
A Novel Meta Predictor Design for Hybrid Branch Prediction

YOUNG JUNG AHN, DAE YON HWANG, YONG SUK LEE, JIN-YOUNG CHOI AND

GYUNGHO LEE

The Dept. of Computer Science & Engineering

Korea University

Anam-dong 5-ga-1, Sungbuk-gu, Seoul, 136-701

THE REPUBLIC OF KOREA
yjahn@formal.korea.ac.kr, dyhwang@formal.korea.ac.kr, duchi@korea.ac.kr,

choi@formal.korea.ac.kr, ghlee@korea.ac.kr

Abstract: Recent systems have been paved the way for being high-performance due to the super-pipelining,

dynamic scheduling and superscalar processor technologies. The performance of the system is greatly affected

by the accuracy of the branch prediction because the overhead of each misprediction has grown due to greater

number of instructions per cycle and the deepened pipeline. Hybrid branch prediction is usually used to

increase the prediction accuracy on such high-performance systems. Normally hybrid branch prediction uses

several branch predictors. A meta-predictor selects which branch predictor should be used corresponding to the

program context of the branch instruction instance for the branch prediction. In this paper, we discuss about the

saturating counter within meta predictor. The design of the saturating counter which selects a predictor that has

high-prediction ratio has brought out the high accuracy of the prediction for the branch predictor.

Key-Words: Branch Prediction, Saturating Counter, Prediction Accuracy, Hybrid Branch Predictor, Meta

Predictor.

1 Introduction*
1

There have been many recent studies and increasing

efforts to improve the performance of computer

system. Exploiting Instruction Level Parallelism

(ILP) has been a major means of achieving high-

performance computer systems [1, 17, 18]. Deep

pipelines, various superscalar methods and many

dynamic scheduling algorithms have been utilized

for exploiting ILP. In such high performance

systems, branch prediction to predict the outcome of

a conditional branch has become an increasingly

important component in determining overall

performance [19, 20]. Without the branch prediction,

processor would have to wait until a branch is

resolved before the next instruction can enter the

fetch stage in the pipeline. The branch predictor

attempts to avoid this delay by trying to guess

whether the conditional jump is most likely to be

“taken” (true branch) or “not-taken” (false branch).

The branch that is guessed to be more likely is then

This work was supported by the Korea Science and

Engineering Foundation (KOSEF) grant funded by

the Korea government (MEST) (No. R01-2007-

000-20750-0) and by the IT R&D program of

MKE/IITE [2009-KI002090].

This paper is an extended version of the paper [28]

presented at the WSEAS Int. Conf. on CSECS '09.

fetched and speculatively executed. If it is later

detected that the prediction was wrong, then the

speculatively executed or partially executed

instructions are discarded: Processor starts over with

the correct program control flow. Dynamic branch

prediction records the history of branch instructions,

which means the directions taken by the past

instances of a branch instruction, and predicts the

direction of a branch instance based on the history.

Dynamic branch prediction schemes generally fall

into two types. One is self-history-based branch

prediction, and the other is correlation-based branch

prediction. The self-history-based branch prediction

predicts the direction of the current branch

instruction with only using the history of past

instances of the instruction, i.e. self-history. This

scheme may achieve a high prediction accuracy

when it’s using for the program with lots of loops.

The correlation-based branch prediction predicts the

direction of a branch using the history of branch

instructions in addition to its own history. This can

provide better accuracy when a branch direction

depends on control flow paths reaching to a

particular branch instance.

To take advantage of the both types of branch

predictors, one may selects one of the predictors by

employing two predictors, one with self-history

based prediction and the other with correlation

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 144 Issue 2, Volume 9, February 2010

based prediction. Such a hybrid prediction has

been a choice for high performance computer

systems.

A hybrid branch predictor needs a “choice”

predictor, also known as a meta predictor to choose

one of the branch predictors employed to reflect the

current program context of a branch better. The

meta predictor predicts which one of the branch

predictors employed by utilizing a saturating

counter as in a self-history based branch prediction.

