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Abstract: - One of the major challenges in off-line signature verification is the fact that a person’s own signature is influenced by a 

number of external and internal factors. This influence results in a high variability even between signatures written by the same 

signer. This paper proposes a method which is able to model the intra-person variability of a signature feature and also to identify 

and eliminate the effects of external factors. To demonstrate the efficiency of the algorithm, a sample signature verifier is 

constructed and evaluated on the Signature Verification Competition 2004 database. Experiments have shown that by using 3 

features (endings, loops and skew vectors) an average error rate of 12% can be achieved by the system. These results may be 

further improved by increasing the number of features, used during the comparison of signatures. 
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1 Introduction 
In the past century several studies [1][2][3][4][5] 

have confirmed that signatures can be used with a high 

success rates for biometrical identification. There are 

several methodological guides like [6] which formalize 

the process of verification. However, as all human 

experts, even opinions of forensic document examiners 

(FDE’s) are subjective and prone to human errors. Also 

considering the huge numbers of signed documents 

created each day, and the limited number of FDE’s it is 

obvious why automated signature verification has been 

in a focus of researchers for the past few decades. 

Computer based signature verification can be divided 

into two main approaches, the on-line and the off-line 

approach. In online signature recognition the whole 

process of signing is captured using some kind of 

acquisition device (camera, digital tablet etc.), then 

analyzed and used to make a decision. The aim of off-

line signature verification is to decide, whether a 

signature originates from a given signer merely based on 

the scanned image of the signature and a few images of 

the original signatures of the signer. Unlike on-line 

signature verification, which requires special acquisition 

hardware and setup, off-line signature verification can be 

performed independently from the normal signing 

process, and is thereby less intrusive and more user 

friendly. On the other hand, important information like 

velocity, pressure and the difference between up- and 

down strokes is partially lost. 

When evaluating verification approaches we also 

have to differentiate between them based on the 

signature database used and the way it was used.  A 

typical signature database is a collection of signatures 

from several signers, containing some (10-20) original 

signatures from a given signer and usually also 

containing several forged signatures (forgeries) for the 

same signer. We focus on the scenario, where 

verification systems are trained only using original 

signatures and tested against both original signatures and 

skilled forgeries and the verification is performed off-

line, as this approach suits the most real world scenarios.  

The performance of signature recognition systems is 

usually measured in terms of equal error rate (EER), 

which is the point where Type I and Type II errors are 

equal. One also has to take into consideration, that 

(although usually created on a lower level) signatures are 

the results of conscious behavior and can thereby be 

influenced by a huge amount of factors [1]. In the lack of 

a common signature corpus and a well defined 

evaluation methodology, the results of different studies 

may only be hardly comparable; therefore, the values 

mentioned later should be only taken as approximations. 

As of today, when tested against skilled forgeries, even 

the best off-line verification systems deliver worse  or 

equal error rates than 5-10% [7] [8], in contrast with a 

human expert, who is able to do the distinction with an 

error rate of 1% [8]. 

In the past decade a bunch of solutions (like [9] or 

[10]) have been introduced, to overcome the limitations 

of off-line signature verification and to compensate for 

the loss of accuracy compared to on-line systems. To 

break the 5% barrier it is essential to identify, understand 

and compensate for the different sources of error in the 

algorithms. This paper presents a solution to address the 

problem of improvement and thereby possibly break the 

5% barrier. 
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This paper concentrates on the final phase of 

signature verification. In the following section several 

existing signature verifiers are introduced, with a special 

emphasis on classification. Then we summarize the 

classification problems, occurring when dealing with 

signatures, and propose solutions for them. In the second 

part of this paper a complete statistical approach is 

introduced to address the previously identified problems 

and to give a formal algorithm for signature verification. 

One of the implications of the introduced model is that 

we are now able to evaluate and quantify the quality of 

an original sample signature. Finally experimental 

results are presented and used to evaluate the 

effectiveness of our approach. 

 

 

2 Related work 
Typically signature verifiers take advantage of different 

general properties (global features) of the signature and 

use them as an input for different simple classifiers 

[11],[12],[13],[14],[15]. In [16] a more complex 

approach can be seen, by creating a two-stage neural 

network classifier. Different groups of features are 

defined and separate MLP (multilayer perceptron) 

classifiers are applied to them. These MLPs are 

relatively simple, containing only one hidden layer. 

