
Design and Implementation of Real-Time EP80579 Based Embedded
System

JAREER H. ABDEL-QADER

Department of Computer Science and
Engineering

University of Texas at Arlington

416 Yates St. Nedderman Hall, Rm 300,
Arlington Texas

USA

+1-817-272-3640

Jareer.abdelqader@mavs.uta.edu

ROGER S. WALKER

Department of Computer Science and
Engineering

University of Texas at Arlington

416 Yates St. Nedderman Hall, Rm 300,
Arlington Texas

USA

+1-817-272-3640

Roger.walker@uta.edu

http://ranger.uta.edu/~walker/

Abstract: With the advances in integration of different units such as I/O controllers and network interfaces in a
single chip, Intel introduced the low power EP80579 embedded processor. This processor is the first IA based
system-on-chip (SoC) with an IA-32 processor core, North and South Bridges, and integrated Accelerator and
network interface.

In this paper we will show main steps to design a real-time embedded system along with identifying the hardware
and software requirements to implement such system. The embedded system introduced in this work will perform
several tasks regarding road surface conditions based on multiple sensor readings. The sensor data will be
processed in real-time to reconstruct the road profile and provide an estimate for the texture contents of the road
surface. The EP80579 SoC will be used in the design of such a system. Modeling will be done with the aid of
UML profile for modeling and analysis of real-time and embedded (MARTE) systems.

Key-words: System-on-a-chip; Modeling Real-time systems; parallel processing modeling; MARTE; Embedded
Application; Road Profiler.

1 Introduction
Road profiler [1] is a system that is used to reconstruct the
road profile from the data collected by laser and
accelerometer sensors. With the aid of the latest SoC from
Intel, the Tolapai embedded processor, we intend to design
and implement a real-time road profiler system with
capabilities of providing both road profile and road surface
texture analysis. The final desired system to be implemented
will be a Real-time road profiler/ texture measurement
system.

The first step in the design of a new system is to provide a
model for the system that shows the main parts of the system
and how to integrate them together to reach the desired
design. For this reason modeling tools are used. The general-
purpose modeling language UML (Unified Modeling

Language) is a standard used mainly for software systems.
UML provides extensions and profiles that can help
modeling embedded systems. Many of these profiles such as
UML-RT, SysML, SPT and MARTE [2-5] are now
standardized and in use for modeling embedded systems and
the real-time operations. Also the new UML profiles
introduce the tools to model both hardware and software
systems and provide a way of allocating the software to the
desired hardware unit. Modeling real-time systems either as
hardware, software, or a combination of both has been the
subject of several research projects. For instance, [10]
models a network constructed from network-on-chip (NoC)
systems with the aid of MARTE. In [11] a hardware model
is introduced for the IP-XACT feature which is a standard to
normalize interface of intellectual property (IP) from
different vendors of SoC systems. [12] Models a

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1277 Issue 11, Volume 9, November 2010

telecommunication system, GSM base transceiver station,
using UML standard.

The following section discusses a number of UML profiles
and extensions developed for embedded systems modeling.
The third section of the paper describes briefly the road
profiler/ texture system. Section 4 introduces the Tolapai
(EP80579) SoC. Section 5 briefly introduces the software
used for implementing such application. The modeling steps
as well as the results obtained from the road profiler system
are shown and analyzed in section 6. Finally, the paper is
concluded in section 7.

2 UML Extensions for Modeling Real-
Time Systems
In this section we are discussing some of the modeling
profiles adopted and standardized as part of UML.

2.1 UML-RT
Real-time Object Oriented Modeling (ROOM) [5] is a
modeling language used for modeling real-time systems. It
has its own graphical notation set to model structures of real-
time systems. A capsule stereotype was introduced by
ROOM to represent a reactive object. A capsule can
communicate with other capsules through ports, which are
boundary objects, and a protocol associated with the port.
ROOM also defines a connector which connects ports to
provide transmission facility for supporting a particular
protocol. ROOM is more oriented towards the actual
implementation and physical design [8]. ROOM was
integrated as part of UML to form what is known as UML-
RT. Lack of usage and support is considered one of the
limitations of the UML-RT.

