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Abstract: - Municipalities have to to pay increasing attention to the importance of revenue prediction due to fiscal 
stress. Currently, judgmental, extrapolative, and deterministic models are used for municipal revenue prediction. In this 
paper we present the designs of neural network and support vector machine ensembles for a real-world regression 
problem, i.e. prediction of municipal revenue. Base learners, as well as linear regression models are used as benchmark 
methods. We prove that there is no single ensemble method suitable for this regression problem. However, the 
ensembles of support vector machines and neural networks outperformed the base learners and linear regression 
models significantly. 
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1 Introduction 
Accurate revenue prediction assists municipalities in 
determining both long-term and short-term revenue. The 
knowledge of future revenue is also important for 
accurate plans of future expenditures [1]. Thus, 
municipalities can predict the balance of the budget. 

Currently, the three general types of methods are used 
for the prediction of municipal revenue, namely 
judgmental (expert) methods, extrapolative (trend) 
methods, and deterministic (econometric) methods [2]. 
The judgmental methods are generally the most 
simplistic and less expensive than the other methods. 
The accuracy of expert prediction is dependent on the 
experience and knowledge of the expert [3]. The 
extrapolative methods are quantitative approaches, based 
on time series analysis to utilize mathematical models 
that use historical values to predict future values. 
Deterministic models allow the researcher to consider 
the simultaneous effects of several input variables that 
determine the level of revenue [3]. 

There are several parameters that affect municipal 
revenue, e.g. population, income per capita, property 
value, employment, business activity and interest rates 
[4]. The evaluation of the effects of these parameters on 
future revenue can also assist in budgetary decision-
making process. A problem defined this way represents a 
regression problem with many input variables (affecting 
municipal revenue) and one output variable (municipal 
revenue). 

Linear regression models (LRMs) have been applied 
for municipal revenue prediction so far [2]. However, 
the economy from which revenue come is increasingly 
complex. The input variables are inter-dependent and, 
moreover, the relations between the input variables and 
the predicted revenue are not necessarily linear. 
Therefore, the methods making it possible to model such 
complex relationships are suitable for municipal revenue 
prediction. The examples of such methods are e.g. neural 
networks (NNs), support vector machines (SVMs), and 
many others. 

Neural networks are appropriate for municipal 
revenue prediction due to their ability to learn, 
generalize and model non-linear relations. Another 
important quality of NNs, except their ability to learn 
based on finding dependencies in training data and 
representing those in synapse weights, is the ability to 
generalize gained knowledge. Neural networks have 
been successfully applied in both classification [5], [6], 
[7] and regression tasks [8], [9]. 

Support vector machines represent an essential 
kernel-based method. Many variants of SVMs have been 
developed since SVMs were proposed [10], e.g. least 
squares SVMs, robust SVMs, etc. They represent 
approximate implementation of structural risk 
minimization method [11], [12]. This principle is based 
on the fact that the testing error is limited with the sum 
of training error and the expression depending on 
Vapnik-Chervonenkis dimension [11]. 
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The article has the structure as follows. First, input 
variables (parameters) for the prediction model will be 
designed. Further, basic notions of NN and SVM 
ensembles will be introduced. A model design for the 
prediction of the municipal revenue will be realized in 
the next part of the paper. The results for feed-forward 
NN (FFNN) and SVM ensembles will be compared to 
both the base learners and the LRM ensembles across 
several ensemble methods. The impact of input 
parameters (variables) on the revenue of municipalities 
will be further analyzed on the data for Czech 
municipalities. 

 
 

2 Parameters Design for Municipal 

Revenue Prediction 
The design of parameters for municipal revenue 
modelling is realized with the view of involving all 
relevant factors of municipal revenue in the Czech 
Republic. As a result, the factors affecting municipal 
budgetary policy will be obtained. 

