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Abstract: The aim of the research reported is to propose a training algorithm for support vector machine based
on kernel functions and to test its performance in case of non-linearly separable data. The training is based on
the Sequential Minimal Optimization introduced by J.C. Platt in 1999. Several classifications schemes resulted by
combining the SVM and the 2-means methods are proposed in the fifth section of the paper. A series of conclusions
derived experimentally concerning the comparative analysis of the performances proved by the proposed methods
are summarized in the final part of the paper. The tests were performed on samples randomly generated from
Gaussian two-dimensional distributions, and on data available in Wisconsin Diagnostic Breast Cancer Database.
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1 Introduction

In empirical data modeling a process of induction is
used to build up a model of the system, from which it
is hoped to deduce responses of the system that have
yet to be observed. Ultimately the quantity and qual-
ity of the observations govern the performance of this
empirical model.

The Support Vector Machines (SVM) is a pattern
classification technique developed by Vladimir Vap-
nik and his team at AT&T Bell Laboratories as an
alternative training technique for Polynomial, Radial
Basis Function and Multi-Layer Perceptron classifiers
in which the parameters are determined by solving a
Quadratic Programming (QP) Problem with linear in-
equality and equality constraints, the number of vari-
ables in the QP problem being equal to the size of
learning data.

The learning problem setting for SVMs is as fol-
lows: there is some unknown and nonlinear depen-
dency (mapping, function) y = f(x) between some
high-dimensional input vector x and scalar output y
(or the vector output y as in the case of multiclass
SVMs). There is no information about the underlying
joint probability functions. Thus, one must perform
a distribution-free learning. The SVMs belong to the
supervised learning techniques because the only infor-
mation available is a finite training data set S consist-
ing of labeled examples (xi, yi) where xi ∈ IRd and
yi ∈ {−1, 1}.

In training SVM the decision boundaries are de-

termined directly from the training data so that the
separating margins of decision boundaries are maxi-
mized in the high-dimensional space called feature
space. This learning strategy, based on statistical
learning theory developed by Vapnik ([6],[22]), mini-
mizes the classification errors of the training data and
the unknown data.

The paper aims to present the results of the re-
search toward improving the performance expressed
in accuracy and time complexity of SVM implemen-
tations. The proposed supervised training algorithm
for SVM is essentially based on kernel functions of
polynomial and exponential types. The implementa-
tion of the search process for soft margin hyperplane
uses a slight modification of Sequential Minimal Op-
timization (SMO) algorithm introduced by Platt ([17])
in 1999, to solve the quadratic programming prob-
lem involved in the learning process. The SMO is a
simple algorithm that quickly solves the SVM prob-
lem by decomposing the overall quadratic program-
ming problem into smaller quadratic programming
sub-problems without any extra matrix storage and
without invoking an iterative numerical routine for
each sub-problem. The overall memory requirements
of the SMO algorithm is linear in the size of train-
ing data and therefore it allows the use of large size
samples in the training process. The proposed method
was tested on simulated data and on medical data
freely offered by Wisconsin Diagnostic Breast Cancer
Database, UCI Machine Learning Repository: Data
Sets, http://archive.ics.uci.edu/ml/datasets.html. We
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propose a combined methodology resulted by using
Principal Component Analysis (PCA) means for di-
mensionality reduction in the space of initial data rep-
resentations with kernel-based SVM to allow possible
inseparability. We also propose classification schemes
that combine kernel-based SVM with k-means as a
method of unsupervised learning. Using a combi-
nation of both supervised and unsupervised learning
methods yielded to very good experimental results
presented in the fifth section of the paper.

2 General Presentation of Support
Vector Machine-based Classifica-
tion

Support Vector Machine is a relatively new model-
free paradigm in Machine Learning. Briefly, SVM
is a supervised learning technique of parametric type,
the parameters of the discrimination function being
learned directly from data. Let us consider a two-
class classification problem the unique information
concerning classes being represented by a finite se-
quence of labeled data,

S=
{

(xi, yi) | xi =
(
x

(1)
i , . . . , x

(d)
i

)T
∈ IRd ,

yi ∈ {−1, 1} , i = 1, N
}

.
(1)

The first component of each pair (xi, yi) of S repre-
sents an instance coming from the class of label yi.

2.1 The case of linearly separable data
The sequence is linearly separable if there exists a lin-
ear discriminant function f : IRd −→ IR that sepa-
rates the examples of S, that is

f(x) = b + w1x
(1) + . . . + wdx

(d) , (2)

for each x =
(
x(1), . . . , x(d)

)T
∈ IRd, such that for

any (xi, yi) ∈ S, f (xi) > 0 if yi = 1, and f (xi) < 0
if yi = 1.