2.2 SysML
The Systems Modeling Language (SysML) is a UML profile
that is domain-specific Modeling language for systems
engineering. SysML supports the specification, analysis,
design, verification and validation of a broad range of
complex systems [3]. SysML defines two types of diagrams,
the Block Definition Diagram (BDD) and the Internal Block
Diagram (IBD). The BDD is based on UML Class Diagrams
and UML Composite Structure Diagrams. The role of a
BDD is to describe the relationships among blocks, which
are basic structural elements focusing on specifying
hierarchies and interconnections of the system to be
modeled. The SysML IBD allows the designer to refine the
structural aspect of the model. The IBD is the equivalent of
the composite structure in UML. SysML lacks the constructs
for modeling time.

2.3 UML Profile for Scheduling, Performance
and Time (SPT)

SPT defines a set of concepts useful for modeling real-time
systems. Its purpose is to integrate notation used by existing
real-time analysis techniques into UML in order to:

• Enable the construction of models that could be
used to make quantitative predictions regarding
these characteristics.

• Facilitate communication of design intent between
developers in a standard way.

• Enable inter-operability between various analysis
and design tools.

Thus, the SPT is defined to offer a common framework for
real-time modeling that unifies the diversity of techniques,
terminologies and notations existing in the real-time
software community, while still leaving space for different
kinds of specifications. In its present form, the main focus of
SPT is on time and time-related concepts: performance,
timelines, schedulability, etc.
SPT offers a terminology for modeling real-time systems: it
defines a set of concepts - aiming to fit standard real-time
modeling techniques - and some relationships between these
concepts as allowed by the meta-modeling technique used
for the definition of the SPT.
The use of SPT is justified because UML is lacking in some
key areas that are of particular concern to real-time system
designers and developers. In particular, the lack of a
quantifiable notion of time and resources was an impediment
to its broader use in the real-time and embedded domain. It
was discovered that UML had all the requisite mechanisms
for addressing these issues, in particular through its
extensibility faculties [14, 15]. SPT is a standard way of
using these capabilities to represent concepts and practices
from the real-time domain.
One of the main guiding principles is that, as much as
possible, modelers should not be hindered in the way they
use UML to represent their systems just for the purpose of
model analysis. That is, rather than enforcing a specific
approach or modeling style for real-time systems, the profile
should allow modelers to choose the style and modeling
constructs that they feel are the best fit for their needs of the
moment.

2.4 UML Profile for MARTE
MARTE is UML profile adopted by OMG in order to extend
the capacities of UML for real-time modeling in embedded
systems. Not only for the modeling and analysis, MARTE
also provides support for specification, design, and
verification/ validation stages. This new profile is intended
to replace the existing UML Profile for Schedulability,
Performance and Time. [4]
Because SPT’s constructs were considered too abstract and
hard to apply, and for the requirement of aligning SPT
profile UML2.0, there was a need for upgrading or creating
new profile.
MARTE profile is an evolution of the SPT profile with the
purpose of upgrading this profile to UML2.0. It is made of

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1278 Issue 11, Volume 9, November 2010

various packages: namely MARTE foundations, MARTE
design model, MARTE analysis model and MARTE
annexes. The profile is intended to be a fundamental tool in
the design of real time systems. Both modeling and
analyzing concerns are tackled leading to a complete
instrument to improve the design phase. Within MARTE,
the Software Resource modeling (SRM) framework provides
modeling artifacts to describe software execution platform
modeling. The SRM profile provides a broad range of
modeling capabilities covering main multitasking framework
such as dedicated real-time language libraries and real-time
operating systems.
Besides software resources, MARTE allows us to model
hardware resources. Due to its general purpose, UML lacks
certain key native artifacts for describing concrete and
precise hardware RTE execution platform. The UML profile
for MARTE fills this lack with two sub-profiles: a generic
resource modeling (GRM) profile and a hardware resource
modeling profile (HRM). Both can be used to model
hardware platform.
The HRM is composed of two views, a logical view that
classifies hardware resources depending on their functional
properties, and a physical view that concentrates on their
physical nature. Both are specializations of the general
model. The logical and physical views are complementary.
They provide two different abstractions of hardware which
could be simply merged.