A saturating counter that is used in a branch

predictor for predicting a branch direction decides

the direction of branch. While the saturating counter

used in the meta predictor decides a branch

predictor which is more suitable for predicting the

current branch instruction instance per the program

context.

A specific saturating counter design adopted for

the meta predictor obviously affects branch

prediction accuracy, though there have been little

research on the design of saturating counter for the

meta predictor in a hybrid branch prediction. This

paper considers saturating counter design

specifically for the meta predictor used for a hybrid

branch predictor. Different state transitions from a

usual saturating counter may choose a particular

branch predictor better and result a higher branch

prediction accuracy. The saturating counter design

may take a different form per the purpose of its use.

This paper is organized as follows: related works

are presented in section 2; we introduce a typical

branch prediction technique that could be used

mainly by existing systems. In section 3, we

introduce the saturating counter of meta predictor of

the combining predictor for improving branch

prediction accuracy and we analyze our experiment.

Finally, we discuss the results of this study and our

future work.

2 Related works
A Branch Instruction is predicted by a computer

system and has basic a Bimodal and a Correlate

feature [21]. For this reason, the Branch Prediction

method is mainly used to classify the Bimodal

Method, the Two-Level Adaptive Branch Prediction

and these modification methods [22]. The definition

of the Bimodal of branch prediction determines

whether a branch direction is taken or untaken. So,

it is easy to predict a pattern of a branch instruction

by the previously executed result of the branch

instruction. After the main loop statement of high

language is compiled, it has a Bimodal tendency.

This means that a branch instruction that correlates

the branch direction is changed by the mutual

relation between the previous branch instructions

and the directions, not a pattern. Basically, when a

conditional statement of high language is compiled,

it has the Correlate tendency.

The Bimodal method of basic branch prediction

uses extra Branch History Table for branch

prediction. The factors of Branch History Table

have n-bit saturating counter of branch instructions

after addressing the branch instruction and

accessing the Branch History Table that performs

branch prediction according to the Saturation

Counter of the branch instruction. The Two-Level

Adaptive Branch Prediction stores the history of the

previous n(counter) branch instruction at a Branch

History Register and accesses the Pattern History

Table by the value of the Branch History Register at

every branch prediction of a branch instruction, so it

predicts the branch direction by the value of the

Saturating Counter, which stores the Pattern History

Table. The Two-Level Adaptive Branch Prediction

shows excellent performance of correlate branch

instruction. The modification of Two-Level

Adaptive Branch Prediction is the Gshare, which

solves some Aliasing problems of the branch

predictor [22]. The Gshare branch predictor solves

some aliasing problems by accessing the Pattern

History Table for branch prediction, working an

exclusive-or operation with the address of the

branch instruction and the value of the Branch

History Register. It is a Neural Branch Prediction

method for increasing branch accuracy by variable

weight according to every branch instruction [23].

Also, it is a hybrid branch predictor that chooses a

better appropriate branch predictor between a

Bimodal branch predictor and a Correlate branch

predictor.

Alpha EV6 and alpha EV8 are microprocessors

designed for achieving high-performance. Both two

microprocessors use hybrid branch predictor for

improving branch accuracy. The following explains

alpha EV6 and alpha EV8.

The alpha EV6 implements a sophisticated

tournament branch prediction scheme that

dynamically chooses between local and global

history to predict the direction of a given branch [2].

Attribute of local history is that pattern behavior

sometimes correlates with the execution of a single

branch at a unique program counter location. And

Attribute of global history is that pattern behavior

sometimes correlates with the execution of all

previous branches. When branch result is an

alternating taken/not-taken sequence, the local

prediction is very useful. As the branch executes

multiple times, it will saturate the prediction

counters corresponding to these local history value

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 145 Issue 2, Volume 9, February 2010

and make the prediction correct. When the result of

a branch can be inferred from the direction of

precious branches, the global prediction is very

useful. The global history predictor can learn this

pattern with repeated invocations of the two

branches.