The linear separability can be expressed by the
existence of the parameters b ∈ IR and w ∈ IRd

such that wT zi + b > 0 where zi = yixi and w =
(w1, . . . , wd)

T . In such a case we say the hyperplane

Hw,b : wT x + b = 0 . (3)

separates without errors S.
In a SVM-based approach the search for a solu-

tion yields to the constrained quadratic optimization
problem

{
minimize Φ(w)
yi

(
wT xi + b

) ≥ 1 , i = 1, N ,
(4)

where Φ(w) =
1
2
‖w‖2.

Using the Lagrange multipliers method the solu-
tion of the optimization problem (4) is given by the
primal-dual solution of the optimization problem on
the objective function

L(w, b, α)=
1
2
‖w‖2−

N∑

i=1

αi

(
yi

(
(wT xi+b

)−1
)
, (5)

where α1, . . . , αN are the Lagrange multiplies.
Using standard arguments ([1]) the problem re-

duces to the simpler optimization problem




max

(
−1

2

N∑

i=1

N∑

k=1

(
αiαkyiyk

(
xT

i xk

))
+

N∑

i=1

αi

)

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,
N∑

i=1

αiyi = 0 .

(6)

If α∗ = (α∗1, . . . , α
∗
N ) is a solution of (6), we say that

xi is a support vector if α∗i 6= 0. If S1 is the set of
support vector then the optimal solution of (4) is

w∗ =
N∑

i=1

α∗i yixi ,

b∗ =
1
|S1|

∑

xi∈S1


yi −

∑

xj∈S1

α∗jyj

(
xT

i xj

)

 ,

(7)

that is the discrimination function is

f∗(x) = (w∗)T x + b∗ =
N∑

i=1

α∗i yi

(
xT

i x
)

+ b∗ .

The computation involved in solving the opti-
mization problem (6) can be carried out using the al-
gorithm SV M1 ([20], 2009). Briefly, the algorithm
SVM1 works as follows:

Algorithm SV M1 ([16])

Input: S=
{
(xi, yi)|xi∈Rd, yi ∈ {−1, 1}, i=1, N

}

Step 1. Compute the matrix D = (dik) of entries

dik = yiyk (xi)
T xk , i, k = 1, N ;

Step 2. Solve the constrained optimization problem



α∗ = arg
(

max
α∈RN

(
αT1− 1

2
αT Dα

))
,

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,
N∑

i=1

αiyi = 0 ,
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Step 3. Select two support vectors xr, xs such that
α∗r > 0 , α∗s > 0 , yr = −1 , ys = 1.

Step 4. Compute the parameters w∗, b∗ of the
optimal separating hyperplane,



w∗ =
N∑

i=1

α∗i yixi ,

b∗ = −1
2

(w∗)T (xr + xs)

and the width of the separating area

ρ (w∗, b∗) =
2

‖w∗‖

Output: w∗, b∗, ρ (w∗, b∗).

2.2 The general case
In real life situations the tests to check whether the
data are linear separable are costly from computa-
tional point of view. Moreover, even in cases when a
test for linear separability is used, frequently enough
we find out that the labeled data are not linear sepa-
rable. The method presented in 2.1 was generalized
yielding to the concept of soft margin hyperplane by
Cortes and Vapnik ([6]). The method is essentially a
regularization technique that uses the term expressing
the effect of classification errors set

Φσ (ξ1, . . . , ξN ) =
N∑

i=1

ξσ
i , (8)

where σ is a positive constant and the non-negative
slack variables ξi , 1 ≤ i ≤ N , are introduced to allow
inseparability. The soft margin hyperplane is given by
a solution of the constrained optimization problem





minimize

(
1
2
‖w‖2 + c F

(
N∑

i=1

ξσ
i

))

yi

(
wT xi + b

) ≥ 1− ξi , ∀ 1 ≤ i ≤ N ,
ξi ≥ 0 , ∀ 1 ≤ i ≤ N ,

(9)

where c is a given positive constant and F is
a monotone increasing convex function such that
F (0) = 0 holds. By applying the Lagrange multi-
pliers method in the particular case when F (u) = uk

and σ = 1, we obtain the objective function

L(w , ξ , b , α , β) =
1
2
‖w‖2 + c

(
N∑

i=1

ξi

)k

−
N∑

i=1

αi

(
yi

(
wT xi + b

)− 1 + ξi

)−
N∑

i=1

βiξi ,

(10)

where α = (α1, . . . , αN ) and β = (β1, . . . , βN ) are
the Lagrange multipliers.

Therefore, in order to solve the constrained pro-
blem (9) the objective function L should be minimized
with respect to w, ξ = (ξ1, . . . , ξN ) and b and ma-
ximized with respect to the non-negative parameters
αi ≥ 0 and βi ≥ 0, 1 ≤ i ≤ N . Using standard
arguments we get

∂L

∂w

∣∣∣∣
w=w∗

= w∗ −
N∑

i=1

αiyixi = 0 ,

∂L

∂
b

∣∣∣∣
b=b∗

=
N∑

i=1

αiyi = 0 ,

(11)

∂L

∂ξi

∣∣∣∣
ξi=ξ∗i

= k c

(
N∑

i=1

ξ∗i

)k−1

−αi−βi =0 , i=1, N. (12)

In the following we will refer to the particular
case k = 1. In this case we get

w∗ =
N∑

i=1

αiyixi ,

N∑

i=1

αiyi = 0 ,

c = αi + βi , 1 ≤ i ≤ N .

