
Using Parallel Signal Processing in Real-Time Audio Matrix Systems

JIRI SCHIMMEL
Department of Telecommunications FEEC

Brno University of Technology
Purkynova 118, 612 00 Brno

CZECH REPUBLIC
schimmel@feec.vutbr.cz http://www.utko.feec.vutbr.cz/en/

Abstract: - The paper deals with design and performance analysis of algorithms that utilize parallel signal-processing
methods and SIMD technology for multiply-and-add algorithm for digital audio signal processing. This algorithm is
used for summing the gained input signals on output buses in applications for distributing, mixing, effect-processing,
and switching multi-format digital audio signal in an audio signal network on desktop processors platforms. The
subjective evaluation of latency caused by principle of the real-time digital audio processing is also studied in the paper
Results of an analysis of speed-up and real-time performance of several summing algorithms are presented in the paper
as well as subjective evaluation of the latency depending on the audio buffer size.

Key-Words: - Parallel processing, Parallel algorithms, Audio systems, Optimization methods, SIMD, Digital audio processing

1 Introduction
Embedded PCs with desktop processors are versatile,
flexible and cost effective solutions for distributing,
mixing, effect-processing, and switching multi-format
digital audio signals in an audio signal network. Each
available input and output can be processed by several
audio processing algorithms, and each input signal can
be sent to each output.

In an audio signal processing system with many input
and output channels, an algorithm performing the
summation of input signals at output buses can have high
computing demands. As a result, the real-time
performance of the system decreases because the
summing algorithm restrains the computing power
available for incorporated digital audio effects for the
processing of input and output signals.

The summing algorithm is a simple loop of iterations
that can run simultaneously without interfering with each
other. This makes the summing algorithm a perfect tool
for parallel processing, e.g. for parallel for or parallel
reduce approaches. However, a parallel loop is generally
useful for large-scale vectors and matrixes because it
incurs overhead cost for every chunk of work that it
schedules. If the chunks are too small, the overhead may
exceed the useful work [1]. However, the audio signal
buffers must be short for real-time processing, so the
parallel processing efficiency may be reduced to nothing
by its own overhead.

2 Optimizing the Cross-Point Matrix
Part of an audio signal flow diagram of a digital audio
mixing application that performs summing input signals
on output buses is often called the cross-point matrix. It

is a simple multiply-and-add algorithm performed
independently on each sample of each input channel for
each output channel. It makes the summing algorithm
perfect for parallel processing.

2.1 Multiply-and-Add Algorithm
The most time-consuming algorithm, which the cross-
point matrix performs, can be expressed using the
equation

∑
−

=

−==
1

0

1,...,1,0for][][][
L

i
iioo MonxngFny , (1)

where yo[n] is signal of the output bus o, xi[n] is signal of
the input channel i, g[n] is the time-dependent gain
function, L is the number of input channels, M is the
number of output buses, and

⎩
⎨
⎧

=
=

=
,1for 1

0for

io

ioio
io pfl

pflG
F (2)

where Gio is the constant gain factor of a given cross
point, and pflio is the pre-fade setting of a given cross
point. The g[n] function represents a soft-switch function
that uses the fast-fade envelope generator to prevent
clicks at step changes of the gain (e.g. pre/post fader
switch, mute on/off). In a multi-format digital audio
network, no input or output bus is monophonic; it
consists of several audio channels (see Fig. 1).
Fortunately, every multi-channel node (cross point) can
be expanded into a corresponding number of single-

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 174 Issue 2, Volume 9, February 2010

channel nodes (see Fig. 2) if the pointers to audio signal
buffers (in Figs 1 and 2 labelled as a, b,..., z, α, β,.., ω)
of all buses (in Figs 1 and 2 labelled as A, B, C,..., Δ, Φ,
Γ,...) are stored in pointer-to-pointer arrays. In that case,
the pointers to audio signal buffers can be remapped
accordingly only once – at an application start-up or in
runtime when the bus configuration is changed.

...

...

A

B

C

D

E

Δ Φ Γ ϑ Λ

......
a
b

α β ω

z

Fig. 1: Symbolic representation of a multi-format cross-
point audio matrix.