Learning is not done through backpropagation, but 

through the ALOPEX algorithm, which allows the 

network not to get “stuck” in local minima or maxima of 

the response function. The MLPs have a relative wide 

range of input parameters, in order: 16, 96, and 48 

variables. The inputs of the first network are the global 

features of the signature. The second takes a simplified 

representation of the signature as an input, by creating a 

12*8 grid and measuring the intensity values in each grid 

cell. The third network processes texture information. 

The output layer contains a single neutron, delivering a 

response value between 0 and 1 representing the 

similarity between the actually measured signature, and 

the training set. These output values are then processed 

by an RBF to make the final decision.  

A similar approach is taken in [17]. They use global 

features (height-width proportion, middle point, corner 

points, etc.), and grid features as inputs. Tests are 

performed both by using simple MLP classifiers and by 

using SVMs. SVMs were tested with kernels with linear, 

polynomial, and radial basis function. The latter seemed 

to deliver the best results with an average error rate of 7-

8% compared to the 16-22% error rates measured when 

using MLPs. 

Another interesting approach can be found in [18]. It 

utilizes CGS vectors (originally developed for character 

recognition) to extract global features. The main idea 

here is, to assign a 1024 bit long binary vector to each 

image and compare these vectors in the later phases. 

Images are divided into 4x8=32 segments, and 

information (like concavity, gradient, structural 

properties) is encoded into the vector for each segment 

These vectors are then compared by several 

algorithms operating with vector distances. In this 

scenario, the SVM based solution performs poorly, with 

an average error rate of 46% while a Naïve Bayes 

classifier achieved error rates between 20% and 25%   

 

 

3 Feature extraction 
3.1 Preconditions 
In the following sections we are going to use a 

generalized model of signature verifiers (Fig. 1.) as 

introduced in our previous works [19] [20] [7]. 

 

TestingTraining

Acquisition Acquisition

Preprocessing Preprocessing

Feature extraction Feature extraction

Feature matching

Distance calculation

Classifier training

Feature matching

Distance calculation

Classification

 
Fig. 1 

General architecture of signature verifiers 

 
 

The aim of off-line signature verification is to decide 

whether a given signature belongs to a given person. The 

decision must only be based on n samples (original 

signatures) from the signer. In the followings, we are 

going to give estimation about the confidence of the 

above decision. 

As it can be seen on Figure 1, signatures undergo 

several steps till the final decision. Our n signatures are 

usually provided on paper, which must be scanned and 

noise filtered. After the acquisition and preprocessing 

phases, several features are extracted. Features are 

quantitative descriptors of different aspects of the 
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signature (loop height, pitch, etc.). After that, 

corresponding features (for example “the height of the 

first loop”) are assigned to each other. It may be possible 

that some of these features are not existent in all of the 

samples (for example, several signatures may have a 

missing first loop). In the followings, only fully matched 

features are considered. The number of fully matched 

features is f. At this point the two main aspects of a 

signature verification (number of signatures – n, and 

number of features – f) are defined. In the following 

section we are going to estimate how these two variables 

influence the confidence level of our final decision. 

 

3.2 Sample features 
In the following three subsections we are going to 

introduce three important features, used in our later 

experiments. 

 

3.2.1 Skew 

The skew information consists of a set of straight lines 

(skew vectors), where each line represents an imaginary 

foundation of a component, which can be regarded as an 

autonomous element of the signature. This definition 

also allows us to assign skew information to the gaps 

between signature elements, and according to [1] those 

spaces are just as peculiar as any other feature of a 

signature. The following parameters were used to 

describe a skew vector: start position, end position, 

length, angle, so the total number of parameters is 6. 

 
Fig.2. Skew vectors obtained by our algorithm 

 

3.2.2 Loop 

Loops in our interpretation are connected regions in the 

image which are fully enclosed by “signature” pixels.  

This definition implies the following 3 important 

properties: 

First: pixels should be unambiguously classified as 

some belonging to the background (“paper” pixels) or 

belonging to the signature (“signature” pixels). This is 

currently done by testing the color components of a pixel 

against some thresholds. 

Second: The region must be connected. Although it 

sounds logical at the first glance, this is against the 

traditional definition of a loop, which can be interrupted 

by other lines. This simplification however allows us a 

much faster processing of the image. 