When a branch instruction retires, the alpha EV6

updates the chooser. The chooser consists of 2-bits

saturating counters. If the results of the local and

global predictor differ, the alpha EV6 updates the

selected meta prediction entry to support the correct

predictor.

Branch predictor of 21464 Microprocessor

Architecture Global branch history branch predictor

tables lead to a phenomenon known as aliasing or

interference, in which multiple branch information

vectors share the same entry in the predictor table,

causing the predictions for two or more branch

substreams to intermingle[3, 4, 5]. "De-aliased"

global history branch predictors have been recently

introduced: the enhanced skewed branch predictor

e-gskew, the agree predictor, the bimode predictor

and the YAGS predictor [6, 7, 8, 9]. These

predictors have been shown to achieve higher

prediction accuracy at equivalent hardware

complexity than larger "aliased" global history

branch predictors such as gshare or GAs [2, 10].

However, hybrid predictors combining a global

history predictor and a typical bimodal predictor

only indexed with the program counter may deliver

higher prediction accuracy than a conventional

single branch predictor [11, 2]. Therefore, "de-

aliased" branch predictors should be included in

hybrid predictors to build efficient branch

predictors.

Fig.1 The alpha EV6

Fig.1 is a block diagram of the Branch predictor of

21464 Microprocessor Architecture. The local

history branch predictor is on left. The global

history branch predictor are meta predictor are on

the right.

The EV8 branch predictor is derived from the

hybrid skewed branch predictor 2Bc-gskew

presented in [12]. 2Bc-gskew combines e-gskew

and a bimodal branch predictor [6]. It consists in

four identical predictor-table banks, i.e., the three

banks from the e-gskew -including a bimodal bank-

plus a meta predictor. 2Bc-gskew-pskew combines

a bimodal component, a global history register

component and a per-address history component

[12].

Fig.2 The alpha EV8

Predictor cbp1.5 is a particular instance of a

family of predictors which called GPPM, for

global-history PPM-like predictors [24]. GPPM

predictors feature two tables, a bimodal table and a

global table. The bimodal table is indexed with the

program counter, and each bimodal entry contains a

prediction associated with the branch. The global

table consists of several banks. Each bank is

indexed with a different global-history length. Each

global entry contains a tag for identifying the

global-history value owning the entry, and a

prediction associated with this global history value.

The prediction is given by the longest matching

global-history value, or by the bimodal table if there

is a tag miss in all the global banks. Predictor

cbp1.5 can be viewed as a degraded version of an

ideal GPPM predictor which called GPPM-ideal.

One can go from GPPM-ideal to cbp1.5 by

introducing successive “degradations”

corresponding to real-life constraints. They call

degradation a modification that increases the

number of mispredictions. By quantifying each

degradation, one can get insight on the behavior of

the application and on potential ways to improve

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 146 Issue 2, Volume 9, February 2010

the predictor.

The TAGE conditional branch predictor stands

for Tagged Geometric history length as the O-

GEHL predictor [25, 26]. TAGE is derived from

Michaud’s tagged PPM-like predictor [26]. It relies

on a default tagless predictor backed with a

plurality of (partially) tagged predictor components

indexed using different history lengths for index

computation. These history lengths form a

geometric series. The prediction is provided either

by a tag match on a tagged predictor component or

by the default predictor

This allows to efficiently capture correlation on

recent branch outcomes as well as on very old

branches. The L-TAGE Predictor consisting of a

13-component TAGE predictor combined with a

256-entry loop predictor [27].

Nair has been researching much about the

saturating counter for predicting a branch direction

decides the direction of branch [13]. This paper

proposes one of various 2-bits saturating counter of

meta predictor, which provide better prediction

accuracy. This saturating counter is used in many

branch predictors, but there is no research about the

saturating counter that is used in the meta predictor.

This saturating counter influenced in the

performance of the hybrid branch predictor.

