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Abstract: With the advances in integration of different units such as I/O controllers and network interfaces in a 
single chip, Intel introduced the low power EP80579 embedded processor. This processor is the first IA based 
system-on-chip (SoC) with an IA-32 processor core, North and South Bridges, and integrated Accelerator and 
network interface.  

In this paper we will show main steps to design a real-time embedded system along with identifying the hardware 
and software requirements to implement such system. The embedded system introduced in this work will perform 
several tasks regarding road surface conditions based on multiple sensor readings. The sensor data will be 
processed in real-time to reconstruct the road profile and provide an estimate for the texture contents of the road 
surface. The EP80579 SoC will be used in the design of such a system. Modeling will be done with the aid of 
UML profile for modeling and analysis of real-time and embedded (MARTE) systems. 

 

Key-words: System-on-a-chip; Modeling Real-time systems; parallel processing modeling; MARTE; Embedded 
Application; Road Profiler. 

 

1 Introduction 
Road profiler [1] is a system that is used to reconstruct the 
road profile from the data collected by laser and 
accelerometer sensors. With the aid of the latest SoC from 
Intel, the Tolapai embedded processor, we intend to design 
and implement a real-time road profiler system with 
capabilities of providing both road profile and road surface 
texture analysis. The final desired system to be implemented 
will be a Real-time road profiler/ texture measurement 
system. 

The first step in the design of a new system is to provide a 
model for the system that shows the main parts of the system 
and how to integrate them together to reach the desired 
design. For this reason modeling tools are used. The general-
purpose modeling language UML (Unified Modeling 

Language) is a standard used mainly for software systems. 
UML provides extensions and profiles that can help 
modeling embedded systems. Many of these profiles such as 
UML-RT, SysML, SPT and MARTE [2-5] are now 
standardized and in use for modeling embedded systems and 
the real-time operations. Also the new UML profiles 
introduce the tools to model both hardware and software 
systems and provide a way of allocating the software to the 
desired hardware unit. Modeling real-time systems either as 
hardware, software, or a combination of both has been the 
subject of several research projects. For instance, [10] 
models a network constructed from network-on-chip (NoC) 
systems with the aid of MARTE. In [11] a hardware model 
is introduced for the IP-XACT feature which is a standard to 
normalize interface of intellectual property (IP) from 
different vendors of SoC systems. [12] Models a 
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telecommunication system, GSM base transceiver station, 
using UML standard.  

The following section discusses a number of UML profiles 
and extensions developed for embedded systems modeling. 
The third section of the paper describes briefly the road 
profiler/ texture system. Section 4 introduces the Tolapai 
(EP80579) SoC. Section 5 briefly introduces the software 
used for implementing such application. The modeling steps 
as well as the results obtained from the road profiler system 
are shown and analyzed in section 6. Finally, the paper is 
concluded in section 7. 

 

 

2 UML Extensions for Modeling Real-
Time Systems 
In this section we are discussing some of the modeling 
profiles adopted and standardized as part of UML.   

 

2.1 UML-RT 
Real-time Object Oriented Modeling (ROOM) [5] is a 
modeling language used for modeling real-time systems. It 
has its own graphical notation set to model structures of real-
time systems. A capsule stereotype was introduced by 
ROOM to represent a reactive object. A capsule can 
communicate with other capsules through ports, which are 
boundary objects, and a protocol associated with the port.  
ROOM also defines a connector which connects ports to 
provide transmission facility for supporting a particular 
protocol. ROOM is more oriented towards the actual 
implementation and physical design [8]. ROOM was 
integrated as part of UML to form what is known as UML-
RT.  Lack of usage and support is considered one of the 
limitations of the UML-RT.    

 

2.2 SysML  
The Systems Modeling Language (SysML) is a UML profile 
that is domain-specific Modeling language for systems 
engineering. SysML supports the specification, analysis, 
design, verification and validation of a broad range of 
complex systems [3]. SysML defines two types of diagrams, 
the Block Definition Diagram (BDD) and the Internal Block 
Diagram (IBD). The BDD is based on UML Class Diagrams 
and UML Composite Structure Diagrams. The role of a 
BDD is to describe the relationships among blocks, which 
are basic structural elements focusing on specifying 
hierarchies and interconnections of the system to be 
modeled. The SysML IBD allows the designer to refine the 
structural aspect of the model. The IBD is the equivalent of 
the composite structure in UML. SysML lacks the constructs 
for modeling time. 
 

