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Abstract: In today’s software engineering program analysis and program transformation are operations that

strongly rely on software models. One important share in this direction is held by logic based models, described

in a declarative language such as Prolog. There are some approaches used to represent information about software

systems while at the same time preserving the logic relations between entities, but they are normally limited to

software systems written in a certain programming language. There are also language independent approaches

to logic based representation of programs, but they are usually based on syntactic information about the modeled

program and provide little information about the logic relations between entities at the semantic level. This paper

describes a methodology that would unite the two kinds of approaches, being both language independent and ex-

pressive at the semantic level at the cost of a more complex generation process.

Key–Words: program transformation, semantical actions , metamodel conforming logic representation

1 Introduction

A logic representation for a program is a suitable way

of dealing with the inherent complexity of certain

problems like program analysis and program transfor-

mation. It is generally accepted that declarative lan-

guages are more expressive than imperative languages

in this regard. Figure 1 shows this approach:

original

program
original

factbase

transformed

program

reader

(parser)

writer

(unparser) transformer
transformed

factbase

analyzer

Figure 1: Logic Based Approach

In [12] the authors present a tool called JTrans-

former which is capable of transforming Java pro-

grams into Prolog facts. All Java entities are mod-

eled in Prolog and navigation means are also provided.

Thus, one can access in Prolog all the packages of

the Java project, for each package a list of classes

can easily be obtained, each class provides access to

information about its attributes and methods, and so

on. By using the inference power of Prolog it is easy

to analyze the original Java code or even modify the

logic facts such as to add or delete a class, add or

delete a method, or even correct some of the problems

found by the analysis step that we have mentioned be-

fore. Currently, programming language logic repre-

sentation was successfully used for design anti-pattern

detection ([9]) and in the implementation of a reverse

inheritance class reuse mechanism for Eiffel ([17]).

[10] is inspired from the previously mentioned

work and shows how simple representations in Pro-

log can be obtained for programs written in any lan-

guage. Using the grammar for the target language,

a collection of Prolog facts is generated by follow-

ing the structure of the abstract syntax tree (AST) of

the program. Each father-son relation in the AST is

modeled as a fact in Prolog. The representation is not

quite useful for analysis and transformation because

it is much too close to the grammar of the target lan-

guage and does not provide easy access to relations

WSEAS TRANSACTIONS on COMPUTERS Ciprian-Bogdan Chirila, Calin Jebelean, Titus Slavici, Vladimir Cretu

ISSN: 1109-2750 1201 Issue 10, Volume 9, October 2010



between program entities. For example, obtaining at-

tribute or method information for a given class (if the

target language is an object-oriented one) is not an

easy task. Since the approach in [10] is a language in-

dependent one (this means the target language can be

any language), such a desiderate would be quite am-

bitious, because the grammar only provides syntactic

information about the language. Using only the lan-

guage grammar it is hardly possible even to detect if

the respective language is object-oriented.

In this paper we are going to combine the two

approaches presented before. Namely, we will show

how JTransformer-like output can be obtained for pro-

grams written in any language.

The paper is structured as follows: section 2

presents the logic based representation of programs,

section 3 the representation metamodel, section 4 de-

scribes the language independent program translator,

section 5 walks through the proposed methodology

using examples, in section 6 we present two use cases:

one dealing with the implementation of a class reuse

mechanism and the second with design antipattern de-

tection, section 7 studies related works and section 8

concludes and sets perspectives.

2 Logic-Based Representation of

Programs

Logic based representation of programs is all about

writing Prolog facts that encapsulate in one form or

another all the information available in the original

program. Logic facts are linked to one another by

means of their unique integer identifiers, creating a

hierarchical structure much like a generalized tree.

Later we will show that this generalized tree is, in

fact, similar to the abstract syntax tree of the program.