2.5 Real-time Modeling Using UML and UML
Profiles

Common UML and/ or UML profiles modeling practices
suggests that

• Use of UML profiles only when standard UML cannot
perform the task.

• Use SysML diagrams for general modeling of the
system.

• Use MARTE for modeling the system’s details.

• Use MARTE specifically to model the hardware system
with all of its details along with modeling the software
methods which are part of the application.

3 Road Profiler/ Texture System
The system to be designed will collect and analyze data
regarding road surface condition in order to specify road
roughness and usability. The purpose of the system is to
determine the road profile and texture measurements from
the data collected by laser and accelerometer sensors
installed in a vehicle which is driven over a specified road
section.

3.1 Profiler
The profiler is an instrument that is used to produce values
related in a well-defined way to a road surface [1]. Profiler
combines reference elevation, height relative to the reference
and longitudinal distance to produce the true road surface
profile.

Most profilers measure profiles for wheel paths traveled. For
each wheel path an accelerometer is used to find inertial
reference defining the height of the accelerometer at that
moment after double integrating the acceleration
measurements. A laser sensor is then used to obtain readings
representing the height of the road surface to the reference,
and a distance encoder provides the longitudinal distance as
in Fig. 1.

The road profile is reconstructed from laser and
accelerometer readings according to (1).

)t(Hdtdt)t(a)t(p −= ∫∫ (1)

Where

 a(t) is the acceleration,

 H(t) is the height measured by the laser
 sensor.

A high-pass filter is used to remove the effect of long
wavelengths on the profile. These wavelengths represent the
underlying grade and overall road curvature and are more
difficult to measure with inertial profilers with the current
configuration. There is also a distance sensor to measure the
distance traveled. An optical sensor is often used to
determine the start and end of some measured road sections.

Fig. 1 Road profiler system [1]

3.2 Texture Analysis
ASTM E 1845 [6] standardizes the calculation of pavement
texture from laser readings which represent the measured
profile of the pavement macro-texture.

The pavement macro-texture is defined as the deviations of a
pavement surface from a true planar surface with the
characteristic dimensions of wavelength and amplitude from
5 mm and up.

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1279 Issue 11, Volume 9, November 2010

In order to compute the mean profile depth (MPD), the
measured profile is divided into segments each having a
base-length of 100 mm. The slope, if any, of each segment is
suppressed by subtracting a linear regression of the segment.
The segment is further divided into two equal lengths of 50
mm. segments and the height of the highest peak in each half
segment is determined. The difference between that height
and the average level of the segment is calculated. The
average value of these differences for all segments making
up the measured profile is reported as the MPD. Check the
illustration in Fig. 2.

The texture will be computed from laser sensor readings for
both left and right wheel paths from the road profiler system
as discussed in the previous subsection.

Fig. 2 Mean segment depth computation

3.3 Real-Time Implementation Requirements
In this section to the system requirements and the amount of
data to be processed will be discussed.

The main requirement to operate the road profiler/ texture
system is to collect data for any road section with the
minimal distraction to the traffic, which means that the
profiler vehicle should run in a speed range of 40- 60 mph
(58- 88 ft/sec). The data from all 6 sensors are to be
collected simultaneously via data acquisition system in order
to compute the road profile values correctly. The minimum
sampling rate required to construct road profile from sensor
readings is 4 kHz; while for accurate texture estimation,
laser readings should be sampled with at least 24 kHz. So, in
order to implement the road profiler/ texture system
sampling rate required is 24 kHz or more, since all sensor
readings should be sampled with the same speed for
consistency.

