

Performance Evaluation of Intel's Quad Core Processors for Embedded
Applications

JAREER H. ABDEL-QADER

Department of Computer Science and
Engineering

University of Texas at Arlington
416 Yates St. Nedderman Hall, Rm 300,

Arlington, Texas
USA

Jareer.abdelqader@mavs.uta.edu

ROGER S. WALKER
Department of Computer Science and

Engineering
University of Texas at Arlington

416 Yates St. Nedderman Hall, Rm 300,
Arlington, Texas

USA
Roger.walker@uta.edu

http://ranger.uta.edu/~walker/

Abstract: - Recently, multiprocessing is implemented using either chip multiprocessing (CMP) or Simultaneous
multithreading (SMT). Multi-core processors, represent CMP processors, are widely used in desktop and server
applications and are now appearing in real-time embedded applications. We are investigating optimal
configurations of some of the available multi-core processors suitable for developing real-time software for a
multithreaded application used for pavement performance measurements. For the application discussed in this
paper we are considering the use of either the Intel core 2 quad or the core i7 (a quad core processor with
hyper threading (HT) technology.) Processor performance is a major requirement in this set of real-time,
computational intensive embedded applications. The performance of both processors is measured and
evaluated using single and multithreaded workloads supplied by different benchmark suites. As for the core i7
processor we also provide an evaluation for the HT technology implemented in each core of this processor.

Key-words: Quad core processors; Multi-threading; Performance Evaluation; Benchmark; Memory bandwidth;
Memory Latency.

1 Introduction
Performance evaluation of computer systems in general
and processors in particular becomes more difficult with
the advancement of multi-core processors. Developers
often rely on performance data and benchmark results to
evaluate processors in order to pick the most appropriate
one that can best meet their design criteria. Researchers at
the Transportation Instrumentation Lab (TIL) at the
University of Texas at Arlington (UTA) have been
developing a measurement system for real-time pavement
performance measurements. The system consists of a
series of independent low-power general purpose
instrument modules used for measuring various pavement
performance characteristics. Each measurement module
acquires processes, synchronizes, and communicates data
between itself and other modules from one or more
sensors in real-time. The sensors used in the modules
include such devices as gyros, accelerometers, lasers,

infrared detectors, etc. One or more high performance
multi-core embedded control processor(s) are needed to
perform the necessary multithreaded real-time
computations.
For this reason researchers are testing several of the
recently available processors to determine which can best
fit for the application. Because our application requires a
large degree of multi-processing in order to meet the real-
time needs, we were interested in the performance
resulting from the use of known multi-threaded
benchmarks. As a startup, we are using some of the
widely accepted benchmarks to provide a general idea
about the processors’ performance and to be able to
compare our results with the results published by other
researchers such as [1, 2, 11, 12, 13, 14, and 15].
STREAM, STREAM2, and NPB are among well known
OpenMP benchmarks that are mostly used for testing and
evaluating processors' performance. For example in [1]
STREAM and STREAM2 benchmarks were used for

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1265 Issue 11, Volume 9, November 2010

comparing the performance of three different dual core
processors namely, the Intel core 2 Duo, Pentium D, and
the AMD Athlon 64 X2 processors and from the results
obtained, the authors found that the core 2 Duo provided
the best performance among all three processors while the
Pentium D was the worst. In [2] the NPB benchmark was
used to analyze and evaluate a system with two Intel dual-
core Xeon processors. The results were also used to test
the hyper threading technology implemented in this
particular processor. Researchers reached the conclusion
that using a single dual core processor with HT enabled is
the most efficient architecture for the embedded
application.
Accordingly, in this paper we use these benchmarks to
test and analyze the performance of two of the Intel's
quad-core processor architectures, the core 2 Quad
(Q6600) and the core i7-920 which comes with the hyper
threading (HT) technology. We also used the Lmbench
benchmark suit to evaluate the memory performance and
data transfer operations that both processors can provide.
Hyper threading works by duplicating certain resource
sections of the processor but not the main execution
resources. The hyper threading technology is based on the
principle that during every clock pulse only part of the
processor resources are used for execution of the program
code. Unused resources can also be loaded with parallel
execution of another thread. This means that a single
physical processor containing two logical processors can
share the same computational resources. In the case of the
core i7, the operating system and applications see eight
cores and can distribute a work load between them,
similar to a normal eight-processor system.
The results obtained from the benchmark suites will be
used to provide a comparison between the two different
Intel quad core architectures; also it will be used to assess
the hyper threading technology found in the core i7
processors. The results also illustrate the need for insuring
a proper number of thread usage, i.e. the performance
degradation that can occur when too many threads are
used for a particular application.
The following section of the paper describes briefly the
Intel quad core processors tested. Section 3 introduces the
benchmark suites used. While in the fourth section results
from benchmarks are introduced and analyzed. The paper
is concluded in section 5.