2.3 UML Profile for Scheduling, Performance 
and Time (SPT) 

SPT defines a set of concepts useful for modeling real-time 
systems. Its purpose is to integrate notation used by existing 
real-time analysis techniques into UML in order to: 

• Enable the construction of models that could be 
used to make quantitative predictions regarding 
these characteristics. 

• Facilitate communication of design intent between 
developers in a standard way. 

• Enable inter-operability between various analysis 
and design tools. 

Thus, the SPT is defined to offer a common framework for 
real-time modeling that unifies the diversity of techniques, 
terminologies and notations existing in the real-time 
software community, while still leaving space for different 
kinds of specifications. In its present form, the main focus of 
SPT is on time and time-related concepts: performance, 
timelines, schedulability, etc. 
SPT offers a terminology for modeling real-time systems: it 
defines a set of concepts - aiming to fit standard real-time 
modeling techniques - and some relationships between these 
concepts as allowed by the meta-modeling technique used 
for the definition of the SPT. 
The use of SPT is justified because UML is lacking in some 
key areas that are of particular concern to real-time system 
designers and developers. In particular, the lack of a 
quantifiable notion of time and resources was an impediment 
to its broader use in the real-time and embedded domain. It 
was discovered that UML had all the requisite mechanisms 
for addressing these issues, in particular through its 
extensibility faculties [14, 15]. SPT is a standard way of 
using these capabilities to represent concepts and practices 
from the real-time domain. 
One of the main guiding principles is that, as much as 
possible, modelers should not be hindered in the way they 
use UML to represent their systems just for the purpose of 
model analysis. That is, rather than enforcing a specific 
approach or modeling style for real-time systems, the profile 
should allow modelers to choose the style and modeling 
constructs that they feel are the best fit for their needs of the 
moment.  
 

2.4 UML Profile for MARTE  
MARTE is UML profile adopted by OMG in order to extend 
the capacities of UML for real-time modeling in embedded 
systems. Not only for the modeling and analysis, MARTE 
also provides support for specification, design, and 
verification/ validation stages. This new profile is intended 
to replace the existing UML Profile for Schedulability, 
Performance and Time. [4] 
Because SPT’s constructs were considered too abstract and 
hard to apply, and for the requirement of aligning SPT 
profile UML2.0, there was a need for upgrading or creating 
new profile. 
MARTE profile is an evolution of the SPT profile with the 
purpose of upgrading this profile to UML2.0. It is made of 
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various packages: namely MARTE foundations, MARTE 
design model, MARTE analysis model and MARTE 
annexes. The profile is intended to be a fundamental tool in 
the design of real time systems. Both modeling and 
analyzing concerns are tackled leading to a complete 
instrument to improve the design phase. Within MARTE, 
the Software Resource modeling (SRM) framework provides 
modeling artifacts to describe software execution platform 
modeling. The SRM profile provides a broad range of 
modeling capabilities covering main multitasking framework 
such as dedicated real-time language libraries and real-time 
operating systems. 
Besides software resources, MARTE allows us to model 
hardware resources. Due to its general purpose, UML lacks 
certain key native artifacts for describing concrete and 
precise hardware RTE execution platform. The UML profile 
for MARTE fills this lack with two sub-profiles: a generic 
resource modeling (GRM) profile and a hardware resource 
modeling profile (HRM). Both can be used to model 
hardware platform.  
The HRM is composed of two views, a logical view that 
classifies hardware resources depending on their functional 
properties, and a physical view that concentrates on their 
physical nature. Both are specializations of the general 
model. The logical and physical views are complementary. 
They provide two different abstractions of hardware which 
could be simply merged.  

 

2.5 Real-time Modeling Using UML and UML 
Profiles 

Common UML and/ or UML profiles modeling practices 
suggests that  

• Use of UML profiles only when standard UML cannot 
perform the task.  