The most power-consuming situation occurs when a
scene is recalled – the summing algorithm must perform
the soft-switch on all nodes in which the gain and/or
pre/post settings were changed. Equation (1) can be
expressed as

()
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅=

−−−−−

−

−

−

][

][

][

][][][][

1

1

0

1,11,10,1

1,11,10,1

1,01,00,0

110

nx

nx
nx

FFF

FFF
FFF

ngnynyny

LLMMM

l

L

M
M

L

O

L

L

L

or

][][][nngn Fxy = , (3)

where y[n] is the vector of output signals at time n, x[n]
is the vector of input signals at time n, g[n] is time-
dependent gain function, g[n] is the time-dependent gain
function, and F is the matrix of node gains.

Some solutions of matrix multiplications using
parallel processing for the distributed systems and multi-
core processors are presented in [2] and [3]. However,
equation (3) is special simpler case.

The most direct implementation of equation (3) in the
C++ programming language uses nested loops like this:

for (int o = 0; o < M; ++o)

for (int i = 0; i < L; ++i)
for (int n = 0; n < N; ++n)

y[o][n] += F[i][o]*g[n]*x[i][n];

where N is the number of samples of processed audio
signal buffers. However, this is a less effective solution.
It is possible to use more effective implementations
using one-, two- or three-dimensional scalable
parallelism. The speed-up of all implementations
mentioned below will be with respect to this nested-loop
implementation.

...
...

Aa

Δα Φα ΓαΔβ Δω
...

Φβ
...

Φω

Ab

Az

Ba

Bb ...

Bz

Ca ...

Fig. 2: Symbolic representation of a multi-format cross-
point audio matrix with remapped audio channels.

The algorithm is performed independently on each
sample of each input channel for each output channel,
i.e. the dependencies are not irregular, which simplifies
the parallelization. For Transformations techniques for
extracting parallelism in irregular nested loops are
described in [4].

2.2 Testing Conditions
The testing of the implementation methods was
performed on three desktop computers with the
Windows XP® operating system (see Tab. 1).

Tab. 1: Testing computers

PC1 Intel® Core™2 T7200 @ 2 GHz
PC2 Intel® Core™2 Quad CPU Q9400 @ 2.66 GHz
PC3 Intel® Core™2 6600 @ 2.4 GHz

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 175 Issue 2, Volume 9, February 2010

All unnecessary operating system services were disabled
to minimize the influence of other running processes on
the results. For the same reason, the minimal value of the
processing time from ten tests was taken as the result.
The Microsoft® Visual C++ 2005 was used to
implement the testing Win32 console application.

The implementation methods were tested for the
IEEE 754 single- and double-precision floating point
data format [5]. All variables were defined as local and
the overhead of the implementation was minimized.

The input signal buffers x[n] were loaded with
random numbers from the range of 〈–1; 1〉, gain matrix F
was generated using random numbers from the range of
(0; 1〉, and gain function g[n] was implemented as a
look-up table of linear function g[n] = n/(N – 1) for
n = 0, ..., N – 1, where N is the buffer length.

The generated random numbers were thresholded to
eliminate the occurrence of denormalized numbers in the
whole processing and thus reducing computing power of
the processor [6]. Denormalized numbers represent an
underflow condition and they are computed using the
gradual underflow technique [7]. This causes that
arithmetical operations with denormalized numbers are
much slower than those with normalized numbers [7].

The processing time of each method was measured as
the so-called wall clock time using the Intel® TBB
template tick_count class. The resolution of tick_count
corresponds to the highest resolution timing service on
the platform that is valid across all threads in the same
process [1].

The cross-point matrix for testing consists of 128
input channels and 128 output channels, which
represents a large routing system. A theoretical situation
of a scene switch with soft-fade change of all gains was
simulated.

2.3 Implementation Methods
A speed-up of implementation methods described below
was measured relatively to the wall clock time of the
direct implementation described above, which uses
nested loops. All compiler optimizations were disabled
in order to minimize the compiler influence on the
results. The influence of compiler optimizations and
real-time performance of implementation methods will
be discussed later. Fig. 3 shows the dependence of the
speed-up of implementation methods described in the
following paragraphs on the size of audio signal buffers
for double-precision floating point data at PC1, Fig. 4 at
PC2, and Fig. 5 at PC3 (see Tab. 1). Fig. 6 also shows
the dependence of the speed-up of implementation
methods on the size of audio signal buffers for single-
precision floating point data at PC3.

