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Abstract: Recent systems have been paved the way for being high-performance due to the super-pipelining, 

dynamic scheduling and superscalar processor technologies. The performance of the system is greatly affected 

by the accuracy of the branch prediction because the overhead of each misprediction has grown due to greater 

number of instructions per cycle and the deepened pipeline. Hybrid branch prediction is usually used to 

increase the prediction accuracy on such high-performance systems. Normally hybrid branch prediction uses 

several branch predictors. A meta-predictor selects which branch predictor should be used corresponding to the 

program context of the branch instruction instance for the branch prediction. In this paper, we discuss about the 

saturating counter within meta predictor. The design of the saturating counter which selects a predictor that has 

high-prediction ratio has brought out the high accuracy of the prediction for the branch predictor. 
 

 

Key-Words: Branch Prediction, Saturating Counter, Prediction Accuracy, Hybrid Branch Predictor, Meta 

Predictor. 
 

1 Introduction*
1
 

There have been many recent studies and increasing 

efforts to improve the performance of computer 

system. Exploiting Instruction Level Parallelism 

(ILP) has been a major means of achieving high-

performance computer systems [1, 17, 18]. Deep 

pipelines, various superscalar methods and many 

dynamic scheduling algorithms have been utilized 

for exploiting ILP. In such high performance 

systems, branch prediction to predict the outcome of 

a conditional branch has become an increasingly 

important component in determining overall 

performance [19, 20]. Without the branch prediction, 

processor would have to wait until a branch is 

resolved before the next instruction can enter the 

fetch stage in the pipeline. The branch predictor 

attempts to avoid this delay by trying to guess 

whether the conditional jump is most likely to be 

“taken” (true branch) or “not-taken” (false branch). 

The branch that is guessed to be more likely is then 
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fetched and speculatively executed. If it is later 

detected that the prediction was wrong, then the 

speculatively executed or partially executed 

instructions are discarded: Processor starts over with 

the correct program control flow. Dynamic branch 

prediction records the history of branch instructions, 

which means the directions taken by the past 

instances of a branch instruction, and predicts the 

direction of a branch instance based on the history. 

Dynamic branch prediction schemes generally fall 

into two types. One is self-history-based branch 

prediction, and the other is correlation-based branch 

prediction. The self-history-based branch prediction 

predicts the direction of the current branch 

instruction with only using the history of past 

instances of the instruction, i.e. self-history. This 

scheme may achieve a high prediction accuracy 

when it’s using for the program with lots of loops. 

The correlation-based branch prediction predicts the 

direction of a branch using the history of branch 

instructions in addition to its own history. This can 

provide better accuracy when a branch direction 

depends on control flow paths reaching to a 

particular branch instance. 

To take advantage of the both types of branch 

predictors, one may selects one of the predictors by 

employing two predictors, one with self-history 

based prediction and the other with correlation 
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based prediction.  Such a hybrid prediction has 

been a choice for high performance computer 

systems. 

A hybrid branch predictor needs a “choice” 

predictor, also known as a meta predictor to choose 

one of the branch predictors employed to reflect the 

current program context of a branch better. The 

meta predictor predicts which one of the branch 

predictors employed by utilizing a saturating 

counter as in a self-history based branch prediction. 

A saturating counter that is used in a branch 

predictor for predicting a branch direction decides 

the direction of branch. While the saturating counter 

used in the meta predictor decides a branch 

predictor which is more suitable for predicting the 

current branch instruction instance per the program 

context.  

A specific saturating counter design adopted for 

the meta predictor obviously affects branch 

prediction accuracy, though there have been little 

research on the design of saturating counter for the 

meta predictor in a hybrid branch prediction. This 

paper considers saturating counter design 

specifically for the meta predictor used for a hybrid 

branch predictor. Different state transitions from a 

usual saturating counter may choose a particular 

branch predictor better and result a higher branch 

prediction accuracy. The saturating counter design 

may take a different form per the purpose of its use. 

This paper is organized as follows: related works 

are presented in section 2; we introduce a typical 

branch prediction technique that could be used 

mainly by existing systems. In section 3, we 

introduce the saturating counter of meta predictor of 

the combining predictor for improving branch 

prediction accuracy and we analyze our experiment. 