Therefore, this paper treats the saturating counter

that is used for the meta predictor to choose one of

the branch predictors having the highest branch

prediction accuracy.

3 Saturating Counter

3.1 Saturating Counter for Predicting
The purpose of a branch predictor is to fetch branch

instruction without any delay of the instruction

fetch, when it encounters a branch instruction. In

order to do this, it predicts the behavior of the

branch instruction’s next move looking up the past

behaviors whether it was taken or not. A common

way to design of such predictor employs a

saturating counter. The size of the saturating

counter is normally 2-bits or 3-bits, even though

there is no general size. When the counter is 2-bits,

prediction changes the direction if the prediction

fails twice. The saturating counter is stored in a

table called Pattern History Table and is index by

using a part of the branch instruction program

counter. The direction of the branch instruction is

determined from the value of the saturating counter

indexed within the table. Many researches are being

done on saturating counters which are used for

predicting branch direction. Assume that a

saturating counter uses N-bits to represent a state.

The branch direction of branch instruction is

represented as ‘taken’ or ‘not-taken.’ If the size of

the saturating counter is N-bits, there can be 0 to

2
N
-1 states. If the state is 0 to 2

N-1
-1, branch

predictor estimates the direction as ‘not-taken.’ The

branch predictor will predict the branch direction as

‘taken’ if the state of saturating counter is 2
N-1

 to

2
N
-1. The actual branch direction of a branch

instruction can be checked after the instruction

executed at the function unit of the microprocessor.

The state of saturating counter is transited by the

result of the branch instruction. The state of Fig.3 is

the history of the last two dynamic instances. If the

direction of branch instruction is ‘taken’, then the

state transition is as following. The saturating

counter stays at 2
N
-1 if its state is 2

N
-1. In other

words, the saturating counter isn’t transited. If the

state of Fig.3 is 0, the Fig.3 transit to 2
N-1

. If the

state of Fig.3 is not 0, it would be just increased.

When the branch direction of the branch instruction

is ‘not-taken’, the transition is following. If the state

of the saturating counter is 0, the counter stays 0. It

means saturating counter is not transited. If the state

of Fig.3 is 2
N
-1, the Fig.3 transit to 2

N-1
-1. The state

of Fig.3 will be decreased if it is not 0. Fig.3 shows

that the relation of transition when the saturating

counter is 2-bits.

Fig.3 The saturating counter to predict – type 1

When the branch direction of the branch instruction

is ‘taken’, the transition of Fig.4 is following. The

state of Fig.4 will be increased if it is not 2
N
-1. If

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 147 Issue 2, Volume 9, February 2010

the direction of branch instruction is ‘taken’, the

state of Fig.4 will be decreased if it is not 0. Fig.4

shows that the relation of transition when the

saturating counter is 2-bits.

Fig.4 The saturating counter to predict – type 2

Fig.5 The saturating counter to predict – type 3

When the direction of branch instruction is ‘taken’,

the state transition is of Fig.5 as following. If the

state of Fig.5 is 2
N-1

-1, the Fig.5 transit to 2
N
-1. If

the state of Fig.5 is neither of 2
N-1

-1 nor 2
N
-1, it

would be just increased. When the branch direction

of the branch instruction is ‘not-taken’, the

transition of Fig.5 is following. If the state of Fig.5

is 2
N-1

, the Fig.5 is transited 0. The state of Fig.5

will be decreased if it is not either 0 or 2
N-1

. Fig.5

shows that the relation of transition when the

saturating counter is 2-bits.

When a branch instruction’s direction is

determined, there is a high probability that the

branching direction of the instruction will be same.

Nair proposed a saturating counter based on this

idea [13]. To determine the branch direction,

therefore, Fig.5 is better than Fig.3 and Fig.4.

3.2 Saturating Counter used in Meta

Predictor
Predictors are categorized into four classes

depending on the branch prediction scheme. These

predictors have been affected the branch prediction

accuracy from the characteristics of program and

input data. The predictor based on this is called the

tournament branch predictor. A tournament branch

predictor basically uses more than two predictors.