2 Intel Quad-Core Processors
Multiprocessing is implemented using either chip
multiprocessing (CMP) or Simultaneous multithreading
(SMT). CMPs also known as multi-core processors are
implemented by integrating two or more independent
processors (cores) on a single die (or chip).

SMT, on the other hand, is a technique for improving
CPU performance. The instructions from two threads are
interleaved in the CPU pipeline. SMT duplicates some
circuits of the processor including the some of the
pipeline stages but not duplicating the main execution
resources. Intel implementation of the SMT is known as
Hyper-Threading (HT).
In the following subsections both of the quad core
processors tested in this work will be introduced and
discussed briefly. First we will start with the core 2 quad
then the core i7.

2.1 Intel Core 2 Quad Processor
The core 2 quad processor takes two dual core processors
(core 2 duo) and combines them onto a single package.
Each of the core 2 Duo processors features 4MB of
Advanced Smart Cache, which is shared between the two
cores. Combining two core 2 Duo in a single chip allows
the new core 2 quad processors to have a total of 8MB L2
cache, but without the ability of sharing the entire L2
cache among all the four cores. Instead it acts like dual
Core 2 processors, each sharing 4MB of L2 cache. Each
core has a level 1 cache of size 32 KB instruction and 32
KB data. That affects the entire processor, since without
any shared resources between the dual processor dies,
duplication between the two distinct processors may
occur.
In this paper we used the Core 2 Quad Q6600 processor
which features an Intel quad core running at 2.4 GHz with
an 8MB (2x4MB) of combined L2 cache.

2.2 Intel Core i7 Processor
The corei3, i5 and i7 processors are the newest multi-core
processors from Intel, and are successors to the Intel Core
2 family. The core i7 processors are quad core processors
that support the hyper threading technology, and come
with many new features to enhance the processor's
performance over the core 2 processors. The core i7 has
an on-chip memory controller which means that the
memory is directly connected to the processor. This
memory controller is a triple-channel controller that
supports DDR3 memory only. Also the front side bus has
been replaced by the Intel QuickPath Interconnect (QPI)
interface. The QPI is a packet-based point-to-point
connection between the processor and the I/O chipset.
Core i7 designed is with three levels of cache. Level 1
cache is of size 32 KB instruction and 32 KB data cache
per core, level 2 size is 256 KB combined instruction and
data per core, and level 3 cache is an 8 MB on-chip smart
cache shared among all four cores.
In this paper we used the Core i7-920 processor which
features an Intel quad core running at 2.8 GHz with an
8MB of L3 cache.

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1266 Issue 11, Volume 9, November 2010

3 Benchmark suits
Performance evaluation of computer systems in general
and processors in particular becomes more difficult with
the advancement of these systems. For that reason
benchmarks were used to analyze and compare between
the different systems. Benchmarks are designed to mimic
a specific workload to test the computer system or a
certain part of it such as the processor, memory, I/O
devices, or network communications. The following
subsections discuss these benchmark suites.

3.1 STREAM/ STREAM2 Benchmarks
The STREAM/ STREAM2 benchmarks [1] measure
memory bandwidth and latency based on the most
common functions.
STREAM benchmark is a simple synthetic benchmark
program that measures sustainable memory bandwidth
and the corresponding computation rate for simple vector
kernels. It is intended to characterize the behavior of a
system for applications that are limited in performance by
the memory bandwidth of the system, rather than by the
computational performance of the CPU. [2]
STREAM2 is based on the same ideas as STREAM, but
uses a different set of vector functions. It is an attempt to
extend the functionality of the STREAM benchmark in
two important ways (1) measure the sustained bandwidth
at all levels of the cache hierarchy, and (2) more clearly
expose the performance differences between reads and
writes.
See [4] for more details about STREAM/ STREAM2
benchmarks.