Municipal revenue has been affected by economic 
transformation in the Czech Republic. For example, new 
competences allowed municipalities to increase their 
revenue by credits or loans practically without any 
restrictions. Thus, the need arises for the analysis of 
municipal revenue including the possibility of municipal 
revenue prediction. Both the economic parameters 
(population size, national GDP, number of enterprises, 
etc.) and the financial parameters (tax revenue, assets, 
own revenue, grants, etc.) represent the inputs of the 
model, see Table 1. The descriptive statistics on the used 
data (452 municipalities in the years 2003-2006) are 
presented in the Appendix. 

The economic parameters determine the range of 
public goods and services provided and, thus, the 
revenue from the state budget and the revenue for 
municipal services. The financial parameters represent 
the main sources of municipal revenues (taxes, fees, 
assets, and grants). 

Based on the presented facts, the following data 
matrix P can be designed 
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where: – oi∈O, O={o1,o2, … ,oi, … ,on} are objects 

(municipalities), 

  – xk is the k-th parameter, 
– xi,k is the value of the parameter xk for the i-th 

object oi∈O, 
– yi is the output represented by the municipal 

revenue size. 
 
Table 1 Municipal revenue parameters design 

xk Description of parameter 

x1 Municipal population 

x2 Municipal size coefficient 

x3 National GDP 

x4 Enterprises in municipality 

x5 Physical person income tax 

x6 Business tax 

x7 Tax on capital yield 

x8 Corporate income tax 

x9 Corporate income tax (municipal.) 

x10 Value added tax 

x11 Fees from selected services 

x12 Real estate tax 

x13 Long-term intangible assets 

x14 Long-term tangible assets 

x15 Long-term financial assets 

x16 Own revenue 

x17 Lease revenue 

x18 Revenue from interests 

x19 Revenue from intangible assets sale 

x20 Revenue from fiscal assets sale 

x21 Population under 14 years 

x22 Current grants 

x23 Capital grants 

y Total revenue 
 
Higher value of the parameter x1 entails higher 

municipal tax revenues. Larger municipalities have a 
higher share in tax yield, because the more populated 
municipalities have higher expenditures for 
infrastructure and other public goods. Therefore, higher 
population guarantees future municipal revenues for the 
creditors. On the other hand, more populated 
municipalities are likely to have higher demands for 
public expenditures, leading to higher levels of public 
debt. The size category x2 represents the competences of 
municipality. Larger competences force municipalities to 
provide more public goods, leading to the growth of 
expenditures and debt. 

National GDP influence the tax base of the state. 
Consequently, municipalities obtain more revenue with a 
higher GDP due to a share on the taxes collected by the 
state. Higher number of enterprises brings higher 
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business taxes. The revenue from selected taxes makes a 
considerable proportion of total revenue. The income 
from long-term assets (lease, sale) are represented by the 
parameters x13-x15,x17, and x19-x20. Other own revenue is 
included in the parameters x16 and x18. Higher proportion 
of own revenue in total revenues x16 entails higher fiscal 
autonomy of the municipality. Parameters x21-x23 are 
linked to revenue from grants (the highest share of grants 
goes to education). 

Due to high correlation among input variables, data 
pre-processing is carried out by means of principal 
components analysis (PCA). The dimensionality of the 
original set of input parameters x1,x2, … ,x23 is reduced 
in four principal components c1,c2, … ,c4 in this way, see 
Table 2. The results of the PCA are represented by the 
fraction of the explained variation R2X, by the 
eigenvalues, and by the fraction of predicted variation 
Q2. The fraction of the explained variation R2X and the 
fraction of predicted variation Q2 are defined as follows 

 

SS
RSS

1XR2 −= ,     (1) 

 

c

2

RSS
PRSS

1Q −= ,     (2) 

 
where RSS is residual sum of squares, SS is sum of 
squares, PRSS is predictive residual sum of squares, and 
RSSc is residual sum of squares for the previous 
component.  

When selecting the number of principal components, 
one has to bear in mind the trade off between model 
complexity and the goodness of fit. We selected only 
statistically significant variables with the Q2>-0.1. As a 
result, R2X=89.43% of the sum of squares has been 
explained by all the extracted components. 
 