Third: using fully enclosed regions showed to be an 

unrealistic target. Because of errors of the pen, and 

sometimes because of errors of the scanning process, 

there are often 1-2 pixel wide interrupts in the pen 

strokes, which would break our definition of loops. To 

eliminate them, a morphological closing is applied to 

each image before loop extraction. 

 

Shape descriptors are used to describe the different 

aspects of loops, thereby allowing an easy comparison. 

There are several promising formulas described in the 

literature for calculating shape descriptor values. Instead 

of choosing one of them, we used as many of them as 

possible. This will allow us to identify the most 

significant shape factors in later phases.  

The following shape descriptors were used during 

feature extraction: Perimeter, area, formfactor, maximum 

diameter, maximum diameter angle, roundness, centroid, 

bounding box, inscribed diameter, extent, modification 

ratio, compactness, bounding circle, moment axis angle, 

convexity, solidity, aspect ratio. A detailed introduction 

of shape descriptors can be found in [21]. Also note that 

several definitions for the area of a loop can be obtained, 

depending on how the bounding pixels of a loop are 

included in the calculations. Therefore, several shape 

descriptors which include the area in their calculations 

are calculated in three different ways, therefore the total 

number of parameters is 29. 

 

3.2.3 Ending 

Endings are the first and the last segments of a stroke. 

The shape, the length, direction, position and intensity of 

an ending can be very characteristic for a given signer. 

In our current setup we used the location of the last pixel 

as the starting position of an ending, and located 

consecutively the 10
th
 pixel in the skeleton, the 20

th
 pixel 

in the skeleton and the first joint in the skeleton. The 

length and angles of these three vectors provided the 

main parameters used to characterize the endings 

providing altogether 12 parameters. 

 
Fig.3. Characteristic vectors for endings 

 
3.3 Statistical interpretation of feature values 
A feature (like the height of a given loop) can be seen as 

a random variable  . Although its value may vary from 

signature to signature, it is safe to assume that the signer 

is aiming to reproduce his own signature as accurately as 

possible, while the current result is influenced by a large 
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number of different factors. Because of these we assume 

that   has a normal distribution with mean m and 

variance σo2. 

 
 =N(mo,σo) (1) 
 
Similarly, the values of forged features can also be 

represented by a random variable with a normal 

distribution. 

 

  =N(mf ,σf) (2) 
 
In addition, because the forger is aiming to forge the 

original signature, the means of these distributions 

overlap. 

 
M( )=M( ) = mf  =mo=m (3) 
 

To distinguish between original and forged signature 

a threshold must be chosen. Each feature value which 

falls int the interval [m-w*σo;m-w*σo] is seen as original, 

and each feature value which does not fall into the 

interval is seen as a forged one. This definition also 

introduces type I and type II errors (these are usually 

called false acceptance rate – FAR and false rejection 

rate – FRR in the field, which can be calculated based on 

(1), (2), (3) and w (see Fig. 4. and Fig 5.). 

 

       (4) 

 

                        
 

 
   

 (5) 
 
                            

      (6) 
 

 

 
Fig.4 

False Rejection Rate 

 

 
Fig. 5 

False Acceptance Rate 

 

 

The above equations reflect only a theoretical 

scenario, where both mean and variance are known. In a 

real world scenario, we only have a (very) limited 

number of measurements. Therefore the above 

calculations should be refined for sample mean  

 

           
 

 
   
 
    (7) 

 

and the sample variance 

 

   
  

 

   
   
  

 

   
         
 
    (8) 

 

Combining (5), (7) and (9), the probability of a 

feature value (      falling into a given interval can be 

calculated as follows. 

           
 

 
                   

 

 
 (9) 

 

The calculation of FAR and FRR should be refined 

according to (9). 

 

 

 
3.4 Multiple features 
The above calculations show the accuracy of a signature 

verification system, which is based on a single feature. 

However, in real world scenarios we are able to take 

usage of several different features. Assuming that a 

signature is represented by f independent and normally 

distributed features, the final decision can be modeled 

with Bayesian inference.  