4 EP80579 Embedded Processor
EP80579 (code name Tolapai) [13] is a system-on-a-chip
(SoC) embedded processor which includes an Intel
architecture complex based on the Intel Pentium M
processor, integrated memory controller hub, integrated I/O

controller hub and flexible integrated I/O support with three
Ethernet connections, two Controller Area Network (CAN)
interfaces and a local expansion bus interface. The design
also includes PCI Express, High Speed Serial1 (HSS) ports
for TDM or analog voice connectivity, security accelerators
for bulk encryption, hashing and public/private key
generation.

The Intel QuickAssist Technology initiative consists of a
family of interrelated Intel and industry standard
technologies that simplify the use and deployment of
accelerators on Intel platforms. The integrated accelerators
in this processor support Intel QuickAssist Technology
through software packages provided by Intel. These software
packages provide the library structures to integrate security
and/or VoIP functionality into the application, completely
adjunct to the Intel architecture complex, freeing up CPU
cycles to support additional features and capabilities. This
provides the efficiency of customized hardware with the
flexibility to design diverse applications with one platform.

Fig. 3 shows a block diagram of the Tolapai SoC.

Fig. 3 Block Diagram of the Tolapai Embedded
Processor [7]

5 Embedded Software
Parallel processing implementation requires an operating
system capable of dealing and managing parallel tasks
(threads), and a programming language with ability to

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1280 Issue 11, Volume 9, November 2010

create, run, and terminate threads. Recently there are many
operating systems that can support parallel processing.
Selecting an operating system is one of the most
fundamental decisions as a device manufacturer you must
make. In the case of choosing an operating system for
embedded systems, such operating system should have
certain characteristics, like having a small foot print since
usually embedded systems do not have large storage devices.
Also the operating system should be able to communicate
and control any special peripheral designed specific
embedded applications. Since embedded systems are mainly
designed with time constraints or what is known as real-time
application, the operating system must be able to meet the
real-time requirements for the implemented application or
the whole system will be useless.

An operating system dedicated for embedded systems is
known as a real-time operating system (RTOS). RTOS is an
operating system that guarantees a certain capability within a
specified time constraint. Some real-time operating systems
are created for a special application and others are more
general purpose. For our application we selected one the
Windows based operating systems dedicated to the
embedded systems. The Windows Embedded Standard.

5.1 Windows Embedded Standard
Windows Embedded Standard allows developers to get
access to embedded specific tools that work in the familiar
developer environment of Visual Studio allowing them to
rapidly conFig., build, and deploy devices that are more
secure, reliable, and manageable.

The main practice of parallel processing involves splitting a
single problem into separate parts that are solved
simultaneously, allowing more work to be done faster due to
the fact of using parallel execution instead of serial
execution. Those parts are implemented in program units
called threads, and using several threads as in the case of
parallel processing is known as multi-threading.

Multi-threading is implemented within a single program,
running on a single system. It requires a multi-thread
capable operating system, which allows a program to split
tasks between multiple threads of execution. On a machine
with multiple processors, these threads can execute
concurrently, potentially speeding up a given task
significantly. Also multi-threading requires programming
languages that provide abstractions for expressing the
parallelism explicitly.

5.2 Parallel Programming Models
In order to split a single problem into separate parts, or
create a parallel programming model from a serial
programming model, developers should identify the parts
(workloads) and the dependencies among them in the given
program; then divide the workload to multiple threads. This
division is known as decomposition. There are three major
forms of decomposition [18, 19]; the first type is the task
(Functional) decomposition where the division is based on

the type of work assigned to different thread. The second
decomposition type is the data decomposition which is based
on dividing the data among a number of threads that perform
the same functions but processing different data block. And
finally, the third one is the data flow decomposition where
the output of one thread is the input of another one. This
decomposition type is used when there is dependency among
threads which occur in what is known as a producer/
consumer problem which is the case in pipeline or wave-
front programming patterns.

5.3 Thread Implementation
Programming embedded multiprocessor systems can be
difficult. They are generally programmed at a relatively low
level using C, C++, or even assembly language.