3.2 NPB Benchmark Set
NPB benchmarks [5] target performance evaluation of
highly parallel computers. NPB stands for NAS
(Numerical Aerodynamic Simulation) Parallel
Benchmark, which is developed and maintained by the
NASA Ames Research Center. The NPB mimics the
computation and data movement characteristics of large
scale computational fluid dynamics applications.
These benchmarks are written in FORTRAN and C
programming languages with the aid of OpenMP to
achieve parallelism.
Problems solved by the NPB benchmarks are classified in
different problem classes according to the problem size.
The classes, according to the problem size they represent,
are S, W, A, B, C, D, and E; where S is the smallest and E
is the largest.

3.3 LMBENCH
Lmbench is a suite of simple, portable micro-benchmarks
for UNIX. Lmbench measures two key features memory

bandwidth and latency. It measures systems ability to
transfer data between processor, cache, memory, network,
and desk [18].
Lmbench contains a large number of micro-benchmarks
that measure various aspects of hardware and operating
system performance. It generally reports the median result
for 11 measurements.

4 Benchmark Results For The Intel
Quad Core Processors
Q6600 based system and runs at 2.4 GHZ clock speed
with 4 GB of DDR2 RAM, while the second PC is an
Intel core i7- 920 based system that runs at 2.66 GHz
clock speed, with 8 MB L3 cache, and 6 GB DDR3 RAM.
The benchmark suites executed on the core i7 based
system were tested with both enabling and disabling the
HT technology. The number of copies for each of the
benchmarks was varied between single copy and up to 16
copies to test the performance of the processors with
multithreaded applications. The operating system in both
systems was Ubuntu 9.04 Linux with 2.6.28-16-generic
kernel. The benchmarks were compiled using gcc 4.3
compiler with the optimization option of '-o3' and '-
fopenmp' for OpenMP support.

4.1 STREAM/ STREAM2 Results
For STREAM benchmark we will discuss the results
obtained from copy and scale functions (shown in Figs. 1
and 2) and we will discuss fill and daxpy functions from
STREAM2 benchmark (shown in Figs. 3 and 4). The
results show that for any given number of threads to solve
the given function, the core i7 is at least 3 times faster
than the core 2 quad processor. As for core i7 the best
performance of this processor is obtained by running
applications with five threads with the HT technology
enabled. It can also be concluded that with applications
using more than five threads the core i7 with HT disabled
can provide performance equal or better than with the
case of enabling the hyper threading technology.

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1267 Issue 11, Volume 9, November 2010

Fig. 1 Copy Function (STREAM Benchmark)

Bandwidth Comparison

Fig. 2 Scale Function (STREAM Benchmark)

Bandwidth Comparison

Fig. 3 Fill Function (STREAM2 Benchmark)

Bandwidth Comparison

Fig. 4 Daxpy Function (STREAM2 Benchmark)
Bandwidth Comparison

4.2 NPB Benchmark Suite Results
In this paper we used NPB version 3.3, and only ran eight
of the benchmarks namely, BT, CG, EP, FT, SP, UA, and
LU. We used the NPB-OMP which is a sample OpenMP
implementation based on the sequential implementation
of the serial NPB.
In this subsection we are only reporting results obtained
for class B problem size. The results are split into several
Figures according to the benchmark function and the
processor type to be easier to read.
Figs. 5- 10 shows the results for the NPB benchmark suite
for core i7 with enabling and disabling hyper threading as
well as for the core 2 quad.
For core i7 processor, it is clear that hyper-threading
technology enhances the performance especially when
using five or more threads, but the performance is almost
the same with threads less than five, which is when
having number of threads less than or equal to the number
of cores.
Core 2 quad gives best performance when using four
threads, but performance decreases with threads more
than four.
The LU benchmark (Fig. 5) shows an interesting
behavior, in which, for any the evaluated processors, the
performance is improved when using multi-threads as
long as the thread count used is less than or equal to the
available cores (logical and physical). But when using
more threads the performance worsens rapidly even
comparing it to case of using single thread. In other
words, core i7 with HT enabled optimal performance for
LU benchmark when having eight threads, four threads
when the HT is disabled. Also for core 2 quad the optimal
number of threads is for solving LU problem.
For this behavior, additional LU benchmark results were
collected measuring the number of operations executed
per second (throughput (given in mega Operations per
second Mops/ sec) by a given processor with respect to
thread count, the results are plotted in Fig. 8. As a
comparison we also analyzed throughput results for the