There should be one root fact which points to its chil-

dren by specifying a list of their identifiers, while its

children all point to the root fact also by linking to its

identifier. This idea is preserved at all levels. A logic

fact will then look like this (first three parameters of

each fact are only for identification and navigation):

factName(<id>, <pid>, <cids>, <argument> ...).

where:

• <id> is the integer identifier of the current fact

• <pid> is the integer identifier of the current

fact’s parent

• <cids> is a list of integer identifiers of the cur-

rent fact’s children

• <argument> is the first argument of the current

fact and can be followed by others

For example we present the Java code in figure 2:

class Rectangle

{

private double width;

private double height;

public double area()

{

}

}

Figure 2: Sample Code

Representing such a program in Prolog using the

elements introduced earlier is straightforward. The

root fact will define the class, while child facts will

deal with attributes and methods. Each of these chil-

dren will have children of its own that further describe

child-related aspects, like type information and access

modifiers for fields and methods, for example.

classDef(100, 0, [101, 104, 107], ’Rectangle’).

fieldDef(101, 100, [102, 103], ’width’).

accessDef(102, 101, [], ’private’).

typeDef(103, 101, [], ’double’).

fieldDef(104, 100, [105, 106], ’height’).

accessDef(105, 104, [], ’private’).

typeDef(106, 104, [], ’double’).

methodDef(107, 100, [108, 109], ’area’).

accessDef(108, 107, [], ’public’).

typeDef(109, 107, [], ’double’).

Figure 3: Sample Logic Representation

The logic representation is quite expressive and

easy to use. The class definition (id 100) offers quick

access to class members (ids 101, 104 and 107) which

turn out to be two fields and a method. Each of them

offers quick access to information such as the access

modifier and the type.

3 Metamodel

In this section we present the metamodel [11] of the

factbase representation for programs. This time will

take an Eiffel example. A model which is formally
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described by its metamodel offers the reflection fa-

cility. Thus, metamodel driven logic models can be

easily manipulated at both concrete and meta levels in

Prolog. Relying on the metamodel meta-routines can

be written to analyze or transform the logic models.

3.1 Node Structure

In figure 4 we present the structure of an AST node

and a relation node in the context of logic representa-

tion. Specifically, we present the structure of a class

declaration and its deferred property from the Eiffel

programming language [13, 8]. In Eiffel a deferred

class can not have instances, it is the equivalent of a

Java abstract class [1].

01 %classDecl(#id,#cluster,’ClassName’,

02 [#formalGeneric,...]).

03 ast_node_def(’Eiffel’,classDecl,[

04 ast_arg(id, mult(1,1,no),

05 id, [classDecl]),

06 ast_arg(parent, mult(1,1,no),

07 id, [cluster]),

08 ast_arg(className, mult(1,1,no),

09 attr, [atom]),

10 ast_arg(formalGenerics,mult(0,*,ord),

11 id, [formalGeneric])]).

12 ast_relation(’Eiffel’,deferred,[

13 ast_arg(classDeclRef, mult(1,1,no),

14 id, [classDecl])]).

15 ast_sub_tree(’Eiffel’,formalGenerics).

16 ast_ref_tree(’Eiffel’,classDeclRef).

17 ast_ancestor_tree(’Eiffel’,parent).

Figure 4: Metamodel Example

The class declaration logic representation is de-

fined as a fact with the following arguments:

i) unique global identifier for each AST node;

ii) parent class identifier - refers to the cluster the

class belongs to;

iii) class name - as an attribute containing the

name of the field;

iv) formal argument list - refers to each child for-

mal generic parameter.

The metamodel AST node is defined by the

ast node def fact which has as first argument the

name of the programming language the node refers to

(Eiffel), the name of the node (classDecl), followed by

a list of arguments describing other details of the AST

node. In the context of this work the notion of fact and

node are considered to be synonyms. The name of the

fact can be considered its type. Each argument is de-

scribed by a ast arg fact which has properties like:

i) argument name - some names are predefined

like id or parent, but the rest can be freely chosen;

ii) multiplicity - can be zero to one (line 10), one

to one (lines 04, 06, 08), zero or many or even one to

many;

iii) ordering - it makes sense when multiplicity

is zero to many or one to many and in this case the

argument is a list which can be ordered or not. For ex-

ample a class may have zero or more formal generics

and their order is important in such cases.

iv) kind of value - it can be identifier (lines 05,

07, 11) or attribute (line 09). Identifiers are positive

integers, while attributes are Prolog [5] atoms.

v) legal syntactic type(s) of argument values -

there can be one or many AST node types. For exam-

ple, the type of the identifier argument is classDecl,

the type of class parent is cluster, the type of the for-

mal generics is a type named formalGeneric.