Thread implementation requires special support from the
operating system and the implementation language with the
support of special libraries that helps creating and
manipulation threads.

OpenMP is one of the well known and widely used
threading technologies. OpenMP is an application
programming interface (API) for parallel programming
which consists of compiler directives and library of support
functions that is conFig.d to work with FORTRAN, C, or
C++ programming languages. OpenMP supports both data
and functional Parallelism on a shared memory system.

OpenMP provides support for concurrency, synchronization,
and data handling while hiding the need for explicit thread
management.

6 Modeling Road Profiler with MARTE
In this section we will show and discuss the modeling
process used to model the real-time road profiler/ texture
system based on UML profile for MARTE. Also we will
show the results from implementing such a system using an
EP80579 based embedded board.

6.1 Road Profiler/ Texture System Modeling
This subsection focuses on how to model real-time
embedded systems, sensor hardware, and multi-core
processors using real-time UML extensions, as a first step in
the designing and building a fully integrated real-time
system that implements profiler/ texture system. We used a
combination of UML and MARTE to model the system, in
which we use MARTE only when UML has limited support.
The first step in modeling with UML is to provide a
description of a system’s behavior which is done with the
aid of a use case diagram. Fig. 4 illustrates the use case that
describes the profiler/ texture system. The Fig. shows two
actors. The road surface itself under test, and the system's
operator that is responsible for driving and running the
measurement vehicle. This use case is described by a series
of events that occur regarding operating the profiler/ texture

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1281 Issue 11, Volume 9, November 2010

system. The road surface will be measured to determine the
reference elevation from accelerometer sensor and height
relative to the reference from laser sensor of the road
surface. A combination both data sets will be used to

compute profile, while the texture will be estimated using
the height readings alone.

Fig. 4 Road Profiler Use Case

The activity diagram is used to show workflows (flowchart)
in a step by step manner for the activities and actions, with
support for choice, iteration and concurrency. State (activity)
diagram is another diagram of the UML standard that shows
the step-by-step workflows of the activities and actions. The
activity diagram of the system here is shown in Fig. 5. The
main activity this system carries is to continuously collect
sensor data then distribute the readings between two
computational tasks processed concurrently, profile
construction and texture estimation. The concurrent
operations are represented in the activity diagram with the
aid of fork, join states. The fork pseudo-state is a connector
that branches a single input transition into multiple outgoing
transitions to different states that will be activated
concurrently. The join pseudo-state joins together multiple
incoming transitions into a single transition. Once the data
collection is over, and the system is ready to stop working,
all data points will be saved in output files for offline
analysis and archiving processes.

Next, the state machine is introduced (Fig. 6). There are two
states. The idle/ pre-section state is where the system starts
running but doesn't perform any computation and the real
section state where the system collects and processes the
data. UML models parallelism in two ways. First, all objects

are considered to be parallel entities. Second, a single object
entity exhibits itself a concurrent behavior. This means that
the object's state-machine is specified as a set of concurrent
components. The real section state is supposed to perform
three operations separated by dotted lines. The first
operation is to collect the sensor readings, while the second
operation is to perform texture analysis once enough data is
obtained (4 inch worth of data); the third and final operation
is to compute profile for every 1 inch. Those three
operations are intended to be performed concurrently as
stated in the state machine.

In order to model the Tolapai embedded processor we
created new stereotypes. One stereotype is for the
QuickAssist technology and the other is for the Tolapai
processor itself adding the capability of customizing them
towards individual application domains. The new
stereotypes will appear in diagrams as <<QuickAssist>> and
<<Tolapai>> respectively. Fig. 7 shows the <<Tolapai>>
stereotype, which extends three of the MARTE meta-classes
namely hw_processor to represent the IA-32 processor in the
Tolapai, the hwI_O for the I/O controller part, the hwMMU
for the memory management unit. It also extends the
<<QuickAssist>> stereotype.