2.3.1 Serial Implementation Using Iterators
The most common serial method of optimization of
loops that decreases the algorithm overhead is using the
C-language while statement and pointer iterators:

py=&y[o]; px=&x[i]; pF=&F[i][o]; pf=&f;
 int n=N;
while(--i >= 0)

*py++ = *pF * *pf++ * *px++;

The first method (in Figs 3 to 6 labelled as “Serial”)
implements all three loops using this method.

0

1

2

3

4

5

6

7

8

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

sp
ee

du
p

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 3: Speed-up of the cross-point matrix implementa-
tion methods for a double-precision floating point data at
PC1.

0

5

10

15

20

25

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

sp
ee

du
p

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 4: Speedup of the cross-point matrix implementa-
tion methods for a double-precision floating point data at
PC2.

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 176 Issue 2, Volume 9, February 2010

2.3.2 Serial Implementation Using SSE
The advantage of the Streaming SIMD Extension [7]
implementation is obvious at the first sight. Its
performance analysis is presented e.g. in [8]. However,
loading and storing the vector data types from and into
floating-point unit registers have to be performed with
each audio signal sample if we want to use the cross-
point matrix algorithm for other-party audio
technologies, for example Audio Streaming Input/Output
[9] or Virtual Studio Technology [10], which uses the
floating-point unit data types. Such overhead reduces the
efficiency of the SIMD implementation (in Figs 3 to 6
labelled as “Serial SSE”).

0

2

4

6

8

10

12

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

sp
ee

du
p

Serial Serial SSE Parallel for
Parallel for SSE Parallel reduce Parallel reduce SSE
Parallel reduce 2D Parallel for 2D SSE

Fig. 5: Speed-up of the cross-point matrix implementa-
tion methods for a double-precision floating point data at
PC3.

0

5

10

15

20

25

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

sp
ee

du
p

Serial Serial SSE Parallel for
Parallel for SSE Parallel reduce Parallel reduce SSE
Parallel reduce 2D Parallel for 2D SSE

Fig. 6: Speedup of the cross-point matrix implementa-
tion methods for a single-precision floating point data at
PC3.

2.3.3 Parallel For Implementations
The iteration space of the input buffer index i, output
buffer index o and number of sample frame n goes from
0 to L−1, M−1, or N−1, respectively. The Intel®
Threading Building Blocks parallel_for template [11]
was used for one-dimensional division of one of the
iteration spaces into chunks and for running each chunk
on a separate thread.

The first method (in Figs 3 and 4 labelled as “Parallel
for”) breaks the n iteration space (sample frames) and
uses the serial C-language while statement
implementation described above for outer loops (output
and input buffer indexes).

We can combine the parallel for implementation with
the SIMD extension. However, we have to analyze
influence of the overhead of both methods. The
methodology of combining two types of parallel
processing mechanism and study of the performance is
presented in [12]. The second method (in Figs 3 to 6
labelled as “Parallel for SSE”) uses both approaches and
breaks the i iteration space (input buffer indexes) and
uses the SSE2 implementation for the inner loop (sample
frames) and serial C-language while statement
implementation for the outer loop (output buffer
indexes). The parallel_for construct incurs an overhead
cost for every chunk of work that it schedules [1]. So the
Intel® TBB templates allow controlling the grain size of
parallel loop. To ensure sufficient system bandwidth
between the processor and the memory, an automatic
grain size optimized for cache affinity [11] was chosen.
The influence of explicitly defined grain sizes on the
algorithm performance will be discussed later.

2.3.4 Parallel Reduce Implementations
The cross-point matrix algorithm is also a typical
example of algorithm suitable for the parallel split/join
approach [1]. The Intel® TBB parallel_reduce template
generalizes any associative operation by splitting the
iteration space into chunks and performing summation of
each chunk on a separate thread. The join method
performs the corresponding merges of the results [11].

In the cross-point matrix algorithm, the addition of
samples is performed over the i iteration space (input
buffer index). The first implemented method (in Figs 3
to 6 labelled as “Parallel reduce”) breaks the i iteration
space and uses the serial C-language while statement
implementation for the outer loop (output buffer
indexes) and the inner loop (sample frames) as well.
Second method (in Fig. 3 and 4 labelled as “Parallel
reduce SSE”) breaks the i iteration space and uses the
SSE2 implementation for the inner loop and serial C-
language while statement implementation for the outer
loop. Automatic grain-size optimized for the cache
affinity is used again.

