at sampling 
frequency of 44.1 kHz. 
 
 

4   Analyzing Influence of Grain Size 
The maximum recommended audio buffer size is 
determined by the subjective evaluation of additional 
latency introduced by the real-time digital processing of 
audio signals, as mentioned in previous chapter.  

The minimum recommended audio buffer size can be 
determined according to the results of analysis of real-
time algorithm performance presented in paragraph 2.4. 
It can be seen form Figs 7 to 14 that both serial SSE 
implementation and parallel_for implementation using 
SSE and 2D iteration space have best real-time 
performance for the audio buffer sizes from 64 sample 
frames. The rest of methods have significant 
improvement of the real-time performance from the 
buffer sizes from 128 sample frames. 

According to this, it can be recommended to use the 
buffer sizes of 128 and 256 sample frames for all 
implementation methods and sampling frequencies up to 
48 kHz. The buffer size of 512 sample frames can be 
used for sampling frequency of 96 kHz and buffer size 
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of 1024 sample frames for sampling frequency of 
192 kHz as well. For further speedup of the parallel 
implementation methods, we can analyze influence of 
the grain size for these four buffer sizes. 

Figs 19 to 22 show the influence of explicitly defined 
grain size on the speed-up of the parallel implementation 
methods for double-precision floating point data type at 
PC1 (see Tab. 1).  
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Fig. 19: Influence of grain size on the speed-up of the 
parallel implementation methods for a buffer size of 
1024 sample frames at PC1. 
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Fig. 20: Influence of grain size on the speed-up of the 
parallel implementation methods for a buffer size of 512 
sample frames at PC1. 

 
The two-dimensional parallel_for method gives in 

most cases better results for grain sizes up to 128 sample 
frames while the two-dimensional parallel_reduce 
method gives better results for larger grain sizes. 
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Fig. 21: Influence of grain size on the speed-up of the 
parallel implementation methods for a buffer size of 256 
sample frames at PC1. 
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Fig. 22: Influence of grain size on the speed-up of the 
parallel implementation methods for a buffer size of 128 
sample frames at PC1. 

 
 

5   Conclusion 
It can be seen from Figs 3 to 6 that the parallel_for 

approach using two-dimensional iteration space and SSE 
has the highest speed-up for almost all buffer sizes for 
both single-precision and double-precision data types. It 
is the fastest method for small buffer sizes. Its 
performance is comparable to methods of the two-
dimensional parallel_reduce and one-dimensional 
parallel_reduce with SSE. These two implementation 
methods have almost a constant speed-up for all buffer 
sizes. The two-dimensional parallel_for method gives in 
most cases better results for explicitly defined grain sizes 
up to 128 sample frames while the two-dimensional 
parallel_reduce method gives better results for larger 
grain sizes. 

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 182 Issue 2, Volume 9, February 2010



Figs 7 to 14 show that not all implementation 
methods are suitable for real-time processing. The 
parallel_for method using two-dimensional iteration 
space and SSE has the best performance for real-time 
processing at all testing desktop computers but it can be 
used only for buffer sizes up to 8 kB when the double-
precision floating-point data type is used. 

Together with results of subjective evaluation of the 
additional latency in live music performance, it can be 
recommended to use the audio buffer size of 128 and 
256 sample frames for sampling frequencies up to 
48 kHz. The buffer size of 512 sample frames can be 
used for sampling frequency of 96 kHz or higher and 
buffer size of 1024 sample frames for sampling 
frequency of 192 kHz. 
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