 

Let Θ ={θo, θf} denote the originality of a signature, 

where θf denotes the event when the signature is forged 

and θo denotes the event when a signature is original. We 

have no a priori knowledge about the sample signature, 

therefore the priori probalbilities of the events are taken 

as equal P(θo)= P(θf )=0,5. In the case of a single feature 
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and a single observation where x=1 (forgery), the 

probability that the signature is really a forgery can be 

calculated as follows:  

 

P(θo)= P(θf)=0,5(10) 

P(x=1| θf) = 1-FAR 

P(x=1|θo) = FRR   

  

          
              

               
 
   

 
              

                             

 
         

                   

 
     

         
 

 

               
   

         
 (10) 

 

This can be generalized for independent f features by 

using the binomial distribution. 

 

          
 
 
   

       
   

 (11) 

 

and the Bayesian inference 

 

        
            

             
 
   

 
        

         
 
   

 (12) 

 

This means, that given f features, and k observations 

where the signature seems to be forged, the probability, 

that the signature itself is forged is: 

 

        

 
 
 
                 

 
 
 
                   

 
 
                 

 

                

                                 
 (13) 

 

Similarly, the probability, that the signature is 

original is: 

 

        
                

                                 
 (14) 

 

To estimate the total probability of error, the above 

probabilities should be summed for all possible values of 

k: 

 

         

            
 
 
                  

 
    

  
                

                                 
   

 
 
    

 
   

                 
 
 
 

                                

                                 
 
   

 (15) 
 

We could do the same for FARtotal, however, because 

we minimized both errors by using Bayesian inference it 

would yield the same results. 

 

                      (16) 
 

At this point, we are able to predict the accuracy of a 

system only based on 4 parameters n, f, q and w. 

 

4 Validation 
In our experiments the database of the Signature 

Verification Competition 2004 [8] was used. This is an 

on-line signature database therefore it contains the stroke 

information, but no images are provided. The stroke 

information was used to synthesize signatures similar to 

the original ones (Figure 7). Stroke points were 

connected with straight lines, fading out on the line 

borders. Bicubic interpolation and anti-aliasing were 

used to make the final image smoother. An example of 

reproduced signature can be seen on Fig. 1. 1600 

signatures from 40 signers (20 originals and 20 forgeries 

from each) ensure a sample large enough for testing our 

feature extraction and classification algorithms.  

The experimental setup uses 10 original signatures 

from each signer and a set of generated forgeries for 

training. Afterwards the classifier is tested with 10 other 

original and 10 forged signatures. Three different 

features (endings, skew and loops) are used as features, 

which resulted in about 5-10 independent features in 

each signature. Although some of them may seem quiet 

intuitive, their exact definition and extraction is well 

defined in our previous works [19]. 

 

The resulting average error rates are summarized in 

table 1. It can be seen, that the values vary largely 

between different signers. It is however really promising, 

that this error rate is under 10% at two of the signers. 
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Although a lot of testing is still in progress, our 

preliminary measurements and simulations confirm our 

previous theories.  

 

 

5 Implications 
In the following section we are going to analyze the 

different implications of the previously introduced 

statistical model. First, we show how the choice of the 

acceptance threshold (w) affects the final error rates in a 

typical verification scenario, then we look for 

alternatives to improve these results. 

 

5.1 Optimal threshold choice 
One of the questions arising is the optimal choice of 

parameter w. This parameter defines the threshold for 

the acceptance or rejection of a given feature. To model 

this, we took a typical verification scenario where the 

number of original samples (n) is 10 and the number of 

extracted and matched features (f) is also 10. The results 

can be seen on Figure 6.  

There are several important aspects of this figure. 

First, when the quality of the forgery is exactly the same 

as the quality of the original signature (q=1), there is no 

way to distinguish original signatures from forgeries, 

therefore the error rates will equal 0.5, which means 

there is only an 50% chance of a good decision, provided 

that the chances of a given sample being forged or being 

original are equal. We should ignore the results where 

q<1, because these may only be achieved by a forger 

who can reproduce the signatures better than the original 

writer. Such a forger cannot be identified with these 

algorithms. For us, the important part of the graph is 

where q>1. Obviously, as the value of w raises above a 

given level, or falls below a given level, the accuracy of 

the classification decreases. However there is an 

important range, where 2.4<w<3.0. In this range the 

equal error rate (EER) is near its minimal achievable 

level, and this is almost unaffected by the actual value of 

q (quality of forgeries).  