The relation node defined between lines 12-14 has

only one reference to the parent class. The nature

of metamodel AST arguments is defined by special

clauses like: i) ast sub tree for subtree relations (line

15), e.g. formalGenerics AST argument denotes the

subnodes of classDecl;

ii) ast ref tree for references relations (line 16),

e.g. classDeclRef AST argument denotes a relation

with classDecl;

iii) ast ancestor tree parent relations (line 17),

e.g. parent AST argument denotes the cluster parent

of class declaration.

3.2 Node Arguments

Generic routines which manipulate logic representa-

tion depend very much on the fact arguments. We

have several kinds of arguments:

i) identifier arguments which represent the unique

identifier of the fact (like id for classDecl);

ii) parent arguments which represent the parent

identifier of the fact (like cluster for classDecl);

iii) ordered list of AST child identifiers (like for-

mal generics for classDecl);

iv) relation arguments which refer other nodes

from the structure. Knowing the argument types,

generic routines can easily navigate or clone the logic

model.

In figure 5 we present an example of an Eiffel

class declaration node and its potential relations with

other nodes from the model:

i) classDecl fact models an Eiffel generic class

and has an argument which refers the parent fact clus-

ter (Eiffel package of classes);

ii) classDecl fact has a list of identifiers pointing

towards the two formal generics of the class, identified

by 151 and 152;
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cluster(10,’.’).

classDecl(100,10,’A’,[151,152]).

formalGeneric(151,100,’G1’).

formalGeneric(152,100,’G2’).

deferred(100).

featureBlock(200,100).

child node

parent node

attribute node 

main 

node

child node

child node

reference to 

parent (100)

reference to 

parent (100)

reference to

child (152)

reference to 

child (151)

reference to 

parent (100)

reference 

to parent (10)

reference to 

parent (100)

Figure 5: AST Node Structure

iii) both formalGeneric facts (151 and 152) refer

their classDecl parent identified by 100;

iv) featureBlock fact is a child of classDecl, but

the parent is unaware of its existence;

v) deferred fact is a special kind of node, having

the role of attribute for classDecl, this fact has no own

identifier being strongly linked to its parent.

We can notice that the metamodel includes both

syntactical and semantical information. For exam-

ple the fact that a formal generic belong to a class is

a syntactical information. But if we consider a call

instruction in the form of name or object.name it will

refer either a formal argument, local or class member

(method or attribute), which is a semantical informa-

tion.

4 Language Independent Logic Gen-

eration

The current limitation is that Prolog output like the

one in figure 3 can only be obtained for specific

languages, by manually writing suitable translators

aimed at those respective languages. Such a Prolog

transformation engine is JTransformer ([12]) which

only deals with Java programs. This article introduces

and describes a new methodology which we intend to

implement in a tool called ProGen aimed at perform-

ing language-independent generation of logic facts for

programs. In order to be able to generate such logic

facts for programs written in any language, our new

methodology should be based on two things:

• the grammar of the respective language – a cru-

cial artifact, since it is the only one that can pro-

vide information about language elements and

how they relate to each other;

• a set of mapping rules attached to each grammar

production that specify what needs to be done at

each point.