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1282 Issue 11, Volume 9, November 2010

Fig. 5 Activity Diagram

Fig. 6 State-Machine Diagram

Fig. 7 Tolapai Stereotype

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1283 Issue 11, Volume 9, November 2010

Fig. 8 illustrates the HRM model of the road profile/ texture
system. Using the stereotypes defined by MARTE for
different hardware components plus the newly created
stereotype for the Tolapai processor we were able to model
and specify the hardware devices and the controllers

important to build such as system. On the other hand, the
software functions and methods to be used are modeled with
the aid of SRM profile as in Fig. 9.

Fig. 8 Road Profiler HRM Model

Fig. 9 Road Profiler SRM Model

6.2 Applicability of Tolapai for the Road
Profiler/ Texture System

The profiler program was next used with the Tolapai
development system to simulate real-time data collection. A
portable instrument package used for obtaining raw sensor
data for a given wheel path, Fig. 10, was used to obtain
sensor data from a typical road section. The desired plan is
to use the Tolapai inside the instrument module, processing
and sending the computed profile, texture and other
pavement performance characteristics via a network
connection to a client computer. Using this data the multi-
threaded profiler program was run on the Tolapai
development system to compute profile for one wheel path,
simulating the real-time data measurement process. The
computed results matched with the real-time measurements
using the current measurement system. Fig. 11 represents the

road profile while Fig. 12 shows the MPD values for texture
estimate.

In terms of software implementation, the application is
programmed in C with the aid of OpenMP as a threading
technology. The threads created according to the thread
mapping obtained from decomposing the given application
as illustrated in the activity and state-machine diagrams (Fig.
5 and Fig. 6) and discussed in the previous subsection. The
tasks to be processed are mapped according to the
dependency and the amount of work to be done in each
stage. The road profiler/ texture system problem fits the data
flow decomposition and more precisely, the producer/
consumer model. From Fig. 3, there are three tasks that can
be processed in parallel; the main task is data acquisition.
The second task is the profile construction, and the third one
is texture analysis. Both second and third task depends on
the first task and the data passed to them from the first task,
in which the relationship among them fits the producer/

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1284 Issue 11, Volume 9, November 2010

consumer model where the data acquisition represents the
producer and both the texture analysis and profile
construction are the consumer part in this relationship. This
way of decomposition requires creating three different
threads each of them is assigned to one of the tasks. Fig. 13
lists the main part of the code that starts with setting the
number of threads to be used (3 threads) then the program
will call the ADC() function to initialize the data acquisition
unit and any other device that needs initialization) . After
that the program will initialize and run the created threads
with the aid of section pragmas in OpenMP were each one of
them will execute one task assigned by the function calls in
each section.

Fig. 10 Portable Profiler Instrument Module

Fig. 11 Road Profile measurement for tested section

Fig. 12 MPD Values for Estimating Texture Contents of

the Tested Section

#include "stdio.h"

#include "math.h"

#include <time.h>

#include <omp.h>

...

void Set_ADC(); //Initialize the ADC
Device

void Data_Acquisition();

void Construct_Profile();

void Texture_Analysis();

int main()

{

omp_set_num_threads(3);

Set_ADC();

#pragma omp parallel sections

{

 #pragma omp section

 Data_Acquisition();

#pragma omp section

 Texture_Analysis();

 #pragma omp section

 Construct_Profile();

 }

 printf("Program End...\n");

}

Fig. 13 C Code for Implementing the Road Profiler/
Texture System in with OpenMP Support

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1285 Issue 11, Volume 9, November 2010

7 Conclusion
In this paper we discussed how to design and model a real-
time embedded system that performs several tasks regarding
road surface conditions based on multiple sensor readings
which will be processed to reconstruct the road profile and
to provide an estimate for the texture contents of the road
surface. The Tolapai embedded processor will be used in the
design of such a system. A comparison between different
UML modeling profiles was introduced and accordingly we
decided on a combination of UML and MARTE to model
the system. We use MARTE only when UML has limited
support. UML was used to show the general model of the
system and MARTE was used specifically to model the
hardware system with all of its details along with modeling
the software methods which are part of the application.