Another conclusion which can be drawn from Figure 

6 is that the error rate only drops below 10% (EER<0.1), 

when the quality of the forgeries becomes worse than 2.0 

(q>2.0). Our benchmarks showed, that is near the 

average forgery quality, therefore, to achieve 

significantly better error rates than 10%, either the 

number of original samples or the number of processed 

features must be increased.  

 

 

 

 

 

 

Signer FAR FRR 

2 16,17% 14,92% 

4 19,39% 7,48% 

6 12,51% 12,43% 

8 3,80% 8,42% 

10 20,08% 7,96% 

13 16,44% 10,07% 

15 10,37% 15,51% 

18 3,33% 10,31% 

20 11,96% 8,25% 

22 17,94% 10,34% 

24 8,84% 13,29% 

25 30,48% 6,74% 

28 12,99% 13,29% 

32 16,76% 16,26% 

33 18,08% 12,89% 

34 14,23% 9,74% 

35 6,70% 8,09% 

37 1,54% 17,49% 

38 13,27% 4,73% 

40 6,15% 18,51% 

TOTAL 13,05% 11,34% 

 
Table 1. 

Error rates achieved by the statistics based 

classifier 

WSEAS TRANSACTIONS on COMPUTERS Bence Kovari, Hassan Charaf

ISSN: 1109-2750 1364 Issue 11, Volume 9, November 2010



 

 
Fig. 6 

Relationship of q, w and EER when n=10 and f=10 

 

5.2 Reduction of total error rate 
One way to improve the total accuracy of the system is 

to increase the value of q. We should recall that q was 

defined as the quotient of the standard deviations of a 

given feature in the forged and in the original signatures. 

 

  
σ 
σ 

 

 (17) 
 

We (typically) cannot control the quality of the forgeries 

(  ), but we definitely have some control over the 

quality of original signatures. To increase q,    should 

be reduced. This could be done by analyzing the 

individual original samples and identifying outliers. An 

outlying observation, or outlier, is one that appears to 

deviate markedly from other members of the sample in 

which it occurs [22]. In our case this means, that we 

should examine all measurement values for a given 

features and if a few of them significantly deviate from 

the others, apply some additional processing. There are 

three possible sources for the deviation: 

 

 

1. measurement errors: errors in image processing, 

feature detection or feature matching can and will 

often result in false feature values 

2. rare deviation: the unusual deviation is part of 

the typical signature of the signer, however, the 

sample size was too small, to realize this 

3. common deviation: the unusual deviation was an 

error in the signature (maybe caused by external 

conditions) and is not part of the typical signature 

of the signer. 

 

In many practical cases the acquisition of original 

samples is performed in a human controlled environment 

(i.e. in a bank, a bank employee could supervise the 

acquisition of original signatures). In these scenarios the 

supervisor can identify and ignore measurement errors 

and can also ask for additional samples to decide 

between case 2 and case 3. In fully automated 

environments we usually cannot distinguish between 

these three scenarios and also, we cannot ask for 

additional samples, but we can still choose to drop the 

outliers from our training set depending on the scale of 

its deviance. This may have decreasing effect on FAR 

and an increasing effect on FRR. It is impossible to 
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predict the effect on EER without further knowledge, but 

we can simulate the effect on our actual dataset 

introduced in section 4. Our measurement results 

(performed with the elimination of outliers at      ) are 

summarized in Table 2. It can be seen that the average 

error rate has not significantly changed, however, the 

relationship of FAR and FRR became more balanced in 

most of the test cases. 

 

 

Signer FAR FRR 

2 15,78% 16,43% 

4 17,58% 12,17% 

6 17,51% 11,00% 

8 4,67% 8,05% 

10 16,37% 12,03% 

13 18,25% 9,54% 

15 14,48% 19,23% 

18 3,85% 12,30% 

20 11,52% 10,56% 

22 18,58% 11,23% 

24 3,85% 12,46% 

25 23,18% 10,79% 

28 13,37% 10,31% 

32 22,54% 12,95% 

33 20,15% 10,30% 

34 11,66% 12,13% 

35 6,58% 10,41% 

37 6,32% 13,53% 

38 10,87% 10,08% 

40 7,92% 16,32% 

TOTAL 13,25% 12,09% 
 

Table 2. 