[10] presents a naive version of such a method-

ology. It is language-independent but it is also

naive because it only uses the grammar for gener-

ating logic facts, without the previously mentioned

mapping rules. Thus, the output only contains in-

stances of father-son relations directly extracted from

the grammar. The main problem is that high-level re-

lations between program elements are very difficult

to grasp from the Prolog output unless they are di-

rectly contained in the grammar. However, the fact

that a class in an object-oriented language contains

fields and methods is not something directly specified

in the grammar, but rather deductible by following a

number of grammar rules. Such high-level relations

between program entities must be specified by some

kind of annotations which should accompany the lan-

guage grammar. Basically, the resulting Prolog model

must be an instance of a metamodel that should spec-

ify in detail how program items are related to each

other. This is what the mapping rules introduced ear-

lier actually are. The approach augments the one in

figure 1 with the grammar and metamodel mapping

rules, as described earlier and is presented in figure 6.

The grammar and the metamodel mapping rules are

used together with JavaCC ([14]) to generate a special

parser for programs written in a language that con-

forms to the grammar. Replacing the grammar and

the metamodel mapping rules will lead to the same

methodology being applied to another programming

language.

original

program
original

factbase

transformed

program

reader

(parser)

writer

(unparser) transformer
transformed

factbase

analyzer

metamodel

mapping

rules

grammar

parser

generator

generates

conforms to

Figure 6: ProGen Approach

The parser in figure 6 can be generated by using

the language grammar (which is available, as men-

tioned) and JavaCC which is a parser generator that

generates parsers written in Java. The fact generation
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behavior can be attached to the parser by using a Visi-

tor design pattern ([6]) which is instructed to generate

Prolog facts in every AST node it visits. The instruc-

tions for fact generation are the mapping rules in fig-

ure 6.

5 A Methodology Walkthrough

In this section we will show how things work by pre-

senting a comprehensive example which will include

a simple grammar and a simple set of mapping rules

for that grammar. The target language will be Eiffel

([13]) but the approach is language-independent any-

way.

5.1 Grammar Rules

Our working grammar is presented in figure 7. It de-

scribes a simplified version of the syntax of class and

feature declarations in Eiffel (note that in Eiffel, both

fields and methods are referred to as features):

ClassDecl ::= [ "deferred" ] "class" <id> ( FeatureBlock )* "end"

FeatureBlock ::= "feature" ( FeatureDecl )*
FeatureDecl ::= <id> [ "(" FormalArgumentList ")" ]

[":" <id>] [ FeatureBody ]

FormalArgumentList ::= FormalArgument ( ";" FormalArgument )*
FormalArgument ::= <id> ":" <id>

FeatureBody ::= ...

Figure 7: Eiffel Grammar Fragment

We will ignore everything under FeatureBody

(the body of features) because of space limitations.

5.2 JavaCC Library Extension

As mentioned earlier, the mapping rules which will

be the subject of the next subsection will use generic

AST node data access expressions. Specifically, they

will use concepts like: the identifier of an AST node,

the n-th direct descendant of an AST node, the parent

of an AST node, the next sibling of an AST node, etc.

JavaCC provides access to some of this data, but not

for all. Moreover, JavaCC treats lexical tokens sepa-

rately from AST nodes. Lexical tokens are instances

of class Token, while AST nodes are objects of de-

scendant types of class SimpleNode. By default, there

is no relation between class Token and SimpleNode in

the library, but JavaCC provides means to set ances-

tor for these classes. We decided that it was easier to

unify the two concepts by making them inherit from

the same superclass, called Entity. The new library

(original library plus extensions) is presented in fig-

ure 8:

Figure 9 shows the library at work on a simple

example:

Entity

+progenID: Integer

+getProgenID(): Integer

+setProgenID(Integer)

Token

+image: String

+next: Token

ProgenNode

+getParent(): Entity

+existsChild(String): boolean

+getChild(String): Entity

+getNextSibling(String): Entity

+getPreviousSibling(String): Entity

SimpleNode

+jjtGetParent(): Node

+jjtGetChild(int): Node

+jjtGetNumChildren(): int

Production

+entities: ArrayList<Entity>

+existsChild(String): boolean

+getChild(String): Entity

+getNextSibling(String): Entity

+getPreviousSibling(String): Entity

ASTClassDecl ASTFeatureBlock ASTFeatureDecl ...