COPY from STREAM Benchmark

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 10 16

No. of Threads

M
B

/ s
ec

Core 2 Quad

Core i7-920 with HT

Core i7-920 HT Disabled

SCALE from STREAM Benchmark

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 10 16

No. of Threads

M
B

/ s
ec

Core 2 Quad

Core i7-920 with HT

Core i7-920 HT Disabled

FILL from STREAM2 Benchmark

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 2 3 4 5 6 7 8 10 16

No. of Threads

M
B

/ s
ec

Core 2 Quad

Core i7-920 with HT

Core i7-920 HT Disabled

DAXPY from STREAM2 Benchmark

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5 6 7 8 10 16

No. of Threads

M
B

/ s
ec

Core 2 Quad

Core i7-920 with HT

Core i7-920 HT Disabled

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1268 Issue 11, Volume 9, November 2010

EP benchmark (Fig. 8). For LU benchmark throughput
one can observe that the throughput follows the same
behavior of the execution time in which the throughput
keeps increasing with the increment of threads as long as
thread count is less or equal to the processor's cores, then
it drops when using more threads than the available cores.
In the case of EP benchmark, which provides a number of
independent parallel workloads, the throughput increases
until it reaches the maximum. When this is reached, the
thread count is equal to the processor's cores, and then
retains this throughput level regardless how many extra
threads are used.
In general, a processor's throughput drops when the
processor is in an idle state most of the time. Idle state
usually occurs either when there are no operations to be
processed, or when the processor is waiting for I/O or
memory operations. In the case of LU benchmark, waiting
for memory operation to be completed is more likely the
case of performance drop.
The LU benchmark is a simulated computation fluid
dynamics application that uses symmetric successive
over-relaxation (SSOR) method to solve a seven-block-
diagonal system resulting from finite-difference of the
Navier-Stokes equations in 3-D. This is accomplished by
splitting it into block Lower and Upper triangular
systems. There are at least two methods to implement LU
in parallel: hyper-plane and pipelining [16]. Both methods
of parallelization generate highly dependent parallel
sections, in which certain sections cannot be processed
unless the results from previous sections are ready. This
kind of dependency will force some of the threads/cores
to wait until another thread is done with its part. In this
case with the usage of threads equal or less than the
available cores, all threads and local data for the threads
are loaded in the assigned core and its local cache and will
be in a wait state. When using more threads than the
available cores in order to execute all threads concurrently
cores will perform context switching to switch from one
thread to another by saving the current thread's register
conditions and results. The second thread's data sets and
registers are then reloaded. This is done once the
execution time assigned for a thread is expired. In the case
that the second thread is dependent on the results from
thread one, if thread one execution is not done and its
time is expired and the core switches to thread two, then
this thread will be in a wait state and waste the core's time
since the required data is not ready. This will lead to a
dramatic drop in the performance which was noticed in
the LU results in Figs. 7 and 8.

Fig. 5 Execution Time Results obtained BT, SP, and

UA benchmarks (Class B)

Fig. 6 Execution Time Results obtained from CG and

FT Benchmarks (Class B)

CG and FT Benchmark Results

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1 2 3 4 5 6 8 10 16
No. of Threads

se
c

CG (Core i7 with HT)

CG (Core i7 without HT)

CG (Core 2 Quad)

FT (Core i7 with HT)

FT (Core i7 without HT)

FT (Core 2 Quad)

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1269 Issue 11, Volume 9, November 2010

Fig. 7 LU Benchmark Results for Core i7 and Core 2

Quad (Class B)

Fig. 8 Throughput Results from LU Benchmark for

Core i7 and Core 2 Quad (Class B)

Fig. 9 EP Benchmark Results for Core i7 and Core 2

Quad (Class B)

Fig. 10 Throughput Results from EP Benchmark for

Core i7 and Core 2 Quad (Class B)

Figs. 11- 14 are for the speedup computed for LU, EP, BT
and SP benchmarks respectively. The speedup is
computed as stated in the following equation

Where T1 is the execution time using single thread
 TN is the execution time using N threads