(13)

A hyperplane that assures the minimum number of er-
rors in separating the data is given by the solution of
the constrained optimization problem




max
α




N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyjx
T
i xj


 ,

N∑

i=1

αiyi = 0 , 0 ≤ αi ≤ c , i=1, N.

(14)

The computation of soft margin hyperplane is car-
ried out by the algorithm SVM2 ([20], 2009)

Algorithm SV M2 ([16])

Input: S=
{
(xi, yi)|xi∈Rn, yi∈{−1, 1}, i=1, N

}

c ∈ (0,∞)
Step 1. Compute the matrix D = (dik) of entries

dik = yiyk (xi)
T xk , i, k = 1, N ;

Step 2. Solve the constrained optimization problem



α∗=arg

(
max
α∈RN

(
αT1− 1

2
αT Dα− (αmax)2

4 c

))
,

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,
N∑

i=1

αiyi = 0 ,
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where αmax = max {α1, . . . , αN}
Step 3. Select two support vectors xr, xs,

α∗r > 0 , α∗s > 0 , yr = −1 , ys = 1.
Step 4. Compute the parameters w∗, b∗ of the

soft margin hyperplane,



w∗ =
N∑

i=1

α∗i yixi ,

b∗ = −1
2

(w∗)T (xr + xs)
and the width of the separating area

ρ (w∗, b∗) =
2

‖w∗‖

Output: w∗, b∗, ρ (w∗, b∗).

2.3 The kernel trick
In cases when the data are strong non-separable
and the performance corresponding to the soft mar-
gin hyperplane is poor the data are projected on a
higher dimensional space IRm, m > d, using a
non-linear mapping function g : IRd −→ IRm. The
explicit functional expression of the mapping func-
tion g is ’hidden’ by the kernel trick. A symmet-
ric function K : Rd × IRd −→ IR is a positive semi-
definite kernel ([14], [15]) if for any positive nat-
ural number M and for any (h1, . . . , hM ) ∈ IRM ,
{x1, . . . , xM} ⊂ IRd

M∑

i,j=1

hihjK (xi, xj) ≥ 0 . (15)

According to the Mercer theorem ([14], [15]) if K is a
positive semi-definite kernel then there exists a map-
ping function g : IRd −→ IRm such that

K
(
x, x ′

)
= (g(x))T g

(
x ′

)
, ∀x, x ′ ∈ IRd . (16)

The kernel trick in learning soft margin hyperplane
is twofold. On one hand, selecting a positive semi-
defined kernel the computation of the soft margin hy-
perplane is performed in a higher dimensional space
without using the explicit function expression of the
mapping function g. On the other hand, the computa-
tion in the higher dimensional space is in fact carried
out in terms of the computations in the initial space,
that is it can be carried out without involving increased
computational complexity. In our tests we used two
types of kernels namely polynomials

K
(
x, x ′

)
=

(
xT x ′ + 1

)r
, (17)

and exponentials, respectively

K
(
x, x ′

)
= exp

(
−γ

∥∥x− x ′
∥∥2

)
, γ > 0 . (18)

In order to determine the soft margin hyperplane in
the higher dimensional space IRm we have to solve
the constrained optimization problem





min
w∈IRm, b∈IR

L(w, b, ξ)

yi

(
wT g (xi) + b

) ≥ 1− ξi , i = 1, N

ξi ≥ 0 , i = 1, N ,

(19)

where L(w, b, ξ) =
1
2
‖w‖2 + c

N∑

i=1

ξi and g is the

mapping function. Using the Lagrange multiplies
method, the dual problem resulted from the Karush-
Kuhn-Tucker conditions is



max
α∈IRN




N∑

i=1

αi − 1
2

N∑

i=1

N∑

j=1

αiαjyiyjK (xi , xj)




N∑

i=1

αiyi = 0

0 ≤ αi ≤ c , i = 1, N ,

(20)

If α∗ = (α∗1, . . . , α
∗
N ) is a solution of (20) and S1 is

the set of support vectors then

b∗ =
1
|S1|

∑

xi∈S1


yi −

∑

xj∈S1

α∗jyjK (xi, xj)


 . (21)

and the discriminant function is

f(x) = sgn


∑

i∈S1

α∗i yi K (xi , x) + b∗


 . (22)

Consequently, ‖w∗‖=

√√√√
N∑

i=1

N∑

j=1

α∗i α
∗
jyiyjK (xi , xj)

and the width of the separating area is ρ =
2

‖w∗‖ .