Table 2 Principal components analysis 

 R2X Eigenvalues Q2 

c1 0.755768 17.38266 0.728513 

c2 0.063700 1.46510 0.120088 

c3 0.044054 1.01323 -0.090726 

c4 0.030764 0.70757 -0.100000 

 
In Table 3 the loadings of municipal revenue 

parameters in the constructed components are shown. 
The component c1 represents most of the original 
parameters (except for the parameter x3). Similarly, the 
component c2 represents the parameters x2, x16, x17, and 
x23 especially. The component c3 stands for the national 
GDP, and the component c4 is addressed to the revenue 
from intangible assets sale. 
 

Table 3 Loadings of municipal revenue parameters x1,x2, 
… ,x23 in principal components c1,c2, … ,c4 

 c1 c2 c3 c4 

x1 0.992 -0.090 -0.003 -0.011 

x2 0.490 0.354 -0.007 0.001 

x3 0.008 0.041 0.989 0.150 

x4 0.987 -0.134 0.002 -0.017 

x5 0.983 -0.140 0.020 -0.068 

x6 0.959 -0.071 -0.027 0.057 

x7 0.972 -0.147 0.013 -0.044 

x8 0.980 -0.141 0.027 -0.083 

x9 0.904 0.164 0.004 -0.037 

x10 0.980 -0.145 0.026 -0.068 

x11 0.945 -0.078 0.023 -0.066 

x12 0.980 -0.117 0.002 -0.030 

x13 0.969 -0.047 0.033 -0.085 

x14 0.985 -0.010 0.014 -0.055 

x15 0.943 -0.150 0.027 -0.071 

x16 0.680 0.557 -0.046 0.034 

x17 0.647 0.653 -0.022 0.040 

x18 0.859 0.038 0.001 -0.006 

x19 0.562 -0.125 -0.165 0.796 

x20 0.900 -0.079 0.010 0.065 

x21 0.991 -0.045 -0.010 0.000 

x22 0.986 -0.055 -0.020 0.010 

x23 0.514 0.623 -0.004 -0.001 

 
 

3 Feed-Forward Neural Networks and 

Support Vector Machines 
 

3.1 Feed-Forward Neural Networks 

A FFNN [13] uses neurons connected among themselves 
in layers. The neurons of adjoining layers are connected 
so that the output of one neuron is distributed into the 
inputs of the neurons in the following layer. As a result, 
the input values only move from input to hidden layers 
and, at the same time, from hidden to output layers. 

A vector x of input values is presented to the input 
layer. This pattern is then expanded (transformed) 
through the FFNN using synapse weights wij and 
activation functions f up to the outputs of the FFNN. The 
values of potentials ξ are computed consecutively from 
input to output layer as follows:  
 

∑=
i

iijj y*wξ ,      (3) 
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where wij are synapse weights between the i-th and the j-
th neuron, i and j stand for indices passing through 
neurons of two adjoining layers, and yi is the output of 
the i-th neuron.  

The structure of a FFNN is presented in Fig. 1, where 
the hidden neurons are connected to one output neuron 
through the synapse weights wjk.  

 
 

Fig. 1 General structure of a feed-forward neural 
network 

 
The resulting weighted values are added together 

producing a weighted sum given to a transfer function. 
The outputs of the transfer function are distributed to the 
output layer. They are multiplied by a weight wjk, and 
based on the resulting weighted values, the weighted 
sum is put to a transfer function, which outputs a value yi 
representing a predicted value. The FFNNs are based on 
supervised learning. The objective of the learning lies in 
obtaining such a setting of synapse weights wij that the 
deviation (error) E between actual and target outputs of 
the FFNN is minimum for the given training patterns. 
The partial derivative of the error E, with respect to the 
synapse weights, represents the minimization of the error 
E by gradient method. Backpropagation algorithm is a 
standard learning algorithm of the FFNNs [13]. Since the 
FFNN uses the gradient method in the learning process, 
it is possible that the learning algorithm gets stuck in 
local minimum within the error function. This can be 
solved, for example, by adding noise to the equation for 
synapse weights adaptation, adding neurons, setting the 
learning rate, or adding momentum. 
 