Figure 8: JavaCC Library Extension

ClassDecl

"RECTANGLE"
FeatureBlock "end"

"width"

jjtGetFirstToken()

FeatureDecl

"class"

":" "REAL"

jjtGetFirstToken() jjtGetLastToken()

next

jjtGetFirstToken() jjtGetLastToken()jjtGetChild(0)

next

next

FeatureDecl FeatureDecl

......

next

next

jjtGetChild(0) jjtGetChild(1) jjtGetChild(2)

"feature"

next

getNextSibling() getNextSibling()

getNextSibling() getNextSibling() getNextSibling()

getNextSibling()

getNextSibling()

getNextSibling()

getNextSibling()

Figure 9: JavaCC Node Navigation Methods

Methods having ”jjt” as prefix are methods al-

ready supplied by JavaCC. These methods have some

annoying limitations. For example, methods jjt-

GetChild provides access to a child of a SimpleNode

given by its index among the children. However, only

children of type SimpleNode are counted and if there

are also children of type Token, they are disregarded.

We needed a method that would treat Tokens and Sim-

pleNodes in a unified manner, that’s why we intro-

duced a new version of this method called getChild.

Also, we needed some methods to obtain the next or

the previous sibling of a given child. These methods

are called getNextSibling() and getPreviousSibling().

5.3 Mapping Rules

The set of mapping rules defines the structure of the

desired metamodel by using expressions built with

node operations from the JavaCC extended library de-
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scribed earlier. Mapping rules are divided into two

categories: rules that specify what Prolog code does

an AST node generate and rules that specify what

value does an AST node return to be used by the an-

cestors of that node. The metamodel presented in sec-

tion 3 describes the structure of the logic facts. To be

noted that the mapping rules must be written accord-

ing to the metamodel in order to generate the desired

logic model.

5.3.1 FormalArgument Mapping Rule

The first example considers the grammar rule which

defines a FormalArgument:

FormalArgument ::= <id> ":" <id>

From the syntactic point of view, a formal argu-

ment definition is a sequence of 3 atoms: an identi-

fier, a colon and another identifier. From a semantic

point of view, the first identifier is the name of the ar-

gument and the second identifier is its type. A meta-

model builder who has access to language semantics

would know that.

The Prolog facts that would express the same

thing would be:

formalArgument(#ID, #ParentID, ’name’, ’type’).

To achieve that, we should use the mapping rule

in figure 10:

FormalArgument generate

formalArgument(

node.getProgenID(),

node.getParent().getProgenID(),

"’" + node.getPreviousSibling(":") + "’",

"’" + node.getNextSibling(":") + "’"

).

Figure 10: FormalArgument Mapping Rule

The mapping rule specifies that a FormalArgu-

ment node must generate a formalArgument Prolog

fact with 4 parameters: the first one is the ProGen

identifier of the node, the second one is the ProGen

identifier of the node’s parent, the third one is the pre-

vious sibling of the atom ”:” enclosed in simple quotes

and the fourth one is the next sibling of the atom ”:”

also enclosed in simple quotes.

Now this textual rule must be systematically tran-

sformed in a Java visitor method which will be part of

the generated parser in figure 6. The systematic trans-

formation is necessary because the mapping rules will

be processed automatically and the Java code (visitor

and helper methods) will be generated automatically.

public Object visit(ASTFormalArgument node, Object data) {

System.out.println(

"formalArgument" + "(" +

node.getProgenID() + "," +

node.getProgenParent().getProgenID()+ "," +

"’" + node.getPreviousSibling(":") + "’" +

"’" + node.getNextSibling(":") + "’" + ")."

);

data = node.childrenAccept(this, data);

return data;

}

Figure 11: FormalArgument Visitor Method

A parser that uses a Visitor that calls the method

in figure 11 when dealing with an ASTFormalArgu-

ment node will generate a Prolog fact according with

4 parameters, as needed. It is easy to observe that the

mapping rule in figure 10 can easily be transformed in

the Java method from figure 11, all the expressions

used to describe parameters should just be ”copied

and pasted” in the output Java code in the suitable

places. This is one of the most important advantages

of the approach we present here. Each mapping rule

use a simple syntax that is already compatible with

the Java compiler and its integration in a larger Java

project (like a parser generator) can be easily auto-

mated.