• Use SysML diagrams for general modeling of the 
system. 

• Use MARTE for modeling the system’s details. 

• Use MARTE specifically to model the hardware system 
with all of its details along with modeling the software 
methods which are part of the application. 

  

 

3 Road Profiler/ Texture System 
The system to be designed will collect and analyze data 
regarding road surface condition in order to specify road 
roughness and usability. The purpose of the system is to 
determine the road profile and texture measurements from 
the data collected by laser and accelerometer sensors 
installed in a vehicle which is driven over a specified road 
section.  

 

3.1 Profiler  
The profiler is an instrument that is used to produce values 
related in a well-defined way to a road surface [1]. Profiler 
combines reference elevation, height relative to the reference 
and longitudinal distance to produce the true road surface 
profile.  

Most profilers measure profiles for wheel paths traveled. For 
each wheel path an accelerometer is used to find inertial 
reference defining the height of the accelerometer at that 
moment after double integrating the acceleration 
measurements. A laser sensor is then used to obtain readings 
representing the height of the road surface to the reference, 
and a distance encoder provides the longitudinal distance as 
in Fig. 1. 

The road profile is reconstructed from laser and 
accelerometer readings according to (1).  

             )t(Hdtdt)t(a)t(p −= ∫∫                    (1) 

Where  

            a(t) is the acceleration, 

            H(t) is the height measured by the laser  
            sensor. 

A high-pass filter is used to remove the effect of long 
wavelengths on the profile. These wavelengths represent the 
underlying grade and overall road curvature and are more 
difficult to measure with inertial profilers with the current 
configuration. There is also a distance sensor to measure the 
distance traveled. An optical sensor is often used to 
determine the start and end of some measured road sections.  

 

 
Fig. 1 Road profiler system [1] 

 

3.2 Texture Analysis  
ASTM E 1845 [6] standardizes the calculation of pavement 
texture from laser readings which represent the measured 
profile of the pavement macro-texture.  

The pavement macro-texture is defined as the deviations of a 
pavement surface from a true planar surface with the 
characteristic dimensions of wavelength and amplitude from 
5 mm and up. 
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In order to compute the mean profile depth (MPD), the 
measured profile is divided into segments each having a 
base-length of 100 mm. The slope, if any, of each segment is 
suppressed by subtracting a linear regression of the segment. 
The segment is further divided into two equal lengths of 50 
mm. segments and the height of the highest peak in each half 
segment is determined. The difference between that height 
and the average level of the segment is calculated. The 
average value of these differences for all segments making 
up the measured profile is reported as the MPD. Check the 
illustration in Fig. 2.  

The texture will be computed from laser sensor readings for 
both left and right wheel paths from the road profiler system 
as discussed in the previous subsection. 

 

Fig. 2 Mean segment depth computation 

 

3.3 Real-Time Implementation Requirements    
In this section to the system requirements and the amount of 
data to be processed will be discussed.  

The main requirement to operate the road profiler/ texture 
system is to collect data for any road section with the 
minimal distraction to the traffic, which means that the 
profiler vehicle should run in a speed range of 40- 60 mph 
(58- 88 ft/sec). The data from all 6 sensors are to be 
collected simultaneously via data acquisition system in order 
to compute the road profile values correctly. The minimum 
sampling rate required to construct road profile from sensor 
readings is 4 kHz; while for accurate texture estimation, 
laser readings should be sampled with at least 24 kHz. So, in 
order to implement the road profiler/ texture system 
sampling rate required is 24 kHz or more, since all sensor 
readings should be sampled with the same speed for 
consistency. 

 

 

4 EP80579 Embedded Processor 
EP80579 (code name Tolapai) [13] is a system-on-a-chip 
(SoC) embedded processor which includes an Intel 
architecture complex based on the Intel Pentium M 
processor, integrated memory controller hub, integrated I/O 

controller hub and flexible integrated I/O support with three 
Ethernet connections, two Controller Area Network (CAN) 
interfaces and a local expansion bus interface. The design 
also includes PCI Express, High Speed Serial1 (HSS) ports 
for TDM or analog voice connectivity, security accelerators 
for bulk encryption, hashing and public/private key 
generation. 