Finally, we discuss the results of this study and our 

future work. 
 

 

2 Related works 
A Branch Instruction is predicted by a computer 

system and has basic a Bimodal and a Correlate 

feature [21]. For this reason, the Branch Prediction 

method is mainly used to classify the Bimodal 

Method, the Two-Level Adaptive Branch Prediction 

and these modification methods [22]. The definition 

of the Bimodal of branch prediction determines 

whether a branch direction is taken or untaken. So, 

it is easy to predict a pattern of a branch instruction 

by the previously executed result of the branch 

instruction. After the main loop statement of high 

language is compiled, it has a Bimodal tendency. 

This means that a branch instruction that correlates 

the branch direction is changed by the mutual 

relation between the previous branch instructions 

and the directions, not a pattern. Basically, when a 

conditional statement of high language is compiled, 

it has the Correlate tendency. 

The Bimodal method of basic branch prediction 

uses extra Branch History Table for branch 

prediction. The factors of Branch History Table 

have n-bit saturating counter of branch instructions 

after addressing the branch instruction and 

accessing the Branch History Table that performs 

branch prediction according to the Saturation 

Counter of the branch instruction. The Two-Level 

Adaptive Branch Prediction stores the history of the 

previous n(counter) branch instruction at a Branch 

History Register and accesses the Pattern History 

Table by the value of the Branch History Register at 

every branch prediction of a branch instruction, so it 

predicts the branch direction by the value of the 

Saturating Counter, which stores the Pattern History 

Table. The Two-Level Adaptive Branch Prediction 

shows excellent performance of correlate branch 

instruction. The modification of Two-Level 

Adaptive Branch Prediction is the Gshare, which 

solves some Aliasing problems of the branch 

predictor [22]. The Gshare branch predictor solves 

some aliasing problems by accessing the Pattern 

History Table for branch prediction, working an 

exclusive-or operation with the address of the 

branch instruction and the value of the Branch 

History Register. It is a Neural Branch Prediction 

method for increasing branch accuracy by variable 

weight according to every branch instruction [23]. 

Also, it is a hybrid branch predictor that chooses a 

better appropriate branch predictor between a 

Bimodal branch predictor and a Correlate branch 

predictor. 

Alpha EV6 and alpha EV8 are microprocessors 

designed for achieving high-performance. Both two 

microprocessors use hybrid branch predictor for 

improving branch accuracy. The following explains 

alpha EV6 and alpha EV8. 

The alpha EV6 implements a sophisticated 

tournament branch prediction scheme that 

dynamically chooses between local and global 

history to predict the direction of a given branch [2]. 

Attribute of local history is that pattern behavior 

sometimes correlates with the execution of a single 

branch at a unique program counter location. And 

Attribute of global history is that pattern behavior 

sometimes correlates with the execution of all 

previous branches. When branch result is an 

alternating taken/not-taken sequence, the local 

prediction is very useful. As the branch executes 

multiple times, it will saturate the prediction 

counters corresponding to these local history value 
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and make the prediction correct. When the result of 

a branch can be inferred from the direction of 

precious branches, the global prediction is very 

useful. The global history predictor can learn this 

pattern with repeated invocations of the two 

branches.  

When a branch instruction retires, the alpha EV6 

updates the chooser. The chooser consists of 2-bits 

saturating counters. If the results of the local and 

global predictor differ, the alpha EV6 updates the 

selected meta prediction entry to support the correct 

predictor. 

Branch predictor of 21464 Microprocessor 

Architecture Global branch history branch predictor 

tables lead to a phenomenon known as aliasing or 

interference, in which multiple branch information 

vectors share the same entry in the predictor table, 

causing the predictions for two or more branch 

substreams to intermingle[3, 4, 5]. "De-aliased" 

global history branch predictors have been recently 

introduced: the enhanced skewed branch predictor 

e-gskew, the agree predictor, the bimode predictor 

and the YAGS predictor [6, 7, 8, 9]. These 

predictors have been shown to achieve higher 

prediction accuracy at equivalent hardware 

complexity than larger "aliased" global history 

branch predictors such as gshare or GAs [2, 10]. 