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 177 Issue 2, Volume 9, February 2010

2.3.5 Implementations with 2D Iteration Spaces
The iteration spaces i, o, and n are independent and
computations can run simultaneously without interfering
with each other. So we can break the whole iteration
space into two-dimensional chunks. The Intel® TBB
blocked_range2d template class [11] represents
recursively divisible two-dimensional half-open interval.
Each axis of the range has its own splitting threshold [1].

The first implemented method (in Figs 3 to 6 labelled
as “Parallel reduce 2D”) breaks the n and i iteration
spaces (sample frames and input buffer indexes),
performs partial summation on each chunk, and uses the
serial C-language while statement implementation for
the outer loop (output buffer indexes). This
implementation method does not use the SSE2 on
purpose so that it could be compared with the “Parallel
reduce SSE” implementation.

The second implemented method (in Figs 3 to 6
labelled as “Parallel for 2D SSE”) breaks the o and i
iteration spaces (buffer indexes) and uses the SSE2
implementation for the inner loop (sample frames).

2.4 Real-Time Algorithm Performance
Only the speed-up of the implementation methods was
discussed in the previous section. However, the most
important thing from the practical viewpoint is whether
the implementation is able to work in real-time with the
double-buffering technique. It means that computing all
buffer samples by the cross-point matrix algorithm must
be finished before next buffers are recorded. The time
for computing all buffer samples t must fulfil the
condition

t < NT, (4)

where T is the sampling period and N is the number of
buffer sample frames.

Compiler optimization is therefore used to optimize
the method overhead and also the algorithm itself. Intel
compiler 10.0.654 and Microsoft® Visual C++ 2005
compiler were used with the following settings:

Microsoft® Visual C++ 2005 compiler:

– Maximize speed
– Enable Intrinsic functions
– Whole program optimization

Intel® compiler 10.0.654:

– Maximize Speed
– Enable Intrinsic Functions
– Global Optimization
– Use Intel® Processor Extensions: P4 SSE3
– Enable Parallelization

– Floating-Point Speculation: Fast
– Flush Denormal Results to Zero: No
– Floating-Point Precision Improvement: None

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 7: Relative time of computing cross-point matrix
algorithm for double-precision floating point numbers at
PC1 with Microsoft® Visual C++ 2005 compiler.

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 8: Relative time of computing cross-point matrix
algorithm for double-precision floating point numbers at
PC1 with Intel® compiler 10.0.654.

Figs 5 to 12 show the dependence of the relative time
t/NT in percent points on the number of buffer sample
frames for double-precision floating point data and
sampling frequency of 48 kHz at PC1, PC2, and PC3
(see Tab. 1) when Microsoft® Visual C++ 2005
compiler and Intel® compiler 10.0.654 is used. Figs 13
and 14 also show the dependence for single-precision
floating point data at PC3. Relative times for sampling
frequency of 96 kHz will be doubled in all cases.

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 178 Issue 2, Volume 9, February 2010

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 9: Relative time of computing cross-point matrix
algorithm for double-precision floating point numbers at
PC2 with Microsoft® Visual C++ 2005 compiler.

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 10: Relative time of computing cross-point matrix
algorithm for double-precision floating point numbers at
PC2 with Intel® compiler 10.0.654.

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 11: Relative time of computing cross-point matrix
algorithm for double-precision floating point numbers at
PC3 with Microsoft® Visual C++ 2005 compiler.

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

Serial Serial SSE Parallel for
Parallel for SSE Parallel reduce Parallel reduce SSE
Parallel reduce 2D Parallel for 2D SSE

Fig. 12: Relative time of computing the cross-point
matrix algorithm for double-precision floating point
numbers at PC3 with Intel® compiler 10.0.654.

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 13: Relative time of computing cross-point matrix
algorithm for single-precision floating point numbers at
PC3 with Microsoft® Visual C++ 2005 compiler.

0

10

20

30

40

50

60

70

80

90

100

32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
samples

re
la

tiv
e

tim
e

[%
]

serial 2 (iterators) serial 3 (SSE) parallel for
parallel_for + SSE parallel_reduce parallel_reduce + SSE
parallel_reduce 2D parallel_for 2D + SSE

Fig. 14: Relative time of computing the cross-point
matrix algorithm for single-precision floating point
numbers at PC3 with Intel® compiler 10.0.654.