3.2 Support Vector Machines 

The design of SVMs [10], [11], [12] depends on the non-
linear projection of the input space Ξ into 
multidimensional space Λ, and on the construction of an 
optimal hyperplane. This operation is dependent on the 
estimation of inner product kernel referred to as kernel 
function. 

Let x be a vector from input space Ξ of dimension m. 
Next let gj(x), j=1,2, … ,m be a set of non-linear 
transformations from input space Ξ into 
multidimensional space Λ of dimension p. Then the 
hyperplane can be defined as a decision surface as 
follows [11] 
 

( )∑ =+
=

m

1j
jj 0bg xw ,    (4) 

 
where wj, j=1,2, … ,m is the vector of weights 
connecting the p-dimensional space Λ with the n-
dimensional output space Π, b is bias.  

In a linearly separable case, the algorithm of SVMs 
tries to find the separating hyperplane with the widest 
margin [10]. If patterns are linearly separable, it is 
always possible to find weights w and bias b so that the 
inequalities bounding this optimization problem are 
satisfied. If the algorithm for separable data is used for 
inseparable data, it does not find an acceptable solution. 
Then this fact is realized by means of bounding this 
optimization problem in the following way: x.w + b 
≥ +1 − ξi  for yi = +1, x.w + b ≥ −1 − ξi for yi = −1, where 
ξi, i=1,2, … ,u, and (.) represents the dot product of two 
vectors x and w. Lots of gj(x) represent input supported 
by weight wj through the p-dimensional space Λ. 
Further, let vector g(x)=[g0(x),g1(x), … ,gm(x)]T be 
defined. Then the vector g(x) represents the image 
derived in the p-dimensional space Λ related to the input 
vector x. Hence, decision hyperplane wT

g(x)=0 can be 
defined based on this image. Then based on [10] and 
[11], after the application of optimization condition into 
the Lagrange equation, the following form of weights is 
obtained 
 

( )∑=
=

N

1i
iiidα vgw ,    (5) 

 
where the vector g(vi) from the p-dimensional space Λ 
corresponds to the i-th support vector vi, αi are Lagrange 
multipliers determined in the optimization process, and 
di represents the shortest distance separating the 
hyperplane from the nearest positive or negative 
patterns.  

Support vectors vi consist of small subset of training 
data extracted by the algorithm. Then as equation (5) is 
substituted into wT

g(x)=0, the decision hyperplane is 
computed in the p-dimensional space Λ. Inner product of 
two vectors gΤ(vi)g(x) is derived in the p-dimensional 
space Λ in relation to input vector x and support vector 
vi. Now, the inner product kernel k(x,xi) can be defined 
this way 
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( ) ( ) ( )xgvgvx i
T

i,k = ( ) ( )∑=
=

m

0j
jij xgvg ,  (6) 

for i=1,2, … ,N. As obvious from this equation, the 
kernel function k(x,vi) is a symmetrical function with 
respect to its arguments. The most important fact is that 
the kernel function k(x,vi) can be used in order to 
construct an optimal hyperplane in the p-dimensional 
space Λ without considering separate p-dimensional 
space Λ in explicit form. Based on given facts, it is 
possible to find linear separators in the p-dimensional 
space Λ so that (x,vi) is replaced by kernel function 
k(x,vi). Accordingly, the process of learning can be 
realized so that only kernel functions k(x,vi) can be 
computed instead of full list of attributes for each data 
point. Evidently, the found linear separators can be 
transformed back into the original space Ξ. In this way 
any non-linear boundaries between patterns can be 
obtained. Various kernel functions k(x,vi) representing 
different spaces can be used for modelling, e.g. linear, 
polynomial, RBF, and sigmoid kernel function [10], 
[11]. Then the output f(xt) of SVMs is defined this way  
 

f(xt)= ( )∑ +
=

N

1i
tiii b,kyα xv ,   (7) 

 
where xt is  the evaluated pattern, N is the number of 
support vectors, vi are support vectors, αi are Lagrange 
multipliers determined in the optimization process, and 
k(vi,xt) is actual kernel function k(x,vi). A general 
structure of SVMs is shown in Fig. 2. 