However, hybrid predictors combining a global 

history predictor and a typical bimodal predictor 

only indexed with the program counter may deliver 

higher prediction accuracy than a conventional 

single branch predictor [11, 2]. Therefore, "de-

aliased" branch predictors should be included in 

hybrid predictors to build efficient branch 

predictors. 

 

 

 
Fig.1 The alpha EV6 

 

 

Fig.1 is a block diagram of the Branch predictor of 

21464 Microprocessor Architecture. The local 

history branch predictor is on left. The global 

history branch predictor are meta predictor are on 

the right. 

The EV8 branch predictor is derived from the 

hybrid skewed branch predictor 2Bc-gskew 

presented in [12]. 2Bc-gskew combines e-gskew 

and a bimodal branch predictor [6]. It consists in 

four identical predictor-table banks, i.e., the three 

banks from the e-gskew -including a bimodal bank-

plus a meta predictor. 2Bc-gskew-pskew combines 

a bimodal component, a global history register 

component and a per-address history component 

[12]. 

 

 

 
Fig.2 The alpha EV8 

 

 

Predictor cbp1.5 is a particular instance of a 

family of predictors which called GPPM, for 

global-history PPM-like predictors [24]. GPPM 

predictors feature two tables, a bimodal table and a 

global table. The bimodal table is indexed with the 

program counter, and each bimodal entry contains a 

prediction associated with the branch. The global 

table consists of several banks. Each bank is 

indexed with a different global-history length. Each 

global entry contains a tag for identifying the 

global-history value owning the entry, and a 

prediction associated with this global history value. 

The prediction is given by the longest matching 

global-history value, or by the bimodal table if there 

is a tag miss in all the global banks. Predictor 

cbp1.5 can be viewed as a degraded version of an 

ideal GPPM predictor which called GPPM-ideal. 

One can go from GPPM-ideal to cbp1.5 by 

introducing successive “degradations” 

corresponding to real-life constraints. They call 

degradation a modification that increases the 

number of mispredictions. By quantifying each 

degradation, one can get insight on the behavior of 

the application and on potential ways to improve 
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the predictor. 

The TAGE conditional branch predictor stands 

for Tagged Geometric history length as the O-

GEHL predictor [25, 26]. TAGE is derived from 

Michaud’s tagged PPM-like predictor [26]. It relies 

on a default tagless predictor backed with a 

plurality of (partially) tagged predictor components 

indexed using different history lengths for index 

computation. These history lengths form a 

geometric series. The prediction is provided either 

by a tag match on a tagged predictor component or 

by the default predictor 

This allows to efficiently capture correlation on 

recent branch outcomes as well as on very old 

branches. The L-TAGE Predictor consisting of a 

13-component TAGE predictor combined with a 

256-entry loop predictor [27]. 

Nair has been researching much about the 

saturating counter for predicting a branch direction 

decides the direction of branch [13]. This paper 

proposes one of various 2-bits saturating counter of 

meta predictor, which provide better prediction 

accuracy. This saturating counter is used in many 

branch predictors, but there is no research about the 

saturating counter that is used in the meta predictor. 

This saturating counter influenced in the 

performance of the hybrid branch predictor. 

Therefore, this paper treats the saturating counter 

that is used for the meta predictor to choose one of 

the branch predictors having the highest branch 

prediction accuracy. 
 

 

3 Saturating Counter 
 

 

3.1 Saturating Counter for Predicting 
The purpose of a branch predictor is to fetch branch 

instruction without any delay of the instruction 

fetch, when it encounters a branch instruction. In 

order to do this, it predicts the behavior of the 

branch instruction’s next move looking up the past 

behaviors whether it was taken or not. A common 

way to design of such predictor employs a 

saturating counter. The size of the saturating 

counter is normally 2-bits or 3-bits, even though 

there is no general size. When the counter is 2-bits, 

prediction changes the direction if the prediction 

fails twice. The saturating counter is stored in a 

table called Pattern History Table and is index by 

using a part of the branch instruction program 

counter. The direction of the branch instruction is 

determined from the value of the saturating counter 

indexed within the table. Many researches are being 

done on saturating counters which are used for 

predicting branch direction. Assume that a 

saturating counter uses N-bits to represent a state. 