The Intel QuickAssist Technology initiative consists of a 
family of interrelated Intel and industry standard 
technologies that simplify the use and deployment of 
accelerators on Intel platforms. The integrated accelerators 
in this processor support Intel QuickAssist Technology 
through software packages provided by Intel. These software 
packages provide the library structures to integrate security 
and/or VoIP functionality into the application, completely 
adjunct to the Intel architecture complex, freeing up CPU 
cycles to support additional features and capabilities. This 
provides the efficiency of customized hardware with the 
flexibility to design diverse applications with one platform. 

Fig. 3 shows a block diagram of the Tolapai SoC. 

 

 

Fig. 3 Block Diagram of the Tolapai Embedded 
Processor [7] 

 

 

5 Embedded Software 
Parallel processing implementation requires an operating 
system capable of dealing and managing parallel tasks 
(threads), and a programming language with ability to 
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create, run, and terminate threads. Recently there are many 
operating systems that can support parallel processing. 
Selecting an operating system is one of the most 
fundamental decisions as a device manufacturer you must 
make. In the case of choosing an operating system for 
embedded systems, such operating system should have 
certain characteristics, like having a small foot print since 
usually embedded systems do not have large storage devices. 
Also the operating system should be able to communicate 
and control any special peripheral designed specific 
embedded applications. Since embedded systems are mainly 
designed with time constraints or what is known as real-time 
application, the operating system must be able to meet the 
real-time requirements for the implemented application or 
the whole system will be useless.  

An operating system dedicated for embedded systems is 
known as a real-time operating system (RTOS). RTOS is an 
operating system that guarantees a certain capability within a 
specified time constraint. Some real-time operating systems 
are created for a special application and others are more 
general purpose. For our application we selected one the 
Windows based operating systems dedicated to the 
embedded systems. The Windows Embedded Standard. 

 

5.1 Windows Embedded Standard 
Windows Embedded Standard allows developers to get 
access to embedded specific tools that work in the familiar 
developer environment of Visual Studio allowing them to 
rapidly conFig., build, and deploy devices that are more 
secure, reliable, and manageable.  

The main practice of parallel processing involves splitting a 
single problem into separate parts that are solved 
simultaneously, allowing more work to be done faster due to 
the fact of using parallel execution instead of serial 
execution. Those parts are implemented in program units 
called threads, and using several threads as in the case of 
parallel processing is known as multi-threading.  

Multi-threading is implemented within a single program, 
running on a single system. It requires a multi-thread 
capable operating system, which allows a program to split 
tasks between multiple threads of execution. On a machine 
with multiple processors, these threads can execute 
concurrently, potentially speeding up a given task 
significantly. Also multi-threading requires programming 
languages that provide abstractions for expressing the 
parallelism explicitly.  

 

5.2 Parallel Programming Models 
In order to split a single problem into separate parts, or 
create a parallel programming model from a serial 
programming model, developers should identify the parts 
(workloads) and the dependencies among them in the given 
program; then divide the workload to multiple threads. This 
division is known as decomposition. There are three major 
forms of decomposition [18, 19]; the first type is the task 
(Functional) decomposition where the division is based on 

the type of work assigned to different thread. The second 
decomposition type is the data decomposition which is based 
on dividing the data among a number of threads that perform 
the same functions but processing different data block. And 
finally, the third one is the data flow decomposition where 
the output of one thread is the input of another one. This 
decomposition type is used when there is dependency among 
threads which occur in what is known as a producer/ 
consumer problem which is the case in pipeline or wave-
front programming patterns.  

 

5.3 Thread Implementation 
Programming embedded multiprocessor systems can be 
difficult. They are generally programmed at a relatively low 
level using C, C++, or even assembly language. 

Thread implementation requires special support from the 
operating system and the implementation language with the 
support of special libraries that helps creating and 
manipulation threads.  