 

 
 

Fig. 2 General structure of Support Vector Machines 
 

Support vectors vi represent the component of 
predictors’ structure, and their number N is cut during 
the optimization process [10], [11], [12]. In regression 
problems, the quality of estimation is measured by the 
loss function 

εε

ε

−−=
=

)(fy))(fy,(L
0))(fy,(L

wx,wx,

wx,
            , (8) 

 
where ε is a threshold. In regression case the loss 
function Lε(y,f(x,w)) is used to penalize errors that are 
greater than the threshold ε.  
 

 

4 Neural Network and Support Vector 

Machine Ensembles 
The idea of the NN and SVM ensemble has been 
proposed in [14] and [15]. The boosting method was 
used to train each individual NN (SVM) and another NN 
(SVM) was applied for combining several NNs (SVMs).  

The basic idea behind NN (SVM) ensembles is to 
predict a given input pattern by obtaining a prediction 
from each copy of the NN (SVM) and then using a 
consensus scheme to decide the collective prediction 
[14], [15], [16], [17], [18]. We refer to the set of NNs 
(SVMs) used as an ensemble. Ensembles are desirable 
due to the basic fact that selection of the weights w is an 
optimization problem with many local minima. As each 
NN (SVM) makes generalization errors on different 
subsets of the input space, we shall argue that the 
collective decision produced by the ensemble is 
represented by a lower error than the decision made by 
any of the individual NN (SVMs) [14], [15]. The 
conclusion is that the ensemble can be more accurate 
than any one NN or SVM for both classification and 
regression problems. As for combining the predictions of 
NNs and SVMs, the most prevailing approaches are 
simple averaging or weighted averaging for regression 
problems [16]. 

For the prediction of municipal revenue we will use 
four ensemble methods, i.e. bagging, dagging, stochastic 
gradient boosting, and rotation forest.  

Bagging was proposed by Breiman [19] based on 
bootstrapping defined by Efron and Tibshirani [20]. It 
generates several training sets from the original training 
set and then trains a component neural network from 
each of those training sets. When bootstrap samples are 
used the method is called bagging, for disjoint samples 
we call it dagging [21].  

Stochastic gradient boosting (SGB) is proposed by 
Friedman [22]. It incorporates randomness as an integral 
part of the gradient boosting procedure. At each iteration 
a subsample of the training data is drawn at random. 
This subsample is then used to fit the base learner and 
compute the model update for the current iteration. 

Rotation forest (RF), proposed by Rodriguez et al. 
[23], is a method for generating ensembles based on 
feature extraction. To create the training data for a base 
predictor, the feature set is randomly split into K subsets 
and PCA is applied to each subset. All principal 
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components are retained in order to preserve the 
variability information in the data. Thus, K axis rotations 
take place to form the new features for a base classifier. 
The idea of the rotation approach is to encourage 
simultaneously individual accuracy and diversity within 
the ensemble. 
 
 

5 Model Design and Analysis of Results 
The model design of municipal revenue aims to realize 
the regression problem, where the dependent variable is 
represented by the size of the municipal revenue. 

Data are pre-processed for the purposes of modelling. 
First, data are standardized in order to eliminate the 
dependence on the units. Then, the original set of 
parameters is reduced by the PCA as presented in the 
previous chapter. 