ACKNOWLEDGMENT

This research has been funded in part by an Intel funded
research project on" investigating the use of an EP80579
platform for real-time monitoring of pavement surface and
bridge structure characteristics in a mobile measurement
system" and a project with the Texas department of
transportation and federal highway administration on
development of a portable profiling system.

References:

[1] M. W. Sayers and S. M. Karamihas, the Little Book of
Profiling, University of Michigan Transportation
Research Institute, September 1998.

[2] SysML, http://www.omgsysml.org/
[3] MARTE, http://www.omgmarte.org/
[4] http://www.omg.org/technology/documents/formal/sch

edulability.htm
[5] B. Selic, J. Rumbaugh, “Using UML for modeling

complex real-time systems”, ObjecTime, March 1998
[6] ASTM E1845-01,"Standard practice for Calculating

Pavement Macrotexture Mean Profile Depth", 2005
[7] http://www.intel.com/design/intarch/ep80579/index.ht

m
[8] A. Staines, “A Comparison of Software Analysis and

Design Methods for Real Time Systems”,
PROCEEDINGS OF WORLD ACADEMY OF
SCIENCE, ENGINEERING AND TECHNOLOGY
VOLUME 21 MAY 2007

[9] J. Kebrle, R. Walker, “Texture Measurement and
Friction Estimation Using Laser Data Acquisition and
Neural Networks”, Proceedings of Mathematical and
Computational Methods in Science and Engineering,
WSEAS, Trinidad and Tobago, November 5-7, 2007.

[10] I. Quadri, P. Boulet, S. Meftali, J. Dekeyser, “Using
an MDE Approach for Modeling of Interconnection
Networks”, Proceedings of the International
Symposium on Parallel Architectures, Algorithms, and
Networks 2008, Sydney, May 2008

[11] C. André, F. Mallet, A. Khan, R. de Simone
“Modeling SPIRIT IP-XACT with UML MARTE”,
Proc. DATE Workshop on Modeling and Analysis of

Real-Time and Embedded Systems with the MARTE
UML profile, 2008

[12] R. Jigorea, S. Manolache, P. Eles, Z. Peng, “Modeling
of Real-Time Embedded Systems in an Object-Oriented
Design Environment with UML”, 3rd IEEE Int.
Symposium on Object-Oriented Real-Time,
Distributed Computing, Newport Beach, CA, March
2000.

[13] http://edc.intel.com/Platforms/EP80579/#platform-
overview-content=platform-overview-toggle~~visible-
content

[14] S. Turki, T. S. Lismma, A. Sghaier, "A SysML profile
for mechatronics integrating Bond Graphs", 9th
WSEAS International Conference on Systems, Athens,
Greece, July 11-13, 2005.

[15] M. E. Cambronero Gregorio D´ıaz J.Jos´e Pardo
Valent´ın Valero Fernando L. Pelayo, "RT-UML for
modeling Real-Time Web Services", Proceedings of the
IEEE Services Computing Workshops (SCW'06)

[16] K. Ito, S. Matsuura, “Model Driven Development for
Embedded Systems”, Proceedings of the 9th WSEAS
international conference on Software engineering,
parallel and distributed systems, Cambridge, UK,
Feb20-22, 2010

[17] A. R. Mahajan , M. S. Ali, “Optimization of memory
system in Real-Time Embedded Systems”, Proceedings
of the 11th WSEAS International Conference on
Computers, Agios Nikolaos, Crete Island, Greece, July
26-28, 2007

[18] Multi-Core Programming Increasing Performance
through Software Multi-threading, Shameem Akhter,
Jason Roberts, Intel Press, 2006

[19] Software Development for Embedded Multi-core
Systems: A Practical Guide Using Embedded Intel
Architecture, Max Domeika, Newnes, 2008

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1286 Issue 11, Volume 9, November 2010