OpenMP is one of the well known and widely used 
threading technologies. OpenMP is an application 
programming interface (API) for parallel programming 
which consists of compiler directives and library of support 
functions that is conFig.d to work with FORTRAN, C, or 
C++ programming languages. OpenMP supports both data 
and functional Parallelism on a shared memory system. 

OpenMP provides support for concurrency, synchronization, 
and data handling while hiding the need for explicit thread 
management. 

 

 

6 Modeling Road Profiler with MARTE 
In this section we will show and discuss the modeling 
process used to model the real-time road profiler/ texture 
system based on UML profile for MARTE. Also we will 
show the results from implementing such a system using an 
EP80579 based embedded board.   

 

6.1 Road Profiler/ Texture System Modeling 
This subsection focuses on how to model real-time 
embedded systems, sensor hardware, and multi-core 
processors using real-time UML extensions, as a first step in 
the designing and building a fully integrated real-time 
system that implements profiler/ texture system. We used a 
combination of UML and MARTE to model the system, in 
which we use MARTE only when UML has limited support.  
The first step in modeling with UML is to provide a 
description of a system’s behavior which is done with the 
aid of a use case diagram. Fig. 4 illustrates the use case that 
describes the profiler/ texture system. The Fig. shows two 
actors. The road surface itself under test, and the system's 
operator that is responsible for driving and running the 
measurement vehicle. This use case is described by a series 
of events that occur regarding operating the profiler/ texture 
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system. The road surface will be measured to determine the 
reference elevation from accelerometer sensor and height 
relative to the reference from laser sensor of the road 
surface. A combination both data sets will be used to 

compute profile, while the texture will be estimated using 
the height readings alone. 
 

 

 
Fig. 4 Road Profiler Use Case 

 

 

The activity diagram is used to show workflows (flowchart) 
in a step by step manner for the activities and actions, with 
support for choice, iteration and concurrency. State (activity) 
diagram is another diagram of the UML standard that shows 
the step-by-step workflows of the activities and actions. The 
activity diagram of the system here is shown in Fig. 5. The 
main activity this system carries is to continuously collect 
sensor data then distribute the readings between two 
computational tasks processed concurrently, profile 
construction and texture estimation. The concurrent 
operations are represented in the activity diagram with the 
aid of fork, join states. The fork pseudo-state is a connector 
that branches a single input transition into multiple outgoing 
transitions to different states that will be activated 
concurrently. The join pseudo-state joins together multiple 
incoming transitions into a single transition. Once the data 
collection is over, and the system is ready to stop working, 
all data points will be saved in output files for offline 
analysis and archiving processes. 

Next, the state machine is introduced (Fig. 6). There are two 
states. The idle/ pre-section state is where the system starts 
running but doesn't perform any computation and the real 
section state where the system collects and processes the 
data. UML models parallelism in two ways. First, all objects 

are considered to be parallel entities. Second, a single object 
entity exhibits itself a concurrent behavior. This means that 
the object's state-machine is specified as a set of concurrent 
components. The real section state is supposed to perform 
three operations separated by dotted lines. The first 
operation is to collect the sensor readings, while the second 
operation is to perform texture analysis once enough data is 
obtained (4 inch worth of data); the third and final operation 
is to compute profile for every 1 inch. Those three 
operations are intended to be performed concurrently as 
stated in the state machine.  

In order to model the Tolapai embedded processor we 
created new stereotypes. One stereotype is for the 
QuickAssist technology and the other is for the Tolapai 
processor itself adding the capability of customizing them 
towards individual application domains. The new 
stereotypes will appear in diagrams as <<QuickAssist>> and 
<<Tolapai>> respectively. Fig. 7 shows the <<Tolapai>> 
stereotype, which extends three of the MARTE meta-classes 
namely hw_processor to represent the IA-32 processor in the 
Tolapai, the hwI_O for the I/O controller part, the hwMMU 
for the memory management unit. It also extends the 
<<QuickAssist>> stereotype.  
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Fig. 5 Activity Diagram 

 
Fig. 6 State-Machine Diagram 

 

 
Fig. 7 Tolapai Stereotype 
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Fig. 8 illustrates the HRM model of the road profile/ texture 
system. Using the stereotypes defined by MARTE for 
different hardware components plus the newly created 
stereotype for the Tolapai processor we were able to model 
and specify the hardware devices and the controllers 

important to build such as system. On the other hand, the 
software functions and methods to be used are modeled with 
the aid of SRM profile as in Fig. 9. 