5.3.2 FormalArgumentList Mapping Rule

The FormalArgumentList grammar rule is chosen as

the second example because it will give us the chance

to explain the second type of mapping rules: rules that

specify return values for AST nodes.

FormalArgumentList ::= FormalArgument ( ";" FormalArgument )*

The Prolog facts that would express the same

thing would be:

formalArgumentsList(#ID, #ParentID,

[#FormalArgument1ID, #FormalArgument2ID, ...]).

Normally, since a FormalArgumentList contains

a number of formal arguments, it could be required to

generate a list of IDs of those formal arguments. For

that purpose, we will have a mapping rule that defines

what value should an ASTFormalArgumentList node

return and another mapping rule that defines what Pro-

log code should an ASTFormalArgumentList gener-

ate.

The generated Prolog fact will have 3 arguments:

the ProGen identifier of the node, the ProGen iden-

tifier of the node’s parent and the value of the node

itself. This node value is specified by the other map-

ping rule. The value of an ASTFormalArgumentList

node is a list of all ASTFormalArgument nodes that

descend from it. These mapping rules will be trans-

lated into 2 Java methods. The rule containing the
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FormalArgumentList return list(FormalArgument)

FormalArgumentList generate

formalArgumentList(

node.getProgenID(),

node.getParent().getProgenID(),

node

).

Figure 12: FormalArgumentList Mapping Rules

”generate” clause will be translated in the same man-

ner like in the previous example, but for the rule con-

taining the ”return” clause we will use a special type

of translation. The Java output is visible in figure 13:

public Object visit(ASTFormalArgumentList node, Object data) {

System.out.println(

"formalArgumentList" + "(" +

node.getProgenID() + "," +

node.getProgenParent().getProgenID() + "," +

computeReturnValue(node) + ")."

);

data = node.childrenAccept(this, data);

return data;

}

public String computeReturnValue(ASTFormalArgumentList node) {

String szValue = "[";

for(int i = 0; i < node.jjtGetNumChildren(); i++) {

ProgenNode pgNode=(ProgenNode)node.jjtGetChild(i);

if (pgNode instanceof ASTFormalArgument)

szValue += pgNode.getProgenID() + ",";

}

// cutting the trailing comma

if(szValue.length() > 1)

szValue = szValue.substring(0, szValue.length() - 1);

szValue += "]";

return szValue;

}

Figure 13: FormalArgumentList Visitor Methods

Again, the Java code can be obtained mechani-

cally from the mapping rules and can be the subject of

automatic generation.

6 Use Cases

6.1 Method Body Exheritance

Informally, reverse inheritance (exheritance) [17] is an

inheritance class relationship where the subclasses ex-

ist first and the superclass is built afterwards. Reverse

inheritance implements the class generalization con-

cept of UML [16]. On the other hand, reverse inheri-

tance is a class reuse mechanism equipped with capa-

bilities like:

• allowing a more natural class hierarchy design

- it is more natural to identify the classes in a

system, to notify commonalities, to extract them

in superclasses;

• common feature factorization from existing

classes;

• reusing behavior from a subclass into the super-

class and its descendants;

• extending a class hierarchy by creating a super-

class and descendants;

• decomposing and recomposing classes with the

help of multiple inheritance;

• adding a new layer of abstraction in an existing

hierarchy;

• favoring the use of design patters [6].

Eiffel [8, 13] has several language features like:

multiple inheritance, no overloading, adaptations, co-

variance, so it was decided that Eiffel is the most suit-

able language for the implementation of reverse in-

heritance. In Eiffel class members both attributes and

methods are named as features.

As mentioned earlier, one of the goals for this

class relationship is to factor common features from

existing subclasses and to create a new representative

feature in the foster class. Implicitly, several candi-

date features from subclasses are exherited as deferred

(abstract) in the superclass. The other choice is to ex-

plicitly select an implementation from one candidate

class and to adjust it to the context of the superclass.