Speedup values are an indication of the processor's
performance, and the maximum obtained speedup can be
used to locate the best (optimal) number of threads to be
used for solving any of the tested benchmarks. For the
Core i7 processor, the maximum speedup obtained from
the LU benchmark is about 4 when running 8 threads with
HT support, while it is around 3.7 when HT is disabled
and four threads are used. For the core 2 quad, the highest
speedup value is around 3.1 and is reached when using 4
threads. It can be observed from the Fig.s that the speedup
drops drastically when the number of threads exceeds the
number of available cores.
On the other hand, the speedup results for the EP
benchmark increases as the number of threads increase
until it reaches a saturation value which is close to the
number of cores (physical and logical cores) for the
processors under evaluation. Using threads more than the
available cores will not improve the performance. Core i7,
with the HT enabled causes a maximum speedup of
almost 7 when using 8 or more threads. While for core i7
with the HT disabled and for core 2 quad, the speedup is 4
for four or more threads.
For BT and SP benchmarks, the core i7 processor delivers
its maximum speedup with 4 threads; speedup obtained
from BT benchmark is 3.81 when the HT is enabled and
3.79 when disabling the HT technology. For SP
benchmark maximum speedup is about 3.24 when
enabling HT and 3.23 when HT is disabled. For those two

LU Benchmark Performance (execution time)

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 8 10 16
No. of Threads

se
c

Core i7 with HT

Core i7 without HT

Quad Core

NT

T
Speedup 1=

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1270 Issue 11, Volume 9, November 2010

benchmarks hyper-threading does not have much effect
improving the processor's performance.
Core 2 Quad speedup results for BT and SP benchmarks
shows that the maximum value is with 4 threads with
values of 3.16 for BT and 1.84 for SP.

Fig. 11 Speedup Obtained from the LU Benchmark

using Multiple Threads

Fig. 12 Speedup Obtained from Running EP

Benchmark

Fig. 13 Speedup Obtained from Running BT

Benchmark using Multiple Threads

Fig. 14 Speedup Obtained from Running SP

Benchmark using Multiple Threads

Tables 1 and 2 list the best (optimal) performance
obtained from running NPB benchmark suite using class
B for core i7 and core 2 quad processors respectively. The
tables show the optimal number of threads for processing
every benchmark, the throughput, execution time, and
speedup obtained at that thread count.
Comparing the results in table 1, for EP, FT, LU, and UA
benchmarks hyper-threading technology enhances the
performance of the core i7 processor, while for the rest
benchmarks hyper-threading didn't show any noticeable
improvement.
From table 2, core 2 quad processor shows that using four
threads is the best for almost all the tested benchmarks
which means that best performance obtained when using
all the available cores.

LU Benchmark Speedup

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 8 10 16

No. of Threads

S
pe

ed
up

Core i7 with HT

Core i7 without HT

Core 2 Quad

EP Benchmark Speedup

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 8 10 16

No. of Threads

S
pe

ed
u

p

Core i7 with HT

Core i7 without HT

Core 2 Quad

BT Benchmark Speedup

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 8 10 16
No. of Threads

S
p

ee
d

u
p

Core i7 with HT

ore i7 without HT

ore 2 Quad

SP Benchmark Speedup

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 8 10 16
No. of Threads

S
p

ee
d

u
p

Core i7 with HT

Core i7 without HT

Core 2 Quad

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1271 Issue 11, Volume 9, November 2010

Table 1: Core i7 Best Performance For given Benchmarks
Core i7 with HT Core i7 without HT

Bench Thread
Count

Mop/s Time Speed
up

Thread
Count

Mop/s Time Speed
up

BT 4 7449.95 94.25 3.808 4 7418.55 94.65 3.787

CG 8 2499.43 21.89 3.474 8 2425.29 22.56 3.355

EP 16 95.8 22.42 6.982 10 54.83 39.17 3.9950

FT 8 4994.09 18.43 3.658 4 4934.82 18.65 3.618

LU 8 8113.04 61.48 4.025 4 7503.7 66.48 3.716

SP 4 4906.21 72.36 3.244 4 4909.19 72.32 3.237

UA 16 40.06 55.14 3.577 8 34.67 63.72 3.032

Table 2: Core 2 Quad Best Performance
Core 2 Quad

Benchmark Thread Mop/s Time Speedup
BT 4 4226.22 166.15 3.16365
CG 4 1073.87 50.95 2.42355
EP 4 39.66 54.15 3.98006
FT 4 2665.23 34.54 2.66995
LU 4 3001 166.22 3.11148
SP 4 1837.67 193.19 1.84430
UA 8 12.34 179.03 2.33106