We use polynomial kernel function with the 
polynomial degree of three and the shifting parameter 
c=10.0 for the SVMs. FFNNs and LRMs are used for the 
comparison with the SVMs as presented in Fig. 3. 
Especially FFNNs [13] are suitable for regression 
problem realization. The backpropagation algorithm 
with momentum is applied for the learning of the FFNN. 
The number of neurons in the input layer n1=4, the 
number of neurons in the hidden layer n2=3, learning rate 
η=0.01, and momentum mom=0.2 represent the input 
parameters of the FFNN. 

 
 

 
 
 
 
 

 

 

 
 
 
 
 
                yi 

 
Fig. 3 Regression model design for municipal revenue 

prediction 
 
The ensembles of the underlying predictors are 

created by means of bagging, dagging, SGB, and RF 
which were introduced previously. The learning 
parameters of the ensemble methods are as follows. For 
the bagging, the number of iterations=10 and the size of 
each bag (as a percentage of the training set)=100%. For 
the daging, the number of folds to use for splitting the 
training set into smaller chunks for the base regression 

model=10. For the SGB, the number of iterations=10 
and shrinking rate=1.0. For the RF, the number of 
iterations=10, the percentage of instances to be 
removed=50%, and the projection method is represented 
by the PCA. 

The sensitivity analysis of input parameters consists 
in the testing of input factors’ c1,c2, … ,c4 influence on 
the municipal revenue yi.  

The model design is verified on the sample of the 
municipalities in the Pardubice Region, Czech Republic. 
Input data set contains the values of parameters c1,c2, … 
,c4 on 452 municipalities of the Pardubice Region for the 
years 2003-2006 (one election cycle). We tested the 
SVM ensembles on 4 data sets, with four different 
prediction time horizons (years t=1,2,3,4).  

The quality of the models is measured using the 
relative absolute error (RAE) and relative root squared 
error (RRSE). As a result, we refer the errors 
RAE1,RAE2, ... ,RAE4, and RRSE1,RRSE2, … ,RRSE4 
for t=1,2,3,4.  

For the RAE, the comparison of the FFNN ensembles 
is presented in Fig. 4, while the results for the SVM and 
LRM ensembles are shown in Fig. 5 and Fig. 6, 
respectively.  

 

 
Fig. 4 Relative absolute errors for FFNN ensembles 
 
Stochastic gradient boosting show best results for all 

the prediction time horizons when using SVMs. We 
tested the results with a paired t-test, and the RAE for 
the SGB is significantly lower than the RAE for the 
other methods at 5%. For the LRM ensembles, dagging 
provides the lowest RAE. The RAE for the dagging is 
significantly lower than the RAE for the other methods 
at 5%. On the other hand, bagging outperformed the 
other ensemble methods for the FFNNs with a 
significantly lower RAE at 5%. When comparing the 
best results of all the presented experiments, the SVM 
ensembles created by the SGB show significantly better 
results for the following prediction time horizons: 
t=1,3,4. For the prediction time horizon t=2, the FFNN 
ensemble created by the bagging technique is superior to 
the other methods. 

Data pre-processing 
(standardization, PCA) 

FFNNs, SVMs, LRM 

Sensitivity analysis of input 
variables 

Ensemble methods (bagging, 
dagging, SGB, RF) 

RAE1 RAE2 RAE3 RAE4 

FFNN 

FFNNbagging 

FFNNdagging 

FFNNSGB 

FFNNRF 
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Fig. 5 Relative absolute errors for SVM ensembles  

 

 
Fig. 6 Relative absolute errors for LRM ensembles 

 
For the RRSE, the results of the ensemble methods 

are ambiguous. As illustrated by the results given in 
Table 4, the bagging is superior to other methods for t=1 
in the case of the SVM and the LRM, while for t=2 in 
the case of the FFNN. For t=2,3,4, the RF is better or 
equal to the rest of ensemble methods for both the SVM 
and the LRM. For the FFNN ensembles, the SGB 
provides the lowest RRSE1 and RRSE3, while the RF is 
significantly more accurate for t=3.  