Therefore, which predictor should be used must be

determined for each prediction. In order to do this,

another predictor exist which called a meta-

predictor. A meta-predictor selects the predictor

which has the highest accuracy by a saturating

counter. For example¸ assume there are two types of

predictors, A and B and we are using a 2-bits

saturating counter. Predictor A will be used as long

as A predicts correctly for a branch instruction. If A

fails twice, then the predictor is changed to B. By

doing this, the more accurate predictor will be

selected. In other words, which predictor that will

be used is depending on the status of the saturating

counter.

This paper considers type and size of saturating

counter used in the meta predictor. A meta predictor

in a hybrid branch predictor should decides a

branch predictor which is more suitable for

predicting the current branch instruction instance

per the program context. In other words, the

accuracy of hybrid branch predictor increases only

when the meta predictor chooses one of the branch

predictors having the highest branch prediction

accuracy.

Next is a dynamic method for meta predictor to

choose more accurate branch predictor. The two

branch predictors for predicting the direction in the

hybrid branch predictor will be named A and B. In

both A, B, there is a memory to store the weight of

each instruction. The weight is increased if the

branch predictor for predicting the direction hits,

and is decreased if the predictor mispredicts. The

role of a meta predictor is to choose the highest

weighting branch predictor. However, large amount

of memory is needed to use this method.

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 148 Issue 2, Volume 9, February 2010

This paper researches various types of saturating

counter used in meta predictor as below. The

saturating counter will transit only when the predict

direction of A and B are different. If the predict

direction of A and B are same, the meta predictor’s

decision is not changed, so the saturating counter

transit when the predict direction of A is different

with the predict direction of B. If the direction of

the branch predictor which is selected by meta

predictor is correct then represent hit, if it’s not then

represent mis. If a saturating counter’s size is N-bits,

the counter takes value from 0 to 2
N
-1. Meta

predictor chooses A when the state of saturating

counter is from 0 to 2
N-1

-1, and chooses B when the

state is from 2
N-1

 to 2
N
-1. After the branch predictor

is executed in the function unit of a microprocessor,

the direction predicted by A and B could be checked

whether it is a hit or a mis.

Fig.6 The saturating counter to choose – type 1

If A is a hit, then the state transition of Fig.6 is as

following. The saturating counter stays at 2
N
-1 if its

state is 2
N
-1. In other words, the saturating counter

isn’t transited. If the state of Fig.6 is 0, the Fig.6

transit to 2
N-1

. If the state of Fig.6 is not 0, it would

be just increased. When the branch direction of the

branch instruction is mis, the transition is following.

If the state of the saturating counter is 0, the counter

stays 0. It means saturating counter is not transited.

If the state of Fig.6 is 2
N
-1, the Fig.6 transit to 2

N-1
-

1. The state of Fig.6 will be decreased if it is not 0.

Fig.6 shows that the relation of transition when the

saturating counter is 2-bits.

If A is a hit, the Fig.7’s state is increased, but if it

is a mis, the state would be decreased. Fig.7

illustrates the transition of a 2-bits saturating

counter proposed.

Fig.7 The saturating counter to choose – type 2

When A is a hit, the state transition is of Fig.8 as

following. If the state of Fig.8 is 2
N-1

-1, the Fig.8

transit to 2
N
-1. If the state of Fig.8 is neither of 2

N-1
-

1 nor 2
N
-1, it would be just increased. When B is a

mis, the transition of Fig.8 is following. If the state

of Fig.8 is 2
N-1

, the Fig.8 is transited 0. The state of

Fig.8 will be decreased if it is not either 0 or 2
N-1

.

Fig.8 shows that the relation of transition when the

saturating counter is 2-bits.

Fig.8 The saturating counter to choose – type 3

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 149 Issue 2, Volume 9, February 2010

The saturating counter showed above transit only

when the predict direction of A and B is different.