4.3 LMBENCH Results
The memory bandwidth results obtained using single and
two copies of this benchmark for both processors will
only be shown in this subsection. Fig. 15 illustrates the
results for core i7-920 with HT enabled, while Fig. 16
represents the results for the corei7-920 processor after
disabling the HT. Finally, Fig. 17 represents the results
obtained from the core 2 Quad processor.
Comparing the results from these Fig.s, it is clear that the
core i7 processor (with or without HT) outperforms the
core 2 quad at least by three times the amount of data
transferred during the benchmark runs. Also, it can be
noted that the memory bandwidth doubles when running
two copies in comparison to single copy runs.
For the core 2 quad processor, in general the bandwidth
drops when the array size is larger than 32 KB, due to the
sizes of their L1 cache per core. Also there is a second
large drop in the bandwidth when using array sizes larger
than 2 MB because of the L2 cache, since each two cores
share a 4 MB of L2 cache. For instance, the memory
bzero bandwidth results from Fig. 4 show when using

arrays larger than 32 KB. The memory bandwidth drops
by about 30%.When increasing array size from 2MB to
4MB it drops by 42%. When increasing it above 8MB it
drops by 70%.
On the other hand, for core i7, there are two noticeable
drops on the memory bandwidth. One occurs when the
array sizes exceed 32 KB (L1 cache size), and the other
one when the size is larger than 2 MB (due to L3). There
is a third drop when exceeding the 128 KB size. For
instance, the memory bzero bandwidth results from Fig. 6,
when using arrays larger than 32 KB, the bandwidth drops
by about 43%. When increasing the array size from 2MB
to 4MB it drops by 23%. If is increased above 8MB it
drops by 30%. When disabling the hyper threading, the
memory bzero bandwidth results from Fig. 8, using arrays
larger than 32 KB the memory bandwidth drops by about
50%. When the array size is increased from 2MB to 4MB
it drops by 24%. Increasing the array size above 8MB
causes it to drop by 29%.

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1272 Issue 11, Volume 9, November 2010

(a)

(b)

(c)

Fig. 15 Memory Bandwidth Results for Core i7-920 (HT Enabled) using (a) 1 Copy, (b) 2 Copies, and (c) 4 Copies

Memory Bandwidth for Intel Core i7- 920 (Single Copy)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

512 2048 8192 32K 128K 512K 2M 8M 32M 128M 512M

Array Size (Bytes)

M
B
/
se

c

libc bcopy unaligned
libc bcopy aligned
Memory bzero bandwidth
unrolled bcopy unaligned
Memory read bandwidth
Memory write bandwidth

Memory Bandwidth for Intel Core i7- 920 (2 Copies)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

512 2048 8192 32K 128K 512K 2M 8M 32M 128M 512M

Array Size (Bytes)

M
B
/ s

ec

libc bcopy unaligned

libc bcopy aligned
Memory bzero bandwidth

unrolled bcopy unaligned

Memory read bandwidth
Memory write bandwidth

0

50000

100000

150000

200000

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

M
B

/
se

c

Array Size (Bytes)

Memory Bandwidth for Core i7 with HT (4 copies)

libc bcopy unaligned

libc bcopy aligned

Memory bzero bandwidth

unrolled bcopy unaligned

Memory read bandwidth

Memory write bandwidth

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1273 Issue 11, Volume 9, November 2010

(a)

(b)

(c)

Fig. 16 Memory Bandwidth Results for Core i7-920 (HT Disabled) using (a) 1 Copy, (b) 2 Copies, and (c) 4 Copies

Memory Bandwidth for Intel Core i7- 920 (Single Copy, No HT)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

512 2048 8192 32K 128K 512K 2M 8M 32M 128M 512M

Array Size (Bytes)

M
B
/ s

e
c

libc bcopy unaligned
libc bcopy aligned
Memory bzero bandwidth
unrolled bcopy unaligned
Memory read bandwidth
Memory write bandwidth

Memory Bandwidth for Intel Core i7- 920 (2 Copies, No HT)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

512 2048 8192 32K 128K 512K 2M 8M 32M 128M 512M

Array Size (Bytes)