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 179 Issue 2, Volume 9, February 2010

3 Subjective Evaluation of Latency
This chapter will discuss selection of the buffer size for
real-time audio processing with the double-buffering
technique from a musician point of view.

3.1 Real-Time Audio Processing Latency
If an in-place processing of audio signal buffer is used,
an audio signal latency tL is introduced between an input
and output

1L NtNTt += , (5)

where T is the sampling period, N is the number of the
buffer sample frames, and t1 is an average time of
processing of one sample frame. Professional real-time
audio technologies for desktop computers, for example
Audio Streaming Input/Output [9] from Steinberg, use
one callback for synchronous buffer switching for input
and output buffers. The audio signal latency in such
systems is not dependent on computing demands of an
algorithm and it equals to

NTt 2L = . (6)

For real-time audio processing we try to keep the
latency as small as possible in all its applications. Live
music performance is the application, which is most
sensitive to the latency introduced by the real-time
digital audio processing.

3.2 Latency in Live Music Performance
If we want to find a maximum latency of real-time audio
processing system that is acceptable for a live music
performance, we have to investigate the time gap
between physical stimulus of sound and its sensation. In
a live music performance, the stimulus is action of a
musician (hitting drum, pressing key on keyboard,
plucking string, etc.) and the sensation is musician’s
perception of the sound. There are several factors that
forms the overall sound latency in real-time processing
of digital audio signal. These are shown in Fig. 15.

generator
latency

conversion
latency

processing
latency

conversion
latency

propagation
delay

stimulus

sensation

additional latencynatural latency

Fig. 15: Overall sound latency in real-time processing of
digital audio signal of live electronic music performance.

Latency, which can be named natural, consists of
latency of a sound generator and of a delay caused by
propagation of sound waves from loudspeaker to
musician. The former one is typical for electronic music
instruments and it is caused by group delay of
incorporated audio signal processing algorithms and by
latency of control signals. The farther one is about 3 ms
per one meter, it means up to 9 ms for a typical distances
of floor monitors at the concert stage.

The real-time processing of audio signal introduces
additional latency, that consists of a processing latency
defined by (5) or (6) and conversion latency that is
mostly determined by internal buffering in used audio
interface. The internal buffering is typical for audio
interfaces that use isochronous serial buses. They have to
perform the internal buffering when small processing
buffers are used by an application in order to
synchronize digital audio stream with isochronous
timeslots.

3.3 Experiment Design and Results
Two experiments were performed with fifteen musicians
playing on electronic instruments in order to find
minimum size of the additional latency that is not
perceived by the musician. Electronic drums Roland V-
Drums, electric guitar, electronic wind instrument AKAI
EWI 4000s, and MIDI master keyboard with Roland XV
5050 sound module were played.

Specially designed console application for Windows
XP was used to delay the audio signal between input of a
PC audio interface and its output. The audio interface
used for the experiment allowed minimum additional
latency of 4 ms at sampling frequency of 96 kHz and
operator could increase this latency by steps of one
sample frame, i.e. 10 μs. Headphones were used in order
to eliminate the sound propagation delay. The
responders were asked to accompany a piece of jazz
music with rhythm of 90 BPM.

In first experiment, the hidden reference and anchor
methodology was used. Responders were asked whether
they can or cannot recognize time gap between their
action and perception of the sound in two cases. In one
case, the audio signal was delayed with additional
latency set by the operator. In the other case, responders
were listening to a reference signal with no additional
latency (audio interface was bypassed to eliminate
conversion delay). The responders did not know in
which case they listen to the reference signal and the
delayed signal.

In second experiment, the responders was simply
asked to set-up such amount of the additional latency,
that starts to be uneasy for their performance, e.g. they
start to have problems to follow the rhythm of the song
that they accompany.

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 180 Issue 2, Volume 9, February 2010

Actual value of the additional latency was measured
afterwards using a sweep-sine generator and an audio
analyzer. It was determined as mean value of measured
group delay. The generator output was connected instead
of the electronic instrument output and the analyzer
input was connected to the headphone amplifier output.
Difference between theoretical value of the additional
latency computed from buffer sizes and user delay and
its actual measured value was about 0.3 ms and thus
negligible.

Fig. 16 to 18 show results of both experiments for all
electronic instruments used in the experiment. The box
has lines at the lower quartile, median, and upper
quartile values. Lines extending from each end of the
box show the extent of the rest of the data.