2.4 The SMO Algorithm for Solving the
Dual Problem

The Sequential Minimal Optimization (SMO) algo-
rithm was introduced by Platt ([17]) as an iterative
method for solving constrained optimization problem
of the type





min
α∈IRN

W (α)
N∑

i=1

αiyi = 0

0 ≤ αi ≤ c , i = 1, N .

(23)
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In our tests we applied the SMO algorithm to mini-
mize the function

W (α) = −
N∑

i=1

αi +
1
2

N∑

i=1

N∑

j=1

αiαjyiyjK (xi , xj) .

The SMO is a simple algorithm that quickly solves the
SVM problem by decomposing the overall quadratic
programming problem into smaller quadratic pro-
gramming sub-problems without any extra matrix
storage and without invoking an iterative numeri-
cal routine for each sub-problem. SMO algorithm
chooses to solve the smallest possible optimization
problem at every step, involving only two Lagrange
multipliers because a linear equality constraint has to
hold for the multipliers. At every step, SMO chooses
two Lagrange multipliers to jointly optimize, finds the
optimal values for these multipliers and updates the
SVM to reflect the new optimal values.

3 Unsupervised learning (clustering)
using the k-means method

Center-based clustering algorithms are very efficient
for clustering large databases and high-dimensional
databases. They have own objective functions which
define how good a clustering solution is, the goal be-
ing to minimize the objective function. Clusters found
by center-based algorithms have convex shapes and
each cluster is represented by a center. The k-means
algorithm (MacQueen [13], 1967) was designed to
cluster numerical data, each cluster having a center
called the mean.

Let D = {x1, . . . , xN} ⊂ Rd be the data set, k a
given positive integer, and C1, . . . , Ck pairwise disjoint

clusters of D, that is,
k⋃

i=1

Ci = D, Ci ∩ Cj , ∀ i 6= j. If

we denote by µ (Ci) the center of Ci then the inertia
momentum (error) is expressed by

ε =
k∑

i=1

∑

x∈Ci

d2 (x, µ (Ci)) , (24)

where d is a convenable distance function on Rd. In
the following we take d as being the Euclidean dis-
tance on Rd, d(x, y) = ‖x− y‖.

The k-means methods proceeds, for a given ini-
tial k clusters, by allocating the remaining data to
the nearest clusters and then repeatedly changing the
membership of the clusters according to the error
function until the error function does not change sig-
nificantly or the membership of the clusters no longer
changes.

The k-means algorithm can be treated as an op-
timization problem where the goal is to minimize a
given objective function under certain constrains.

We denote by C the set of all subsets of Rd of car-
dinal k; any particular Q = {q1, . . . , qk} ∈ C is called
a set of possible centers.

A system of k pairwise disjoint clusters of D
can be obviously represented in terms a matrix
W = (wil) ∈MN×k (R) such that

(i) wil ∈ {0, 1} , i = 1, N , l = 1, k

(ii)
k∑

l=1

wik = 1 , i = 1, N .
(25)

The k-means algorithm can be formulated as the
constrained optimization problem:





min
W∈MN×k(R), Q∈C

P (W,Q)

wil ∈ {0, 1} , i = 1, N , l = 1, k ,

k∑

l=1

wik = 1 , i = 1, N ,

(26)

where the objective function is defined as

P (W,Q) =
N∑

i=1

k∑

l=1

wil ‖xi − ql‖2 . (27)

The problem (10) can be solved by decomposing
it into two simple problems P1 and P2 and iteratively
solving them, where

P1. Fix Q = Q̂ ∈ C and solve the reduced con-
strained optimization problem for P

(
W, Q̂

)
.

P2. Fix W = Ŵ ∈ MN×k (R) and solve the re-
duced unconstrained optimization problem for
P

(
Ŵ ,Q

)
.

The solutions of these problems are given by the
following theorems:

Theorem 1 For any fixed Q̂ = {q̂1, . . . , q̂k} a set of
centers, the function P

(
W, Q̂

)
is minimized if and

only if W satisfies the conditions

wil = 0 ⇐⇒ ‖xi − q̂l‖ > min
1≤t≤k

‖xi − q̂t‖ ,

wil = 1 =⇒ ‖xi − q̂l‖ = min
1≤t≤k

‖xi − q̂t‖ ,

k∑

j=1

wij = 1 ,

for any i = 1, N , l = 1, k.
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Proof: Let W (0) =
(
w

(0)
il

)
where

w
(0)
il =

{
1 , ‖xi − q̂l‖ = min

1≤t≤k
‖xi − q̂t‖

0 , otherwise
,

N∑

i=1

w
(0)
il = 1, i = 1, N .