In figure 14 we present two existing classes

RECTANGLE and ELLIPSE and a new class SHAPE

created by reverse inheritance on the top of them. The

first two classes have two common features perime-

ter and semiperimeter which are intended to be ex-

herited into SHAPE superclass. The decision taken

is to exherit perimeter as an abstract feature and

semiperimeter together with its implementation from

RECTANGLE in order to be reused in other subclasses

of SHAPE. In order to migrate the implementation

from RECTANGLE into SHAPE we have to take three

actions: i) to analyze the semiperimeter code from

RECTANGLE and to search for all calls pointing to

class features and to detect if all those calls point to

features which were exherited (abstract or concrete);

ii) if the condition in i) holds then we clone the fea-

ture implementation nodes (body of the method); iii)

to replace all local references from RECTANGLE with

references from SHAPE.

In figure 15 we present the result of the local

calls search routine. Using generic search rules [4]

we extract all calls from the method body subtree. In

our case we found only one call to feature perimeter.

Since the called feature exists in both RECTANGLE

and ELLIPSE subclasses having the same signature,

this feature is exheritable in class SHAPE. Now we

know that the implementation of semiperimeter is ex-

heritable and we can proceed to the cloning step.
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01 class RECTANGLE

02 feature

03 ...

04 perimeter:REAL

05 semiperimeter is

06 do

07 Result:= perimeter/2

08 end

09 end

10

11 class ELLIPSE

12 feature

13 ...

14 perimeter:REAL

15 semiperimeter is

16 do

17 -- ellipse implementation

18 end

19 end

20

21 foster class SHAPE

22 exherit

23 RECTANGLE

24 moveup semiperimeter

25 end

26 ELLIPSE

27 end

Figure 14: Method Body Exheritance Example (Eiffel

Code)

In figure 16 we duplicated the nodes of the

method body in class SHAPE using generic cloning

rules [4]. One can notice that there is an invalid

call reference pointing towards perimeter attribute of

class RECTANGLE instead of the attribute from class

SHAPE.

In figure 17 we correct all invalid references. Us-

ing generic replacement rules [4] and the feature cor-

respondence map from the exheritance process we re-

place all the invalid ex-local references with the cor-

rect ones.

6.2 Antipattern Detection

Another useful purpose for a language-independent

logic translator would be to help in the process of an-

tipattern detection using a logic based approach. De-

sign patterns ([6]) are high quality and well docu-

mented solutions to frequently occuring problems in

object-oriented programming practice. Their use is

strongly recommended by experts to help create more

robust designs for software applications. However,

unexperienced programmers often misuse or even ig-

nore them. A good research direction would be aimed

at detecting places in object-oriented code where such

design patterns could have been used, but weren’t.

featureDecl(302,201,’semiperimeter’)

routine(402,302)

compound(502,402,[601])

assign(601,502,701,702)

identifier(701,’Result’) binaryOperator(702,801,802)

call(801,702,301)

featureDecl(301,201,’perimeter’)

manifestConstant(802,’2’,’integer’)

featureBlock(201,101)

classDecl(101,10,’RECTANGLE’,[])

reference towards

perimeter of RECTANGLE

Figure 15: Local Calls Search

[3] presents such an approach that uses JTransformer

([12]) as the provider of logic facts, and is therefore

stuck to using Java as the underlying programming

language.

The design pattern under analysis is the Compos-

ite design pattern. Figure 18 shows the desired UML

structure of a Composite anti-pattern.