 

 
Fig. 8 Road Profiler HRM Model 

 
Fig. 9 Road Profiler SRM Model 

 

6.2 Applicability of Tolapai for the Road 
Profiler/ Texture System 

The profiler program was next used with the Tolapai 
development system to simulate real-time data collection. A 
portable instrument package used for obtaining raw sensor 
data for a given wheel path, Fig. 10, was used to obtain 
sensor data from a typical road section. The desired plan is 
to use the Tolapai inside the instrument module, processing 
and sending the computed profile, texture and other 
pavement performance characteristics via a network 
connection to a client computer. Using this data the multi-
threaded profiler program was run on the Tolapai 
development system to compute profile for one wheel path, 
simulating the real-time data measurement process. The 
computed results matched with the real-time measurements 
using the current measurement system. Fig. 11 represents the 

road profile while Fig. 12 shows the MPD values for texture 
estimate. 

In terms of software implementation, the application is 
programmed in C with the aid of OpenMP as a threading 
technology. The threads created according to the thread 
mapping obtained from decomposing the given application 
as illustrated in the activity and state-machine diagrams (Fig. 
5 and Fig. 6) and discussed in the previous subsection. The 
tasks to be processed are mapped according to the 
dependency and the amount of work to be done in each 
stage. The road profiler/ texture system problem fits the data 
flow decomposition and more precisely, the producer/ 
consumer model. From Fig. 3, there are three tasks that can 
be processed in parallel; the main task is data acquisition. 
The second task is the profile construction, and the third one 
is texture analysis. Both second and third task depends on 
the first task and the data passed to them from the first task, 
in which the relationship among them fits the producer/ 
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consumer model where the data acquisition represents the 
producer and both the texture analysis and profile 
construction are the consumer part in this relationship. This 
way of decomposition requires creating three different 
threads each of them is assigned to one of the tasks. Fig. 13 
lists the main part of the code that starts with setting the 
number of threads to be used (3 threads) then the program 
will call the ADC() function to initialize the data acquisition 
unit and any other device that needs initialization) .  After 
that the program will initialize and run the created threads 
with the aid of section pragmas in OpenMP were each one of 
them will execute one task assigned by the function calls in 
each section. 

 

 
Fig. 10 Portable Profiler Instrument Module 

 
Fig. 11 Road Profile measurement for tested section 

 

 
Fig. 12 MPD Values for Estimating Texture Contents of 

the Tested Section  

#include "stdio.h" 

#include "math.h" 

#include <time.h> 

#include <omp.h> 

...  

void Set_ADC(); //Initialize the ADC 
Device 

void Data_Acquisition(); 

void Construct_Profile(); 

void Texture_Analysis(); 

int main() 

{ 

omp_set_num_threads(3);     

Set_ADC(); 

#pragma omp parallel sections 

{ 

 #pragma omp section  

  Data_Acquisition(); 

#pragma omp section  

  Texture_Analysis(); 

 #pragma omp section 

  Construct_Profile(); 

 } 

 printf("Program End...\n"); 

} 

Fig. 13 C Code for Implementing the Road Profiler/ 
Texture System in with OpenMP Support 
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7 Conclusion 
In this paper we discussed how to design and model a real-
time embedded system that performs several tasks regarding 
road surface conditions based on multiple sensor readings 
which will be processed to reconstruct the road profile and 
to provide an estimate for the texture contents of the road 
surface. The Tolapai embedded processor will be used in the 
design of such a system. A comparison between different 
UML modeling profiles was introduced and accordingly we 
decided on a combination of UML and MARTE to model 
the system. We use MARTE only when UML has limited 
support. UML was used to show the general model of the 
system and MARTE was used specifically to model the 
hardware system with all of its details along with modeling 
the software methods which are part of the application.  
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