Then for any W ∈ MN×k (R) satisfying the
constraints of (10), if we denote by li the index such
that that wili = 1 and wij = 0 for j 6= li, we get

P
(
W, Q̂

)
= ‖x1 − q̂l1‖2 + · · ·+ ‖xN − q̂lN ‖2 ≥

min
1≤t≤k

‖x1 − q̂t‖2 + · · ·+ min
1≤t≤k

‖xN − q̂t‖2 =

P
(
W (0), Q̂

)
,

that is W (0) is a solution of P1.
Let W a solution of P1. If

there exists i such that wil = 1 and
‖xi − qli‖ > min

1≤t≤k
‖xi − qt‖ = ‖xi − ql0‖ then

for W ′ =
(
w′il

)
where w′jl = wjl for j 6= i and

w′il =
{

1 , l = l0
0 , otherwise

, we get

P
(
W ′, Q̂

)
=

N∑
j=1

j 6=i

k∑

l=1

wjl ‖xj − ql‖2 + ‖xi − ql0‖2 ,

that is
P

(
W, Q̂

)
−P

(
W ′, Q̂

)
=‖xi−qli‖2−‖xi−ql0‖2 >0

which contradicts the assumption that W minimizes
P

(
W, Q̂

)
.

Note that in general, for any given Q̂ there are
more solutions of W (0) type because any particular
data xi can be at minimum distance to more than one
center of Q̂. ¥

Theorem 2 For any fixed Ŵ satisfying the constrains
of (10), the function P

(
Ŵ , Q

)
is minimized if and

only if

ql =

N∑

i=1

ŵilxi

N∑

i=1

ŵil

, i = 1, k.

Proof: For each l=1, k let Cl ={xi|xi ∈ D, ŵil =1}.
Obviously C1, . . . , Ck are pairwise disjoint clusters of

D and
N∑

i=1

ŵil = |Cl|,
N∑

i=1

ŵilxi =
∑

xi∈Cl

xi , l = 1, k.

Then

P
(
Ŵ ,Q

)
=

N∑

i=1

k∑

l=1

ŵil ‖xi − ql‖2 =
k∑

l=1

∑

xi∈Cl

‖xi − ql‖2.

Let
N∑

i=1

ŵilxi =
∑

bwil=1

xi where

q
(0)
l =

1
|Cl|

∑

xi∈Cl

xi , l=1, k.

Obviously

∑

xi∈Cl

‖xi − ql‖2 =
∑

xi∈Cl

∥∥∥xi − q
(0)
l + q

(0)
l − ql

∥∥∥
2

=

∑

xi∈Cl

∥∥∥xi − q
(0)
l

∥∥∥
2
+|Cl|

∥∥∥q
(0)
l − ql

∥∥∥
2
+

2
(
q
(0)
l − ql

)T




∑

xi∈Cl

xi−|Cl| q(0)
l

︸ ︷︷ ︸
0



≥

∑

xi∈Cl

∥∥∥xi − q
(0)
l

∥∥∥
2
,

that is P
(
Ŵ , Q(0)

)
≤ P

(
Ŵ , Q

)
for any Q ∈ C.

Moreover since the quality
P

(
Ŵ , Q(0)

)
= P

(
Ŵ , Q

)
holds if and only if

ql = q
(0)
l for all l = 1, k, for given Ŵ , Q(0) is the

unique set of centers that minimizes P
(
Ŵ ,Q

)
. ¥

The k-means algorithm viewed as an optimization
process for solving (10) is as follows

The algorithm k-MOP

Input: D - the data set,
k - the pre-specified number of clusters,
d - the data dimensionality,
T - threshold on the maximum

number of iterations.
Initializations: Q(0), t ←− 0
Solve P

(
W,Q(0)

)
and get W (0)

sw ←− false
repeat

Ŵ ←− W (t)

solve P
(
Ŵ ,Q

)
and get Q(t+1)

if P
(
Ŵ , Q(t)

)
= P

(
Ŵ ,Q(t+1)

)
then

sw ←− true

output
(
Ŵ , Q(t+1)

)

else
Q̂ ←− Q(t+1)

solve P
(
W (t), Q̂

)
and get W (t+1)
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if P
(
W (t), Q̂

)
= P

(
W (t+1), Q̂

)
then

sw ←− true

output
(
W (t+1), Q̂,

)

endif
endif

t ←− t + 1
until sw or t > T .

Note that the computational complexity of the al-
gorithm k-MOP is O(Nkd) per iteration. The se-
quence of values P

(
W (t), Q(t)

)
where W (t), Q(t)

are computed by k-MOP is strictly decreasing, there-
fore the algorithm converges to a local minimum of
the objective function.

4 The combined separating tech-
nique based on SVM and the k-
means algorithm

At first sight, it seems unreasonable to compare a su-
pervised technique to un unsupervised one mainly be-
cause they refer to totally different situations. On one
hand the supervised techniques are applied in case the
data set consists of correctly labeled objects, and on
the other hand the unsupervised methods deal with
unlabeled objects. However our point is to combine
SVM and k-means algorithm, in order to obtain a new
design of a linear classifier.

The aim of the experimental analysis is to eva-
luate the performance of the linear classifier resulted
from the combination of the supervised SVM method
and the 2-means algorithm.