When comparing the best results of all the presented 
experiments, the FFNN base learner, the FFNN 
ensemble created by the SGB, and the SVM ensemble 
created by the RF and bagging show significantly better 
results for the prediction time horizon t=1 at 5%. For the 
prediction time horizon t=2, the FFNN ensemble 
produced by the bagging technique, the SVMbagging and 
SVMRF outperform the other methods. For t=3, the 
FFNNRF and SVMRF provides a significantly lower 
RRSE3 than the compared regression models. In the case 
of t=4, the FFNN ensemble constructed by the SGB 
significantly outperforms the other models. In Table 4, 
the results which are significantly better at 5% are in 
bold. 

 
Table 4 Relative root squared errors for FFNN, SVM 
and LRM ensembles 

  RRSE1 RRSE2 RRSE3 RRSE4 

FFNN 15.95 17.41 18.96 16.13 

FFNNbagging 16.75 16.09 19.17 21.53 

FFNNdagging 45.56 50.22 52.82 63.46 

FFNNSGB 15.91 17.42 18.68 15.19 

FFNNRF 15.98 17.21 18.43 15.44 

SVM 15.99 17.04 18.16 15.81 

SVMbagging 15.90 16.25 18.62 19.67 

SVMdagging 17.62 18.14 22.66 22.52 

SVMSGB 16.34 16.77 18.56 16.72 

SVMRF 15.94 16.17 18.13 15.79 

LRM 16.09 17.81 18.73 17.05 

LRMbagging 16.01 17.28 19.06 22.29 

LRMdagging 18.78 21.51 23.66 26.45 

LRMSGB 16.09 17.00 18.73 17.05 

LRMRF 18.09 17.00 18.66 16.99 
 

In this study the calculation of variables’ importance 
is performed using sensitivity analysis. The values of 
each input variable are randomized and the effect on the 
quality of the model (RAE) is measured. Finally the 
contributions of input variables are standardized so that 
the contribution of the most important input variable is 
100%, and the contributions of other input variables are 
related to this variable. The resulting relative 
contributions of input variables of SVM ensembles 
created by the SGB are presented in Table 5.  

 
Table 5 Relative contributions [%] of input variables for 
different prediction time horizons 

  t=1 t=2 t=3 t=4 

c1 100.000 100.000 100.000 100.000 

c2 0.356 0.334 0.401 0.432 

c3 0.077 0.155 0.350 0.405 

c4 0.015 0.003 0.043 0.105 
 
Considering the results obtained by the SVMs, 

parameter c1 proved to be the most important factor of 
municipal revenue yi. There is strong evidence of a 
relationship of municipal revue to both the economic 
(population, enterprises) and the financial (previous 
revenue, assets, etc.) parameters. 

 
 

6 Related Literature 
In previous studies, ensemble methods have been mostly 
applied in classification problems. This holds for both 
the artificial datasets and real-world datasets. The 
examples of the latter ones are face recognition [24], 

RAE1 RAE2 RAE3 RAE4 

LRM 

LRMbagging 

LRMdagging 

LRMSGB 

LRMRF 

RAE1 RAE2 RAE3 RAE4 

SVM 

SVMbagging 

SVMdagging 

SVMSGB 

SVMRF 
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[25], medical diagnosis [26], [27], [28], [29], abnormal 
internet protocols detection [30], gene expression data 
classification [31], etc. 

There are also studies addressing the regression 
problem. However, they have been realized on artificial 
data only, e.g. [18]. 

Zhou, Wu, and Tang [16] point out the relationship 
between the ensemble and its component NNs. The 
results showed that it may be better to ensemble only a 
subset of the available NNs, i.e. not all of them. This 
conclusion is based on experiments conducted on both 
classification and regression artificial datasets. 

A cooperative co-evolution approach was proposed 
by [32] for designing NN ensembles. In this work, the 
cooperation of the NNs is encouraged so that each NN is 
evaluated throughout the evolutionary process using a 
multi-objective method. For each NN, different 
objectives are defined. 