Because if A is hit, B is mispredict, and if A is

mispredict, B is hit. Fig.8 shows a conversion of

saturating counter to choose the branch predictor.

For experiment, we used a hybrid branch predictor

of Alpha ev6 processor [14]. The predictors used in

this experiment consist of a local predictor, a global

predictor and a meta predictor which selects the

predictors to be used.

The local history table holds 10 bits of branch

history for up to 1024 branches, indexed by the

instruction address. The 21264 uses the 10-bit local

history to pick from one of 1024 prediction

counters. The local prediction is the most-

significant bit of the prediction counter. After

branches issue and retire the 21264 inserts the true

branch direction in the local history table and

updates the referenced counter (using saturating

addition) to train the correct prediction.

The global predictor is a 4096 entry table of two-

bit saturating counters that is indexed by the global,

or path, history of the last twelve branches. The

prediction is the most-significant bit of the indexed

prediction counter. The 21264 maintains global

history with a silo of thirteen branch predictions

and the 4096 prediction counters. The silo is backed

up and corrected on a mispredict. The 21264

updates the referenced global prediction counter

when the branch retires.

The chooser array is 4096 two-bit saturating

counters. If the predictions of the local and global

predictor differ, the 21264 updates the selected

choice prediction entry to support the correct

predictor.

Fig.9 The misprediction rate

The benchmark program of SPEC CINT2000 was

used for the experiment [15]. The simulation was

performed with 10 billion instructions per reference

input data in the SimpleScalar 3.0b [16].

The black bar of Fig.9 shows the misprediction

rate when using a saturating counter illustrated in

Fig.6 as the meta predictor. The white bar is the

misprediction rate when using the proposed

saturating counter. The graph shows suitability of

the proposed saturating counter as the saturating

counter of the meta predictor.

Fig.10 The 3-bits saturating counter to choose

Fig.10 illustrates the transition of a 3-bits saturating

counter proposed. If A is a hit, the Fig.10’s state is

increased, but if it is a mis, the state would be

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 150 Issue 2, Volume 9, February 2010

decreased.

Fig.11 The branch prediction accuracy

This paper suggests size of saturating counter used

in meta predictor as below. Fig.11 shows the

experimental results of the Alpha EV6 predictor

using saturating counters of 2-bits, 3-bits and 4-bits

proposes saturating counters. When using a 3-bits

saturating counter, the accuracy of branch

prediction is 0.2% higher than that with using 2-bits

saturating counter. Because it has increased that the

state of the saturating counter that stored

information of the branch predictor’s weight.

Branch predictors can choose a more accurate

branch predictor because as they can compare with

the information about of the branch predictor’s

weight. However, 3-bits and 4-bits saturating

counters have shown similar branch prediction

accuracy results, which means that in the

benchmark program that was used in this

experiment, the saturating counter doesn’t need to

be bigger than 3-bits.

4 Conclusion
Once the processor fetches a branch instruction,

then the branch predictor predicts the branch

direction using the past history of the branch

instruction. The processor fetches instruction

according to program counter, every time. The

branch predictor uses the program counter value to

map with the entry of the Pattern History Table.

There is predictor at the entry of the Pattern History

Table. The status affected by past history of the

branch instruction observed is in the predictor.

According to this status, the branch direction is

predicted. The predictor stored within Pattern

History Table entry is represented as 2-bits

saturating counter of which the status is increased

or decreased depending on certain events. An event

is the direction of a branch after a branch

instruction is resolved. The direction of the branch

instruction is determined by the value of the

saturating counter indexed. A characteristic of a

branch instruction is that it usually maintains the

direction once the branch direction is determined.

Therefore, it is preferred to change the direction

whenever an N-bits saturating predictor fails n

times.