Our method can be applied to whatever data, ei-
ther linear separable or non-linear separable. Obvi-
ously in case of non-linear separable data the classi-
fication can not be performed without errors and in
this case the number of misclassified examples is most
reasonable criterion for performance evaluation. Of a
particular importance is the case of linear separable
data in this case the performance being evaluated in
terms of both, misclassified examples and the gener-
alization capacity expressed in terms of the width of
separating area. In real live situations, usually is very
difficult or even impossible to established whether the
data represents a linear/non-linear separable set. In
using the SV M1 approach we can identify which
case the given data set belongs to. For linear separable
data, SV M1 computes a separation hyperplane opti-
mal from the point of view of the generalization ca-
pacity. In case of a non-linear separable data SV M2
computes a linear classifier that minimizes the num-
ber of misclassified examples. A series of develop-

ments are based on non-linear transform whose range
is high dimensional space represented be kernel func-
tions. The increase of dimensionality and the con-
venable choice of the kernel allow to transform the
non-linear separable problem into a linear separable
one. The computation complexity corresponding to
kernel-based approaches is significantly large there-
fore in case the performance of the algorithm SV M1
proves reasonable good it could be taken as an alter-
native approach of a kernel-based SV M . We perform
a comparative analysis on data consisting of exam-
ples generated from two dimensional Gaussian distri-
butions.

In case of a non-linear separable data set using
the k-means algorithm we get a system of pairwise
disjoint clusters together with a set of their centers
representing a local minimum point of the criterion
(10), the clusters being linear separable when k = 2.
Consequently, the SV M1 algorithm computes a li-
near classifier that separates without errors the re-
sulted clusters.

Our procedure is described as follows

Input: S=
{
(xi, yi)|xi ∈ Rn, yi∈{−1, 1}, i=1, N

}

Step 1. Compute the matrix D = (dik) of entries

dik = yiyk (xi)
T xk , i, k = 1, N ,

and initialize sh ←− true

Step 2. If the constrained optimization problem




α∗ = arg
(

max
α∈RN

(
αT1− 1

2
αT Dα

))
,

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,
N∑

i=1

αiyi = 0 ,

do not have solution then
sh ←− false

input c, for hyperplane soft margin
Solve the constrained optimization problem





α∗=arg

(
max
α∈RN

(
αT1− 1

2
αT Dα− (αmax)2

4 c

))
,

αi ≥ 0 , ∀ 1 ≤ i ≤ N ,
N∑

i=1

αiyi = 0 ,

endif
Step 3. Select xr, xs such that

α∗r > 0 , α∗s > 0 , yr = −1 , ys = 1

Compute the parameters w∗, b∗ of the
separating hyperplane,
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



w∗ =
N∑

i=1

α∗i yixi ,

b∗ = −1
2

(w∗)T (xr + xs)

Compute the width of the separating area

ρ (w∗, b∗) =
2

‖w∗‖
Step 4. if not sh then

compute nr err1 - the numbers of
examples incorrect classified

compute err1 - error classification
endif

Step 5. The set D =
{

xi | xi ∈ Rd , i = 1, N
}

is

divided in two clusters C1 and C2 using 2-means,
marked out with y′i = 1 and y′i = −1 respectively.

Step 6. Apply algorithm SVM1 for
S ′=

{(
xi, y

′
i

)∣∣ xi∈Rd, y′i ∈ {−1, 1}, i=1, N
}

and obtain the parameters for optimal separating
hyperplane: w∗1, b

∗
1, ρ (w∗1, b

∗
1)

compute nr err2 - the numbers of
examples incorrect classified by 2−means

compute err2 - error classification
after 2−means

Output: w∗, b∗, ρ (w∗, b∗), nr err1, err1,
w∗1, b

∗
1, ρ (w∗1, b

∗
1), nr err2, err2.

5 Experimental results
In this section same of the results obtained in testing
the potential of the methodology exposed in previous
sections for solving classification problems. Some
of the test were performed on simulated data ran-
domly generated from two dimensional Gaussian dis-
tribution using kernels of polynomial and exponen-
tial types, respectively. A refined methodology is
proposed in the final part of this section . The pro-
posed methodology combines a Principal Compo-
nent Analysis (PCA) approach for dimensionality re-
duction in the space of the initial data representa-
tions with kernel-based SVM to allow possible in-
separability. The tests were performed on the free
Wisconsin Diagnostic Breast Cancer Database, taken
from UCI Machine Learning Repository: Data Sets,
http://archive.ics.uci.edu/ml/datasets.html.

The result of the test performed on the fa-
mous XOR problem using the kernel K

(
x, x ′

)
=(

xT x ′ + 1
)6

is presented in Figure 1. The labeled
data are

S=
{((

1
1

)
,−1

)
,

((−1
−1

)
,−1

)
,

((−1
1

)
, 1
)

,

((
1

−1

)
, 1
)}

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1: Solution of XOR computed by kernel SVM.