The NN ensembles are effective only in such cases 
where the individual NNs are as accurate and diverse as 
possible [33]. However, these two conditions are 
conflicting. This issue has been discussed by [34] in 
order to find an optimal compromise between these 
objectives. 

Less attention has been paid to SVM ensembles in the 
literature [15], [35], [36], [37]. In [15], the SVM 
ensemble based on the bagging and boosting methods 
was proposed for classification problems. Simulation 
results for the hand-written digit recognition and the 
fraud detection showed that the SVM ensemble with 
bagging or boosting outperforms a single SVM in terms 
of classification accuracy. 
 
 

7 Conclusion 
The article presents the design of a model for municipal 
revenue prediction. Support vector machines, FFNNs, 
and LRMs are used for the modelling. In order to 
improve the prediction performance of these methods we 
applied several methods for the creation of predictors’ 
ensembles. The proposed models have been applied to 
the data sample of municipalities in the Pardubice 
Region. The impact of economic and financial 
parameters on the revenue of municipalities was 
examined during one political cycle (4 years). The 
impact of macroeconomic variables increases with a 
longer prediction time horizon. 

Support vector machines and FFNNs have proven to 
be an appropriate method for the prediction of municipal 
revenue, as they are able to learn, generalize and model 
non-linear relationships while maintaining the speed and 
robustness of computation. Moreover, the chosen 
ensemble methods improved the results of the SVMs and 
FFNNs significantly. 

This is in line with previous studies for it was shown 
that the NN and SVM ensembles with bagging, boosting, 
and other ensemble methods outperform a single NN 
(SVM) in terms of classification or prediction accuracy 
greatly [14], [15], [38]. We proved that the same results 
hold also for this real-world regression problem. 

Compared to other methods (FFNNs and LRM), 
SVM ensembles were superior for t=1,3,4, while FFNN 
ensembles outperformed the rest of the methods for t=2 
in terms of RAE. Out of the selected methods for 
ensembles’ creation, dagging produced best results for 
LRM ensembles, while bagging was superior for FFNN 
ensembles. For RRSE, FFNN and SVM ensembles 
constructed by bagging, SGB, and RF provided best 
results for different prediction time horizons. 

Based on presented facts we can state that the 
designed model can serve as a tool for decision-making 
support in the municipal policy. 

The experiments were carried out in Weka in MS 
Windows XP operation system. 
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Appendix 
Descriptive statistics of the data 

xk Mean Median Std dev Range 

x1 1124.167 340 4686.797 23–89245 

x2 0.566733 0.5881 0.048781 0.4213–0.8487 
x3 5.46 6.1 1.2079 3.6%–6.8% 
x4 230.6333 65 1128.506 5–22481 

x5 1813481 469598 9530747 17801–213*106 
x6 712947 128444.4 3731031 -34876–83*106 
x7 106266.3 28386 562725.6 0–12.84*106 

x8 1947483 513428 10156085 4226–233*106 
x9 422947.1 0 2430280 0–56.9*106 
x10 2824631 757773 14631054 0–334.1*106 

x11 1127604 139425 5776355 0–113.4*106 
x12 590741.5 252608 2140671 0–43.38*106 
x13 691051.4 143839 3561062 0–79.03*106 

x14 97479806 22139145 4.51E+08 8.4*104–10*109 
x15 11177475 626000 72913011 0 – 1.45*109 
x16 624876.3 113282 2084369 0–26.52*106 

x17 727486 66652 2838835 0–38.48*106 

x18 97028.52 19330.57 415742.3 0–7.46*106 

x19 11119.79 0 82139.4 0–2.77*106 

x20 1192925 26331 7013374 0–176.91*106 

x21 171.1774 55 637.1748 1–11814 

x22 26019190 318965 1.8E+08 549–3.6*109 

x23 2047989 50000 6968154 0–102.6*106 

y 20940601 4234476 93139725 2.8*105–2*109 
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