M
B
/ s

ec

libc bcopy unaligned

libc bcopy aligned
Memory bzero bandwidth

unrolled bcopy unaligned

Memory read bandwidth
Memory write bandwidth

0

50000

100000

150000

200000

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

K

3
2

K

6
4

K

1
2

8
K

2
5

6
K

5
1

2
K

1
M

2
M

4
M

8
M

1
6

M

3
2

M

6
4

M

1
2

8
M

2
5

6
M

M
B

/
se

c

Array Size (Bytes)

Memory Bandwidth for Core i7 no HT (4 copies)
libc bcopy unaligned

libc bcopy aligned

Memory bzero bandwidth

unrolled bcopy unaligned

Memory read bandwidth

Memory write bandwidth

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1274 Issue 11, Volume 9, November 2010

(a)

(b)

(c)

Fig. 17 Memory Bandwidth Results for Core 2 Quad using (a) 1 Copy, (b) 2 Copies, and (c) 4 Copies

5 Conclusion
Multi-core processors are being used in most new desktop
systems and are becoming common in embedded
applications. Researchers at UTA are investigating
optimal configurations of several available multi-core

processors suitable for developing real-time software for
multithreaded application. The application under
investigation by UTA researchers requires a large degree
of multi-processing in order to meet the real-time needs.
In the paper several multithreaded benchmarks were
studied in order to provide directions for proper program

Memory Bandwidth for Intel Core 2 Quad (1 Copy)

0

2000

4000

6000

8000

10000

12000

14000

16000

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

5
1
2
M

1
0
2
4
M

Array Size (Bytes)

M
B

/
se

c
libc bcopy unaligned

libc bcopy aligned

Memory bzero bandwidth

unrolled bcopy unaligned

Memory read bandwidth

Memory write bandwidth

Memory Bandwidth for Intel Core 2 Quad (2 copies)

0

5000

10000

15000

20000

25000

30000

35000

40000

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

5
1
2
M

Array Size (Bytes)

M
B
/
se

c

libc bcopy unaligned

libc bcopy aligned

Memory bzero bandwidth

unrolled bcopy unaligned

Memory read bandwidth

Memory write bandwidth

Memory Bandwidth for Intel Core 2 Quad (4 copies)

0

10000

20000

30000

40000

50000

60000

70000

80000

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
K

3
2
K

6
4
K

1
2
8
K

2
5
6
K

5
1
2
K

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

Array Size (Bytes)

M
B
/
se

c

libc bcopy unaligned

libc bcopy aligned

Memory bzero bandwidth

unrolled bcopy unaligned

Memory read bandwidth

Memory write bandwidth

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1275 Issue 11, Volume 9, November 2010

design to insure maximum performance for the
application. The multiprocessing capabilities of two of the
latest Intel quad-core processors; the core 2 quad and the
core i7 are considered suitable for the embedded
application. These processors were being considered for
use for the embedded application. The Intel Core i7
processors are a significant evolutionary step forward
from their Core 2 predecessors. The results from all
benchmark suites have shown that the core i7 processor
provides on average three times better performance than
the core 2 quad for these benchmarks. For the core i7
processor, enabling hyper-threading technology enhances
the performance for applications with five to eight
threads. Core 2 Quad gives good performance when using
four threads, but performance decreases with threads
more than four for these benchmarks.
The Hyper-threading technology, implemented in the core
i7 processor, proves that although it can improve the
performance of a given processor, but care should be
taken when using (enabling) this technology since for
certain applications not only it does not have any effect on
increasing the performance but also it may lead to the
drop of the performance.
This could be of particular importance in some
embedded applications with hard real-time constraints.