Several tests were performed in discriminated be-
tween examples coming from two classes when the
data are generated from two dimensional Gaussian
distribution. For instance, for samples of sizes N1 =
50, N2 = 25 respectively, generated from N (µ1, Σ1)
and N (µ2, Σ2) where

µ1 =
(

1
1

)
, Σ1 =

(
1 0
0 1

)
, µ2 =

(
4
3

)
,Σ2 =

(
1 0
0 0.5

)

in most cases, we obtained non-linearly separable
data. Some of the results obtained when we used dif-
ferent expression for polynomial an exponential ker-
nels are represented in Figure 2 and Figure 3.

A long series of tests were performed on the
medical data with confirmed diagnostic available
at UCI Machine Learning Repository: Data Sets,
http://archive.ics.uci.edu/ml/datasets.html. the di-
mension of each record is d = 30, for each exam-
ple the confirmed diagnostic representing the pres-
ence/absence of breast cancer being also provided.
The size of the data base is 569 examples, from
which 357 are positive examples and 212 are neg-
ative examples and we used them for the SVM de-
sign and for testing purposes. The first series of
tests were performed on design samples of sizes
20, 50, 100, 150, 200 respectively, the example being
taken randomly. In each case the complementary set
of examples was used to test the performance of the
computed discrimination function and the empirical
error functions were computed. The results are pre-
sented in tables 1-8. For each sample a PCA analy-
sis was developed separately for sub-samples coming
from each class in order to determine their most in-
formational directions. The tests pointed out that only
the first 15 eigenvectors of the sample autocorrelation
matrix are relevant, were we evaluated the relevance
by the magnitude of the corresponding eigenvalues.
We applied the SVM-based methodology using poly-
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Figure 2: a)K(x, x′)=
(
xTx′+1

)2
; b)K(x, x′)=

(
xT x′+1

)6
.

nomial kernels to the resulted 15 length representation
obtained when we considered only the principal direc-
tions whose corresponding eigenvalues are larger than
10−3 and evaluated the empirical error functions. Our
tests aimed to derived conclusions concerning the per-
formance expressed in terms of the empirical error of
the following classification schemes:

1. 2-means classification scheme.

a. The 2-means algorithm applied to the
whole data set.

b. The 2-means minimum distance classifica-
tion scheme (2-MMD). The data set is
split into the design data set and the test
data set. The 2-means algorithm is applied
to the design data set, each element com-
ing from the test data set is classified into
the cluster whose center is at minimum dis-
tance.

2. SVM classification scheme using linear and ex-

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

a

−1 0 1 2 3 4 5 6

−1

0

1

2

3

4

5

6

b

Figure 3: a) K (x, x ′) = exp
(
−2 (x− x ′)T (x− x ′)

)
;

b) K (x, x ′) = exp
(
− (x− x ′)T (x− x ′)

)
.

ponential kernels (SV M exp, SV M lin). For
each type of kernel the soft margin separating
hyperplane is computed for the whole data set.
The variant SV M exp uses the exponential ker-
nel K

(
x, x ′

)
= exp

(
− (

x− x ′
)T (

x− x ′
))

and the variant SV M lin uses the linear kernel
K

(
x, x ′

)
=

(
x− x ′

)T (
x− x ′

)
.

3. 2-means–SVM classification schemes
(SV M2m exp, SV M2m lin). The 2-means
algorithm is applied to the design data and
the soft margin hyperplane is computed to
separate the resulted clusters. The each of
test example is then classified using the com-
puted separating hyperplane. The variant
SV M2m exp uses the exponential kernel
K

(
x, x ′

)
= exp

(
− (

x− x ′
)T (

x− x ′
))

and
the variant SV M2m lin uses the linear kernel
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K
(
x, x ′

)
=

(
x− x ′

)T (
x− x ′

)
.

The performance is evaluated by computing by
the percentage of misclassified examples for design
data set and test data set respectively. We used the
following notation:

E2m,p − the percentage of misclassified exam-
ples when the 2-means algorithm is applied to
the design data set;

E2m,t − the percentage of misclassified exam-
ples when the 2-means algorithm is applied to
the test data set;

NS − the number of support vector in case of a
SVM-based classification schemes;

Ed − the percentage of misclassified examples
when a SVM-based classification is applied to
the design data set;

Et − the percentage of misclassified examples
when a SVM-based classification is applied to
the design data set.

CPUt − the duration expressed in seconds of
computing the solution of the optimization prob-
lems (14) and (20) respectively using the SMO-
algorithm. In table 1 the CPUt represents the du-
ration expressed in seconds when the 2-means al-
gorithm is applied.

Some of the results of our test s is presented in
the initial data space of dimension 30 are presented in
tables 1, 2, 3, 4.

Table 1: The 2-MMD scheme for d = 30.

N E2m,p(%) E2m,t(%) CPUt

20 25 14.2 0.03
50 22 13.10 0.03

100 24 10.87 0.04

Table 2: The SV M2m lin scheme for d = 30.