Fig. 16: Perception of additional latency for clean (left)
and metal (right) electric guitar.

Fig. 17: Perception of additional latency for electronic
drums (left) and electronic keyboard (right).

It can be seen that low boundary of just-recognized

additional latency is about 20 ms for almost all
instruments. Furthermore, the minimum value and the
range of just-recognized additional latency depend on
the instrument type, strictly speaking on the playing

style. For example, minimal value for electrical violin
was recognized for a pizzicato. It can be seen from Fig.
17 that variance of just-recognized additional latency for
electronic keyboard players is minimal.

Fig. 18: Perception of additional latency for electronic
wind instrument (left) and electronic violin (right).

Since the headphones were used during experiments,

the sound propagation delay about 9 ms has to be
subtracted from the results in for typical distances of
floor monitors at the concert stage or studio.

According to these results, it can be recommended to
use maximum audio buffer size for the real-time audio
processing with the double-buffering technique from (6);
it corresponds to 528 sample frames at sampling
frequency of 96 kHz, 264 sample frames at sampling
frequency of 48 kHz, and 242 sample frames at sampling
frequency of 44.1 kHz.

4 Analyzing Influence of Grain Size
The maximum recommended audio buffer size is
determined by the subjective evaluation of additional
latency introduced by the real-time digital processing of
audio signals, as mentioned in previous chapter.

The minimum recommended audio buffer size can be
determined according to the results of analysis of real-
time algorithm performance presented in paragraph 2.4.
It can be seen form Figs 7 to 14 that both serial SSE
implementation and parallel_for implementation using
SSE and 2D iteration space have best real-time
performance for the audio buffer sizes from 64 sample
frames. The rest of methods have significant
improvement of the real-time performance from the
buffer sizes from 128 sample frames.

According to this, it can be recommended to use the
buffer sizes of 128 and 256 sample frames for all
implementation methods and sampling frequencies up to
48 kHz. The buffer size of 512 sample frames can be
used for sampling frequency of 96 kHz and buffer size

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 181 Issue 2, Volume 9, February 2010

of 1024 sample frames for sampling frequency of
192 kHz as well. For further speedup of the parallel
implementation methods, we can analyze influence of
the grain size for these four buffer sizes.

Figs 19 to 22 show the influence of explicitly defined
grain size on the speed-up of the parallel implementation
methods for double-precision floating point data type at
PC1 (see Tab. 1).

0

2

4

6

8

10

12

14

16

18

20

22

8 16 32 64 128 256 512 1024
grainsize

sp
ee

du
p

parallel for parallel_for + SSE parallel_reduce

parallel_reduce + SSE parallel_reduce 2D parallel_for 2D + SSE

Fig. 19: Influence of grain size on the speed-up of the
parallel implementation methods for a buffer size of
1024 sample frames at PC1.

0

2

4

6

8

10

12

14

16

18

20

22

8 16 32 64 128 256 512
grainsize

sp
ee

du
p

parallel for parallel_for + SSE parallel_reduce

parallel_reduce + SSE parallel_reduce 2D parallel_for 2D + SSE

Fig. 20: Influence of grain size on the speed-up of the
parallel implementation methods for a buffer size of 512
sample frames at PC1.

The two-dimensional parallel_for method gives in

most cases better results for grain sizes up to 128 sample
frames while the two-dimensional parallel_reduce
method gives better results for larger grain sizes.

0

2

4

6

8

10

12

14

16

18

20

22

8 16 32 64 128 256
grainsize

sp
ee

du
p

parallel for parallel_for + SSE parallel_reduce

parallel_reduce + SSE parallel_reduce 2D parallel_for 2D + SSE

Fig. 21: Influence of grain size on the speed-up of the
parallel implementation methods for a buffer size of 256
sample frames at PC1.

0

2

4

6

8

10

12

14

16

18

20

22

8 16 32 64 128
grainsize

sp
ee

du
p

parallel for parallel_for + SSE parallel_reduce

parallel_reduce + SSE parallel_reduce 2D parallel_for 2D + SSE

Fig. 22: Influence of grain size on the speed-up of the
parallel implementation methods for a buffer size of 128
sample frames at PC1.