Error rates achieved by the statistics based 

classifier after outlier filtering 

 

 

5.3 Feedback 
One of the main aims of our research is to not only 

provide a commercial application for signature 

verification, but to also deliver meaningful details about 

the reasons behind a single decision.  

The whole model of our system was designed to 

support this scenario (in contrast to many other similar 

systems), because: 

 

1. The feature set is based on the same features, as 

used in forensic document examination. 

2. Each of the features is matched independently, 

and each of the matched feature groups is 

evaluated independently.  

 

As a result of these design principles each signature 

testing made by our system also tells us, which of the 

measured features deviated significantly from the usual 

normal distribution of the signers features. 

 

6 Conclusion 
In this paper we discussed problems occurring during 

feature based off-line signature verification and 

delivered solutions for the special questions of this 

problem class. We have shown that the behavior of a 

feature based off-line signature verification system can 

be effectively simulated with a statistical approach. The 

resulting equations allow the prediction of the 

performance limit of a verification system on a given 

database and more importantly, can help in the 

calibration of the system. We have also demonstrated 

that local features can successfully be used with our 

system, to distinguish original signatures from forgeries 

with an acceptable error rate. Our experiments have also 

shown, that the distribution analysis alone is enough, to 

filter out outliers, and further outlier filtering will not 

significantly improve the performance of the whole 

system. 
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Fig. 7 

Samples of the signatures used in the experiments 

 

References 

[1] R. A. Huber and A. M. Headrick, "Handwriting 

Identification: Facts and Fundamentals," CRC 

Press, LCC, 1999. 

[2] K. Franke, "Analysis of Authentic Signatures 

and Forgeries," Lecture Notes In Computer 

Science, Proceedings of the 3rd International 

Workshop on Computational Forensics , vol. 

5718, pp. 150-164, 2009. 

[3] F. Bryan and R. Doug, "The probative character 

of Forensic Handwriting Examiners' 

identification and elemination opinions on 

questioned signatures," Forensic Science 

International, vol. 178, no. 1, pp. 54-60, Mar. 

2008. 

[4] N. S. Sargur, C. Sung-Hyuk, A. Hina, and L. 

Sangjik, "Individuality of Handwriting: A 

Validation Study," Sixth International 

Conference on Document Analysis and 

Recognition (ICDAR'01), pp. 106-09,  2001. 

[5] B. Carolyne, F. Bryan, B. Kaye, and D. Rogers, 

"Forensic handwriting examiners' opinions on 

the process of production of disguised and 

simulated signatures," Forensic Science 

International, vol. 195, pp. 103-17, Jan. 2010. 

[6] F. Bryan and R. Doug, "Documentation of 

Forensic Handwriting Comparison and 

Identification Method: A Modular Approach," 

WSEAS TRANSACTIONS on COMPUTERS Bence Kovari, Hassan Charaf

ISSN: 1109-2750 1367 Issue 11, Volume 9, November 2010



Journal of Forensic Document Examination, vol. 

12, pp. 1-68, 1999. 

[7] B. Kovari, "The development of off-line 

signature verification methods, comparative 

study," in microCAD 2007 International 

Scientific Conference, 2007. 

[8] D.-Y. Yeung, et al., "SVC2004: First 

International Signature Verification 

Competition," Lecture Notes in Computer 

Science, Biometric Authentication, Volume 

3072/2004, pp. 16-22, 2004. 

[9] S. Akle, M. .-E. Algorri, and A. Salcedo, "Use 

of wavelet-based basis functions to extract 

rotation invariant features for automatic image 

recognition ," WSEAS Transactions on 

Information Science and Applications, vol. 5, 

no. 5, pp. 664-673, 2008. 

[10]X. D. Zhuang and N. E. Mastorakis, "The 

curling vector field transform of gray-scale 

images: A magneto-static inspired approach," 

WSEAS Transactions on Computers, vol. 7, no. 

3, pp. 147-153, 2008. 

[11]V. E. Ramesh and M. N. Murty, "Off-line 

signature verification using genetically 

optimized weighted features," Pattern 

Recognition, no. 32, pp. 217-233, 1999. 

[12]J. Coetzer, B. M. Herbst, and J. A. d. Preez, 

"Off-line Signature Verification Using the 

Discrete Radon Transform and Hidden Markov 

Model," EURASIP Journal on Applied Signal 

Processing, vol. 4, pp. 559-571, 2004. 