N NS Ed(%) Et(%) CPUt

20 2 25 15.3 1.24
50 3 22 11.94 27.2

100 3 24 10.44 317.86

Table 3: The SV M2m exp scheme for d = 30.

N NS Ed(%) Et(%) CPUt

20 20 25 36.79 4.27
50 50 22 36.03 83.24

100 100 24 34.54 778.19

Table 4: The SV M exp scheme for d = 30.

N NS Ed(%) Et(%) CPUt

20 20 0 36.79 4.35
50 50 0 36.03 86.58

100 100 0 34.55 777.11

Note that the CPUt represents the total CPU
time to apply the 2-means algorithm to the design data
set and the classification of the test set examples.

The empirical error when the 2-means algorithm
is applied to the whole data set is 14.58%. The tests
entail several conclusion concerning the comparative
analysis of the proposed classification schemes.

1. The best recognition can be obtained using the
SVM lin technique but unfortunately the time re-
quired to compute the soft margin hyperplane be-
comes prohibitively large when the volume of the
design data set increases. In case the volume of
the design data set is N = 20 the empirical error
is 8.3% for the test data set and 0 for the design
data set.

2. The 2-MMD and SVM2m lin prove comparable
performances from both points of view the en-
coding quality and the generalization capacities.

3. Also, in general, the SVM implementation using
exponential kernels prove better performances
the SVM exp classification schemes proves poor
generalization capacities.

4. The variant SVM2m lin proves better general-
ization capacities as compared to the 2-MMD
method but its duration increases significantly
when volume of the design data becomes larger.

We combined the proposed methodology to a
PCA preprocessing step. In case when we consider as
being informative only the principal directions whose
corresponding eigenvalues are larger than 10−3 we
obtain that there are 15 principal directions for each
class as well as for the whole data set, and in case the
significance level is 10−2 we obtain that there are only
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Table 5: The 2-MMD scheme for d = 15.

N E2m,p(%) E2m,t(%) CPUt

20 25 14.2 0.03
50 22 13.10 0.06

100 24 10.87 0.23

Table 6: The SV M2m lin scheme for d = 15.

N NS Ed(%) Et(%) CPUt

20 2 25 15.3 1.26
50 3 22 11.94 27.76

100 3 24 10.44 310.55

12 principal directions respectively. We preprocessed
data in order to obtain 15-length and 12-length re-
presentations and applied the described methodology.
The PCA dimensionality reduction can by performed
to ways. On one hand is to compute the principal di-
rections for the whole data set, and on the other hand
the principal directions can be computed separately
for each class, in case of the second approach more
informational representations result for all samples.
The amount of time to compute the principal compo-
nents of the whole data set is t = 0.03, the computa-
tion of the principal directions corresponding to each
class being almost equal to 0.015. Being given that for
this particular data set there are not significant differ-
ences between the representations resulted by apply-
ing these methods our option was to reduce the dimen-
sionality by using the overall principal directions, and
the results are presented in Table 5 - Table 8. Some
other tests performed on different data bases pointed
out that all the classification schemes proved better
performance when the representation were computed
in terms of the principal directions of each class.

Some of the obtained result are summarized in ta-
bles 5, 6, 7, 8. It is interesting to note that the em-
pirical error of the 2-means algorithm applied in the
reduced space remains unchanged that is the class se-
parability is not affected by the dimensionality reduc-
tion.

Comparing the results presented in Table 1 - Table
4 and Table 5 - Table 8 we see that the performance
of the classifier is significantly improved by including
PCA as a preprocessing step. This can be interpreted
as a proof that the effects of the minor components
on the class variability is similar to some sort of noise
that affects the data and is responsible for the decrease
of classifier performances.

Table 7: The SV M2m exp scheme for d = 15.

N NS Ed(%) Et(%) CPUt

20 20 25 36.79 4.47
50 50 22 36.03 79.45

100 100 24 34.54 700.36

Table 8: The SV M exp scheme for d = 15.

N NS Ed(%) Et(%) CPUt

20 20 0 36.79 4.19
50 50 0 36.03 85.03

100 100 0 34.55 773.15

6 Summary and final remarks
The paper presents some results in using SVM-based
techniques for classification purposes. Since the de-
sign of the SVM involves the solutions of quadratic
programming problems a natural question is to find
fast algorithms to solve the involved quadratic pro-
gramming problems. In our developments we used
the SMO algorithm introduced by Platt ([17]). We
tried to include a PCA approach as a preprocessing
step and apply the SVM-based methodology in the re-
duced space of principal components. The tests per-
formed of UCI Machine Learning Repository: Data
Sets, http://archive.ics.uci.edu/ml/datasets.html con-
firmed that this combined methodology allows signi-
ficant improvement of the classification performance.
Some work aiming to combine different types of clas-
sifiers with the SVM is still in progress and the results
are going to be published elsewhere.
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