The branch direction of branch instruction is 

represented as ‘taken’ or ‘not-taken.’ If the size of 

the saturating counter is N-bits, there can be 0 to 

2
N
-1 states. If the state is 0 to 2

N-1
-1, branch 

predictor estimates the direction as ‘not-taken.’ The 

branch predictor will predict the branch direction as 

‘taken’ if the state of saturating counter is 2
N-1

 to 

2
N
-1. The actual branch direction of a branch 

instruction can be checked after the instruction 

executed at the function unit of the microprocessor. 

The state of saturating counter is transited by the 

result of the branch instruction. The state of Fig.3 is 

the history of the last two dynamic instances. If the 

direction of branch instruction is ‘taken’, then the 

state transition is as following. The saturating 

counter stays at 2
N
-1 if its state is 2

N
-1. In other 

words, the saturating counter isn’t transited. If the 

state of Fig.3 is 0, the Fig.3 transit to 2
N-1

. If the 

state of Fig.3 is not 0, it would be just increased. 

When the branch direction of the branch instruction 

is ‘not-taken’, the transition is following. If the state 

of the saturating counter is 0, the counter stays 0. It 

means saturating counter is not transited. If the state 

of Fig.3 is 2
N
-1, the Fig.3 transit to 2

N-1
-1. The state 

of Fig.3 will be decreased if it is not 0. Fig.3 shows 

that the relation of transition when the saturating 

counter is 2-bits. 

 

 

 
Fig.3 The saturating counter to predict – type 1 

 

 

When the branch direction of the branch instruction 

is ‘taken’, the transition of Fig.4 is following. The 

state of Fig.4 will be increased if it is not 2
N
-1. If 
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the direction of branch instruction is ‘taken’, the 

state of Fig.4 will be decreased if it is not 0. Fig.4 

shows that the relation of transition when the 

saturating counter is 2-bits. 

 
 

 
Fig.4 The saturating counter to predict – type 2 

 

 

 
Fig.5 The saturating counter to predict – type 3 

 

 

When the direction of branch instruction is ‘taken’, 

the state transition is of Fig.5 as following. If the 

state of Fig.5 is 2
N-1

-1, the Fig.5 transit to 2
N
-1. If 

the state of Fig.5 is neither of 2
N-1

-1 nor 2
N
-1, it 

would be just increased. When the branch direction 

of the branch instruction is ‘not-taken’, the 

transition of Fig.5 is following. If the state of Fig.5 

is 2
N-1

, the Fig.5 is transited 0. The state of Fig.5 

will be decreased if it is not either 0 or 2
N-1

. Fig.5 

shows that the relation of transition when the 

saturating counter is 2-bits. 

When a branch instruction’s direction is 

determined, there is a high probability that the 

branching direction of the instruction will be same. 

Nair proposed a saturating counter based on this 

idea [13]. To determine the branch direction, 

therefore, Fig.5 is better than Fig.3 and Fig.4. 
 

 

3.2 Saturating Counter used in Meta 

Predictor 
Predictors are categorized into four classes 

depending on the branch prediction scheme. These 

predictors have been affected the branch prediction 

accuracy from the characteristics of program and 

input data. The predictor based on this is called the 

tournament branch predictor. A tournament branch 

predictor basically uses more than two predictors. 

Therefore, which predictor should be used must be 

determined for each prediction. In order to do this, 

another predictor exist which called a meta-

predictor. A meta-predictor selects the predictor 

which has the highest accuracy by a saturating 

counter. For example¸ assume there are two types of 

predictors, A and B and we are using a 2-bits 

saturating counter. Predictor A will be used as long 

as A predicts correctly for a branch instruction. If A 

fails twice, then the predictor is changed to B. By 

doing this, the more accurate predictor will be 

selected. In other words, which predictor that will 

be used is depending on the status of the saturating 

counter. 

This paper considers type and size of saturating 

counter used in the meta predictor. A meta predictor 

in a hybrid branch predictor should decides a 

branch predictor which is more suitable for 

predicting the current branch instruction instance 

per the program context. In other words, the 

accuracy of hybrid branch predictor increases only 

when the meta predictor chooses one of the branch 

predictors having the highest branch prediction 

accuracy. 