[13]M. A. Ismail and S. Gad, "Off-line Arabic 

Signature Recognition and Verification," Pattern 

Recognition, vol. 33, pp. 1727-1740, 2000. 

[14]N. L. Othman, J. Shin, and W.-D. Chang, 

"Chain Code Distance: a Global Feature for On-

line Signature Verification," WSEAS 

Transactions on Computers, vol. 5, no. 9, pp. 

2037-2042, 2006. 

[15]R. Nerino, "Automatic registration of point-

based surfaces ," WSEAS Transactions on 

Computers, vol. 5, no. 12, pp. 2984-2991, 2006. 

[16]H. Baltzakisa and N. Papamarkos, "A new 

signature verification technique based on a two-

stage neural network classifier," Engineering 

Applications of Artificial Intelligence, vol. 14, 

pp. 95-103, 2001. 

[17]E. Ozgunduz, T. Senturk, and M. Karsligil, 

"Off-line Signature Verification and 

Recognition by Support Vector Machine," 

Thirteenth European Signal Processing 

Conference, 2005. 

[18]M. K. Kalera, S. Srihari, and A. Xu, "Offline 

Signature Verification and Identification Using 

Distance Statistics," International Journal of 

Pattern Recognition and Artifcial Intelligence, 

vol. 18, no. 7, pp. 1339-1360, 2004. 

[19]B. Kovari, B. Toth, and H. Charaf, 

"Classification Approaches in Off-Line 

Handwritten Signature Verification," WSEAS 

Transactions on Mathematics, vol. 8, no. 9, pp. 

500-509, 2009. 

[20]B. Kovari, I. Albert, and H. Charaf, "A general 

approach to off-line signature verificatio," 

WSEAS Transactions on Computers, vol. 7, no. 

10, pp. 1648-1657, 2008. 

[21]J. C. Rush, The Image Processing Handbook, 

Fifth edition. North Carolina State University 

[22]F. E. Grubbs, "Procedures for detecting outlying 

observations in samples," Technometrics 11, 

vol. 11, pp. 1-21, 1969. 

[23]A. Kholmatov, "Biometric Identity Verification 

Using On-Line & Off-Line Signature 

Verification," 2003. 

[24]Kovari, "Time-Efficient Stroke Extraction 

Method for Handwritten Signatures," in ACS07, 

The 7th WSEAS International Conference on 

Applied Computer Science, 2007, pp. 157-161. 

[25]Kovari, G. Kiss, and H. Charaf, "Stroke 

Extraction and Stroke Sequence Estimation for 

Off-line Signature Verification," The Eighth 

IASTED International Conference on 

Visualization, Imaging, and Image Processing. 

[26]G. Horváth, et al., Neural Networks. Budapest, 

2006. 

[27]S. N. Srihari, A. Xu, and M. K. Kalera, 

"Learning Strategies and Classification Methods 

for Off-line Signature Verification," 

Proceedings of the 9th Int’l Workshop on 

Frontiers in Handwriting Recognition, 2004. 

[28]J. Mahmud and C. M. Rahman, "On the power 

of feature analyser for signature verification," 

Proceedings of the Digital Image Computing, 

Techniques and Applications, 2005. 

[29]R. Plamondon and G. Lorette, "Automatic 

Signature Verification and Writer Identification 

- The State of the Art," Pattern Recognition, vol. 

22, no. 2, pp. 107-131, 1989 

[30]F. Leerle and R. Palmond, "Automatic Signature 

Verification - The State of the Art 1989-1993," 

Int'l Pattern Recognition and Artificial 

Intelligence, special issue signature verification, 

vol. 8, no. 3, pp. 643-660, 1994 

[31]R. Plamondon and S. N. Sargur, "On-Line and 

Off-Line Handwriting REcognition: A 

Comprehensive Survey," IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 

22, no. 1, pp. 63-80, 2000 

[32]"Pattern Recognition, special issue on automatic 

signature verification," vol. 8, no. 3, Jun. 1994 

WSEAS TRANSACTIONS on COMPUTERS Bence Kovari, Hassan Charaf

ISSN: 1109-2750 1368 Issue 11, Volume 9, November 2010