A hybrid branch predictor uses two different types

of branch predictors to increase the branch

predicting accuracy. The hybrid branch predictor

consists of two different typed predictor, and meta

predictor. A meta predictor is used to determine

which direction to follow between the two predicted

directions. The performance of the branch predictor

can be different depending on the characteristic of

program and input-data. Therefore it(?) uses various

branch predictors as choice. The branch accuracy of

the combining predictor depends on which

predictor the meta predictor selects on each branch

instance. The meta predictor should select the

predictor that has the highest branch accuracy for

each branch instance. The meta predictor selects a

branch predictor depending on the saturating

counter value. In other words, the selection of a

branch predictor depends on the saturating counter

value of the meta predictor. Saturating counter used

for a meta predictor obviously affects branch

prediction accuracy. We compare types and sizes of

saturating counter used in meta predictor, and

shows the which type and sized saturating counter

has the best the accuracy by experimental results.

Next is the transition relation of the saturating

counter used for a meta predictor which had the

highest branch prediction accuracy. The saturating

counter should transit only when the directions

predicted by the branch predictors are different.

When the chosen branch predictor is a hit, the

saturating counter will increase one state. And when

the branch predictor which was chosen by the meta

predictor is a mispredict, the saturating counter will

decrease one state. We conclude this paper with

suggesting that a saturating counter for meta

predictor should be 3-bits, if there is no constraint

on memory size.

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 151 Issue 2, Volume 9, February 2010

References

[1] John L. Hennessy and David A. Patterson,

Computer Architecture: A Quantitative

Approach, Fourth Edition, Morgan Kaufmann

Publishers, 2007.

[2] S. McFarling, Combining Branch Predictors,

Technical Note TN-36, Digital Western

Research Laboratory, June 1993.

[3] Andre Seznec, Stephen Felix, Venkata Krishnan

and Yiannakis Sazeides, Design tradeoffs for the

Alpha EV8 conditional branch predictor,

Proceedings of the 29th annual international

symposium on Computer architecture (ISCA

'02), Vol.30, Issue.2, May 2002, pp. 295 – 306.

[4] C. Young, N. Gloy, and M. Smith, A

comparative analysis of schemes for correlated

branch prediction, In Proceedings of the 22nd

Annual International Symposium on Computer

Architecture, June 1995, pp.276-286.

[5] A. Talcott, M. Nemirovsky, and R. Wood, The

influence of branch prediction table interference

on branch prediction scheme performance, In

Proceedings of the 3rd Annual International

Conference on Parallel Architectures and

Compilation Techniques, 1995, pp.89 – 98.

[6] P. Michaud, A. Seznec, and R. Uhlig, Trading

conflict and capacity aliasing in conditional

branch predictors, In Proceedings of the 24th

Annual International Symposium on Computer

Architecture (ISCA-97), June 1997, pp. 292 –

303.

[7] E. Sprangle, R. S. Chappell, M. Alsup, and Y.

Patt, The agree predictor: A mechanism for

reducing negative branch history interference,

In Proceedings of the 24th Annual International

Symposium on Computer Architecture (ISCA-

97), June 1997, pp 284-291.

[8] C.-C. Lee, I.-C. Chen, and T. Mudge, The bi-

mode branch predictor, In Proceedings of the

30th Annual International Symposium on

Microarchitecture, December 1997, pp.4-13.

[9] A. N. Eden and T. Mudge, The YAGS branch

predictor, In Proceedings of the 31st Annual

International Symposium on Microarchitecture,

December 1998, pp.69-77.

[10] T.-Y. Yeh and Y. Patt, Alternative

implementations of two-level adaptive branch

prediction, In Proceedings of the 19
th
 Annual

International Symposium on Computer

Architecture, Vol.20, Issue.2, May 1992,

pp.124-134.

[11] J. Smith, A study of branch prediction

strategies, In Proceedings of the 8th Annual

International Symposium on Computer

Architecture, May 1981, pp.135-148.

[12] A. Seznec and P. Michaud, De-aliased hybrid

branch predictors, Technical Report RR-3618,

lnria, February 1999.