Next is a dynamic method for meta predictor to 

choose more accurate branch predictor. The two 

branch predictors for predicting the direction in the 

hybrid branch predictor will be named A and B. In 

both A, B, there is a memory to store the weight of 

each instruction. The weight is increased if the 

branch predictor for predicting the direction hits, 

and is decreased if the predictor mispredicts. The 

role of a meta predictor is to choose the highest 

weighting branch predictor. However, large amount 

of memory is needed to use this method. 
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This paper researches various types of saturating 

counter used in meta predictor as below. The 

saturating counter will transit only when the predict 

direction of A and B are different. If the predict 

direction of A and B are same, the meta predictor’s 

decision is not changed, so the saturating counter 

transit when the predict direction of A is different 

with the predict direction of B. If the direction of 

the branch predictor which is selected by meta 

predictor is correct then represent hit, if it’s not then 

represent mis. If a saturating counter’s size is N-bits, 

the counter takes value from 0 to 2
N
-1. Meta 

predictor chooses A when the state of saturating 

counter is from 0 to 2
N-1

-1, and chooses B when the 

state is from 2
N-1

 to 2
N
-1. After the branch predictor 

is executed in the function unit of a microprocessor, 

the direction predicted by A and B could be checked 

whether it is a hit or a mis.  
 

 

 
Fig.6 The saturating counter to choose – type 1 

 

 

If A is a hit, then the state transition of Fig.6 is as 

following. The saturating counter stays at 2
N
-1 if its 

state is 2
N
-1. In other words, the saturating counter 

isn’t transited. If the state of Fig.6 is 0, the Fig.6 

transit to 2
N-1

. If the state of Fig.6 is not 0, it would 

be just increased. When the branch direction of the 

branch instruction is mis, the transition is following. 

If the state of the saturating counter is 0, the counter 

stays 0. It means saturating counter is not transited. 

If the state of Fig.6 is 2
N
-1, the Fig.6 transit to 2

N-1
-

1. The state of Fig.6 will be decreased if it is not 0. 

Fig.6 shows that the relation of transition when the 

saturating counter is 2-bits. 

If A is a hit, the Fig.7’s state is increased, but if it 

is a mis, the state would be decreased. Fig.7 

illustrates the transition of a 2-bits saturating 

counter proposed. 
 

 

 
Fig.7 The saturating counter to choose – type 2 

 

 

When A is a hit, the state transition is of Fig.8 as 

following. If the state of Fig.8 is 2
N-1

-1, the Fig.8 

transit to 2
N
-1. If the state of Fig.8 is neither of 2

N-1
-

1 nor 2
N
-1, it would be just increased. When B is a 

mis, the transition of Fig.8 is following. If the state 

of Fig.8 is 2
N-1

, the Fig.8 is transited 0. The state of 

Fig.8 will be decreased if it is not either 0 or 2
N-1

. 

Fig.8 shows that the relation of transition when the 

saturating counter is 2-bits. 

 

 

 
Fig.8 The saturating counter to choose – type 3 
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The saturating counter showed above transit only 

when the predict direction of A and B is different. 

Because if A is hit, B is mispredict, and if A is 

mispredict, B is hit. Fig.8 shows a conversion of 

saturating counter to choose the branch predictor. 

For experiment, we used a hybrid branch predictor 

of Alpha ev6 processor [14]. The predictors used in 

this experiment consist of a local predictor, a global 

predictor and a meta predictor which selects the 

predictors to be used.  

The local history table holds 10 bits of branch 

history for up to 1024 branches, indexed by the 

instruction address. The 21264 uses the 10-bit local 

history to pick from one of 1024 prediction 

counters. The local prediction is the most-

significant bit of the prediction counter. After 

branches issue and retire the 21264 inserts the true 

branch direction in the local history table and 

updates the referenced counter (using saturating 

addition) to train the correct prediction. 

The global predictor is a 4096 entry table of two-

bit saturating counters that is indexed by the global, 

or path, history of the last twelve branches. The 

prediction is the most-significant bit of the indexed 

prediction counter. The 21264 maintains global 

history with a silo of thirteen branch predictions 

and the 4096 prediction counters. The silo is backed 

up and corrected on a mispredict. The 21264 

updates the referenced global prediction counter 

when the branch retires. 