References:
[1] L. Peng, J-K. Peir, T. K. Prakash, C. Staelin, Y-K.
Chen, D. Koppelman, “Memory Hierarchy Performance
Measurement of Commercial Dual-Core Desktop
Processors”, In Journal of Systems Architecture, vol
54(8), Aug. 2008, page 816-828.
[2] Ryan E. Grant and Ahmad Afsahi, "A Comprehensive
Analysis of Multithreaded OpenMP Applications on Dual-
Core Intel Xeon SMPs", Workshop on Multithreaded
Architectures and Applications (MTAAP'07), In
Proceedings of the 21st International Parallel and
Distributed Processing Symposium (IPDPS 2007), Long
Beach, California, USA, March 26-30, 2007.
[3] http://en.wikipedia.org/wiki/NAS_benchmarks
[4] http://www.cs.virginia.edu/stream/
[5]http://www.nas.nasa.gov/Resources/Software/npb.html
[6] Cascaval, C.; Castanos, J.G.; Ceze, L.; Denneau, M.;
Gupta, M.; Lieber, D.; Moreira, J.E.; Strauss, K.; Warren,
H.S., Jr., "Evaluation of a multithreaded architecture for
cellular computing", Eighth International Symposium on
High-Performance Computer Architecture, 2002.
Proceedings, 2-6 Feb. 2002. pp 311 – 321.
[7]http://edc.intel.com/Platforms/EP80579/#platform-
overview-content=platform-overview-toggle~~visible-
content
[9] http://www.intel.com/products/processor/core2quad/
[10]http://www.intel.com/products/processor/corei7/index
.htm
[11] T. Hanawa, M. Sato, J. Lee, T. Imada, H. Kimura,
and T. Boku, "Evaluation of Multicore Processors for

Embedded Systems by Parallel Benchmark Program
Using OpenMP", IWOMP 2009, pp15-27
[12] A. Kayi, T. El-Ghazawi, and G. Newby,
"Performance issues in emerging homogeneous multi-
core architectures", Simulation Modelling Practice and
Theory, Vol 17, issue 9, Oct 2009, pp 1485-1499
[13] L. Peng, J-K. Peir, T. K. Prakash, Y-K. Chen, D.
Koppelman, “Memory Performance and Scalability of
Intel's and AMD's Dual-Core Processors: A Case Study,”
In Proceedings of the 26th IEEE International
Performance Computing and Communications
Conference (IPCCC), New Orleans, LA, Apr. 2007.
[14] M. Curtis-Maury, X. Ding, C. Antonopoulos, and D.
Nikolopoulos, ''An Evaluation of OpenMP on Current
and Emerging Multithreaded/Multicore Processors", In
Proceedings of the First International Workshop on
OpenMP IWOMP 2005, Eugene, Oregon, June 2005
[15] R. Radhakrishnan, R. Ali, G. Kochhar,
K. Chadalavada, R. Rajagopalan, Jenwei Hsieh, and
Onur Celebioglu, "Evaluating Performance of BLAST on
Intel Xeon and Itanium2 Processors", Second
International Symposium on Parallel & Distributed
Processing & Applications (ISPA 04), LNCS 3358, pp
1017-1023
[16] H. Jin, M. Frumkin, and J. Yan, "The OpenMP
Implementation of NAS Parallel Benchmarks and Its
Performance",http://www.nas.nasa.gov/News/Techreports
/1999/PDF/nas-99-011.pdf.
[17] Marius Marcu , Dacian Tudor , Sebastian Fuicu ,
Silvia Copil-Crisan , Florin Maticu , Mihai Micea,
“Power efficiency study of multi-threading applications
for multi-core mobile systems”, WSEAS Transactions on
Computers, v.7 n.12, p.1875-1885, December 2008
[18] L. McVoy, C. Staelin, "lmbench: Portable tools for
performance analysis", 1996 USENIX Annual Technical
Conference, pp 279- 294
[19] A.A.Veglis, and A.S.Pombortsis, “Performance
Analysis of Crossbar Multiprocessor Architectures via
Analytical Simulation”, in Proc of the 6th WSEAS CSCC
(CSCC 2002).
[20] Yu-Fai Fung , Wai-Leung Cheung , Gujit Singh ,
Muhammet F. Ercan, “An empirical study of bi-level
parallel computing on a PC”, Proceedings of the 2nd
WSEAS International Conference on Electronics, Control
and Signal Processing, pp 1-5, December 07-09, 2003,
Singapore.
[21] Yumi Takizawa, Saki Yatano, Atsushi Fukasawa,
“Digital signal processing with embedded system for
advanced mobile communications”, Proceedings of the
2nd WSEAS International Conference on Circuits,
Systems, Signal and Telecommunications, pp 98-101,
January 25-27, 2008, Mexico.

WSEAS TRANSACTIONS on COMPUTERS Jareer H. Abdel-Qader, Roger S. Walker

ISSN: 1109-2750 1276 Issue 11, Volume 9, November 2010