[13] R. Nair, Optimal 2-bit Branch Predictors, IEEE

Trans on Computers, Vol.44, No.5, May 1985,

pp.698.702.

[14] R. E. Kessler, The Alpha 21264

Microprocessor, IEEE Micro, Vol.19, No.2,

March/April 1999, pp.24-36.

[15] SPEC CPU2000 Benchmarks, http://www.

specbench.org/

[16] SimpleScalar Tool Suite © 1994-2003 Todd M.

Austin, Ph.D. and SimpleScalar, LLC,

http://simplescalar.com/

[17] V. Escuder, R. Durάn, and R. Rico, Evaluating

x86 condition codes impact on superscalar

execution, 6th WSEAS International Conference

on Systems Theory and Scientific Computation,

August 2006, pp.214-219.

[18] S. Barandagh, H.S.Shahhoseini, and N.

Rizvandi, Improving a fixed-point RISC

processor by a hybrid adder, 3rd WSEAS

International Conference on Signal Processing,

Robotics and Automation (ISPRA 2004),

February 2004.

[19] H. Vandierendonck, J. Jacquet, B. Nootaert and

K. De Bosschere, Formally Modeling

Microprocessor Caches and Branch Predictors,

WSEAS Transactions on Computers, Vol.5,

Issue.11, November 2006, pp.2588-2595.

[20] K. Vivekanandarajah, T. Srikanthan, S.

Bhattacharya, and P. Kannan, Incorporating

Pattern Prediction Technique for Energy

Efficient Filter Cache Design, 2002 WSEAS

International Conference on Electronics,

Control & Signal Processing and 2002 WSEAS

International Conference on E-Activities,

December 2002.

[21] Po-Yung Chang, Eric Hao, Tse-Yu Yeh, Yale

Patt, Branch Classification: A New Mechanism

for Improving Branch Predictor Performance, In

Proceedings of the 27th International

Symposium on Microarchitecture, 1994, pp.22-

31.

[22] Tse-Yu Yeh and Yale Patt, Two-level Adaptive

Branch Prediction, Technical Report CSE-TR-

117-91, Computer Science and Engineering

Division, Department of EECS, The University

of Michigan, November 1991.

[23] Daniel A Jimenez and Calvin Lin, Neural

Methods for Dynamic Branch Prediction, ACM

Transitions on Computer Systems, Vol.20, No.4,

November 2002, pp.369-397.

[24] Pierre Michaud. A ppm-like, tag-based

predictor. Journal of Instruction Level

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 152 Issue 2, Volume 9, February 2010

Parallelism, (http://www.jilp.org/vol7), Vol.7,

April 2005.

[25] Andr´e Seznec and Pierre Michaud. A case for

(partially)-tagged geometric history length

predictors. Journal of Instruction Level

Parallelism (http://www.jilp.org/vol7), Vol.7,

April 2006.

[26] A. Seznec. The o-gehl branch predictor. In The

1st JILP Championship Branch Prediction

Competition (CBP-1), in conjunction with

MICRO-37, 2004.

[27] A. Seznec, A 256 kbits l-tage branch predictor,

Journal of Instruction-Level Parallelism (JILP)

Special Issue: The Second Championship

Branch Prediction Competition (CBP-2), vol. 9,

May 2007.

[28] Young Jung Ahn, Dae Yon Hwang, Yong Suk

Lee, Jin-Young Choi and Gyungho Lee,

Saturating Counter Design for Meta Predictor in

Hybrid Branch Prediction, Proceedings of the

8
th
 WSEAS Int. Conf. on Circuits, Systems,

Electronics, Control & Signal Processing

(CSECS '09), December 2009, pp.217-221.

WSEAS TRANSACTIONS on COMPUTERS
Young Jung Ahn, Dae Yon Hwang,
Yong Suk Lee, Jin-Young Choi, Gyungho Lee

ISSN: 1109-2750 153 Issue 2, Volume 9, February 2010