The chooser array is 4096 two-bit saturating 

counters. If the predictions of the local and global 

predictor differ, the 21264 updates the selected 

choice prediction entry to support the correct 

predictor. 
 

 

 
Fig.9 The misprediction rate 

 

The benchmark program of SPEC CINT2000 was 

used for the experiment [15]. The simulation was 

performed with 10 billion instructions per reference 

input data in the SimpleScalar 3.0b [16]. 

The black bar of Fig.9 shows the misprediction 

rate when using a saturating counter illustrated in 

Fig.6 as the meta predictor. The white bar is the 

misprediction rate when using the proposed 

saturating counter. The graph shows suitability of 

the proposed saturating counter as the saturating 

counter of the meta predictor. 

 

 

 
Fig.10 The 3-bits saturating counter to choose 

 

 

Fig.10 illustrates the transition of a 3-bits saturating 

counter proposed. If A is a hit, the Fig.10’s state is 

increased, but if it is a mis, the state would be 
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decreased. 
 

 

 
Fig.11 The branch prediction accuracy 

 

 

This paper suggests size of saturating counter used 

in meta predictor as below. Fig.11 shows the 

experimental results of the Alpha EV6 predictor 

using saturating counters of 2-bits, 3-bits and 4-bits 

proposes saturating counters. When using a 3-bits 

saturating counter, the accuracy of branch 

prediction is 0.2% higher than that with using 2-bits 

saturating counter. Because it has increased that the 

state of the saturating counter that stored 

information of the branch predictor’s weight. 

Branch predictors can choose a more accurate 

branch predictor because as they can compare with 

the information about of the branch predictor’s 

weight. However, 3-bits and 4-bits saturating 

counters have shown similar branch prediction 

accuracy results, which means that in the 

benchmark program that was used in this 

experiment, the saturating counter doesn’t need to 

be bigger than 3-bits. 
 

 

4 Conclusion 
Once the processor fetches a branch instruction, 

then the branch predictor predicts the branch 

direction using the past history of the branch 

instruction. The processor fetches instruction 

according to program counter, every time. The 

branch predictor uses the program counter value to 

map with the entry of the Pattern History Table. 

There is predictor at the entry of the Pattern History 

Table. The status affected by past history of the 

branch instruction observed is in the predictor. 

According to this status, the branch direction is 

predicted. The predictor stored within Pattern 

History Table entry is represented as 2-bits 

saturating counter of which the status is increased 

or decreased depending on certain events. An event 

is the direction of a branch after a branch 

instruction is resolved. The direction of the branch 

instruction is determined by the value of the 

saturating counter indexed. A characteristic of a 

branch instruction is that it usually maintains the 

direction once the branch direction is determined. 

Therefore, it is preferred to change the direction 

whenever an N-bits saturating predictor fails n 

times. 

A hybrid branch predictor uses two different types 

of branch predictors to increase the branch 

predicting accuracy. The hybrid branch predictor 

consists of two different typed predictor, and meta 

predictor. A meta predictor is used to determine 

which direction to follow between the two predicted 

directions. The performance of the branch predictor 

can be different depending on the characteristic of 

program and input-data. Therefore it(?) uses various 

branch predictors as choice. The branch accuracy of 

the combining predictor depends on which 

predictor the meta predictor selects on each branch 

instance. The meta predictor should select the 

predictor that has the highest branch accuracy for 

each branch instance. The meta predictor selects a 

branch predictor depending on the saturating 

counter value. In other words, the selection of a 

branch predictor depends on the saturating counter 

value of the meta predictor. Saturating counter used 

for a meta predictor obviously affects branch 

prediction accuracy. We compare types and sizes of 

saturating counter used in meta predictor, and 

shows the which type and sized saturating counter 

has the best the accuracy by experimental results. 

Next is the transition relation of the saturating 

counter used for a meta predictor which had the 

highest branch prediction accuracy. The saturating 

counter should transit only when the directions 

predicted by the branch predictors are different. 

When the chosen branch predictor is a hit, the 

saturating counter will increase one state. And when 

the branch predictor which was chosen by the meta 

predictor is a mispredict, the saturating counter will 

decrease one state. We conclude this paper with 

suggesting that a saturating counter for meta 

predictor should be 3-bits, if there is no constraint 

on memory size. 
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