5 Conclusion
It can be seen from Figs 3 to 6 that the parallel_for

approach using two-dimensional iteration space and SSE
has the highest speed-up for almost all buffer sizes for
both single-precision and double-precision data types. It
is the fastest method for small buffer sizes. Its
performance is comparable to methods of the two-
dimensional parallel_reduce and one-dimensional
parallel_reduce with SSE. These two implementation
methods have almost a constant speed-up for all buffer
sizes. The two-dimensional parallel_for method gives in
most cases better results for explicitly defined grain sizes
up to 128 sample frames while the two-dimensional
parallel_reduce method gives better results for larger
grain sizes.

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 182 Issue 2, Volume 9, February 2010

Figs 7 to 14 show that not all implementation
methods are suitable for real-time processing. The
parallel_for method using two-dimensional iteration
space and SSE has the best performance for real-time
processing at all testing desktop computers but it can be
used only for buffer sizes up to 8 kB when the double-
precision floating-point data type is used.

Together with results of subjective evaluation of the
additional latency in live music performance, it can be
recommended to use the audio buffer size of 128 and
256 sample frames for sampling frequencies up to
48 kHz. The buffer size of 512 sample frames can be
used for sampling frequency of 96 kHz or higher and
buffer size of 1024 sample frames for sampling
frequency of 192 kHz.

Acknowledgement
The paper was prepared within the framework of project
no. 102/07/P505 of the Czech Science Foundation and
project no. FT-TA3/010 of the Ministry of Industry and
Trade of the Czech Republic.

References:

[1] Intel® Threading Building Blocks Tutorial.

Document Number 319872-002US, 2009-Jun-25.

[2] Nakhoon Baek, Hwanyong Lee, “Parallelized
Matrix Multiplications for the Multi-Core CPU's”.
WSEAS TRANSACTIONS on COMPUTERS, Issue
12, Volume 6, December 2007, pp. 1168-1173.
ISSN 1109-2750.

[3] Muhammad Hafeez, Dr. Muhammad Younus,
Abdur Rehman, Athar Mohsin, „Optimal Solution
to Matrix Parenthesization Problem Employing
Parallel Processing Approach“. In Proceedings of
the 8th WSEAS International Conference on
Evolutionary Computing, Vancouver, British
Columbia, Canada, June 19-21, 2007, pp. 235 –
240, ISSN: 1790-5095, ISBN: 978-960-8457-75-1

[4] Fawzy A. Torkey, Afaf A. Salah, Nahed M. El
Desouky, Sahar A. Gomaa, “Transformations
Techniques for extracting Parallelism in Non-
Uniform Nested Loops”. WSEAS TRANSACTIONS
on COMPUTERS, Issue 9, Volume 7, 2008, pp.
1394 – 1404. ISSN 1109-2750.

[5] IEEE 754-2008, Standard for Floating-Point
Arithmetic, Aug. 29 2008. ISBN: 978-0-7381-5753-
5

[6] Laurent de Soras, Denormal Numbers in Floating
Point Signal Processing Applications [online].
2002.

http://www.musicdsp.org/files/denormal.pdf

[7] Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1: Basic Architecture.
Intel Corporation, 2008.

[8] Y.F. Fung, M.F. Ercan, W.L. Cheung, T.K. Ho,
C.Y. Chung, G. Singh, “Performance analysis of
PC based SIMD parallel mechanism”. WSEAS
TRANSACTIONS on COMPUTERS, Issue 2,
Volume 2, April 2003, pp. 295 – 298. ISSN 1109-
2750

[9] Audio Streaming Input/Output Software Developer
Kit 2.1. Steinberg Media Technologies GmbH.
2005.

[10] VST Plug-Ins Software Developer Kit 2.4.
Steinberg Media Technologies GmbH. 2006.

[11] Intel(R) Threading Building Blocks Reference
Manual. Document Number 315415-003US, 2009-
Jul-3

[12] Yu-Fai Fung, Wai-Leung Cheung, Gujit Singh,
Muhammet F. Ercan, “An Empirical Study of Bi-
level Parallel Computing on a PC”. In Proceedings
of the 2nd WSEAS Int. Conf. on ELECTRONICS,
CONTROL and SIGNAL PROCESSING (ICECS
'03), Singapore, December 7 – 9, 2003. ISBN 960-
8052-91-2

WSEAS TRANSACTIONS on COMPUTERS Jiri Schimmel

ISSN: 1109-2750 183 Issue 2, Volume 9, February 2010