The main problem with this structure is that

the inheritance link between classes Composite and

Shape is missing. Detecting such a problem is not as

trivial as it seems to be. To fully mark this UML struc-

ture as a potential (though incomplete) Composite im-

plementation, one should find a few additional ele-

ments, some of which are not visible from the UML

diagram:

• the Shape class must have at least one descen-

dant and must share at least one method with this

descendant

• the Composite class must contain an array of

Shape objects

• the Composite class must have at least one

method that iterates through the array of Shape

objects, calling the method that the Shape hierar-

chy shares

In figure 18 the Shape hierarchy is sound (there

is at least one descendant of class Shape) and there

is at least one method shared throughout the hierar-

chy (method area()). The Composite class must still

provide at least a method that iterates the collection

of Shape objects calling the area() method for each of

them. If such a method doesn’t exist then there is no
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featureDecl(1002,1000,’semiperimeter’)

routine(1003,1002)

compound(1004,1003,[1005])

assign(1005,1004,1006,1007)

identifier(1006,’Result’) binaryOperator(1007,1008,1009)

call(1008,1007,301)

featureDecl(1001,1000,’perimeter’)

manifestConstant(1009,’2’,’integer’)

featureBlock(1000,103)

classDecl(103,10,’SHAPE’,[])

invalid reference

towards perimeter of RECTANGLE

Figure 16: Method Body Clone

reason for the UML structure to be modified to a Com-

posite design pattern, since the advantages of a Com-

posite are never used or needed. But if such a method

existed, then making the Composite class a descen-

dant of Shape would not alter the code behavior while

at the same time would enhance it with the possibil-

ity to nest Composite instances indefinitely into one

another, thus adding a certain elegance to the process.

[3] presents the methodology for such a detection

on Java programs, using the logic based representation

provided by the JTransformer tool ([12]). The use of a

language independent logic based representation such

as the one that ProGen would generate will have a very

important consequence. If the mapping rules for sev-

eral object-oriented language will be written such as

similar entities will generate similar Prolog facts, then

the detection technique described in [3] which is avail-

able for Java programs could also work without modi-

fications on any other object-oriented language. Once

at the Prolog level, there would ideally be no informa-

tion about the programming language that was used to

generate the logic based representation, so everything

that is built on top of the Prolog representation (such

as a Composite antipattern detection technique) would

automatically become langauge independent, too.

7 Related Works

In this section we will focus on the most representative

and similar program transformation works related to

our proposed methodology.

featureDecl(1002,1000,’semiperimeter’)

routine(1003,1002)

compound(1004,1003,[1005])

assign(1005,1004,1006,1007)

identifier(1006,’Result’) binaryOperator(1007,1008,1009)

call(1008,1007,1001)

featureDecl(1001,1000,’perimeter’)

manifestConstant(1009,’2’,’integer’)

featureBlock(1000,103)

classDecl(103,10,’SHAPE’,[])

reference towards

perimeter of SHAPE

Figure 17: Local Calls Replacement

Shape

+area()

+add()

+remove()

+getChild()

Rectangle

+area()

Composite

+area()

+add()

+remove()

+getChild()

 child

 parentEllipse

+area()

Figure 18: A Composite Anti-Pattern

Stratego/XT [2] is a framework for implement-

ing software transformation systems. Stratego is a

language for software transformation based on the

paradigm of rewriting strategies. Basic transforma-

tions are defined using conditional term rewrite rules.

These are combined into transformations by means

of strategies, which control the application of rules.

The approach is based also on Syntax Definition For-

malisms (SDF) and Annotated Terms (ATerm) which

is an abstract data type designed for the exchange of

tree-like data structures between distributed applica-

tions. Our approach is much simpler, it relies on:

metamodel design, basic Java knowledge and a few

JavaCC API node data access methods.

EMFText [7] is an Eclipse plug-in that allows the

definition of language syntax described by an Ecore

model. It is designed for textual representation of Do-

main Specific Languages (DSL). Our work has the

same goal of creating models from text. Our mod-
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els are represented by Prolog facts, while EMFText

models are of Ecore based. The EMFText approach

works in both ways: text to model (by a parser) and

model to text (by a printer), while our methodology

is oriented from text to logic model. Both approaches

are based on parser generators ANTLR, respectively

JavaCC, which are limited to a subset of context-free

grammars.

Kermeta-Sintaks [15] is a tool which defines

bridges between concrete (textual files) and abstract

syntax (models). The bridge is a Sintaks model used

to parse a text in order to get the corresponding model

(conforming to a metamodel) and to explore a model

for printing in into textual representation. Our map-

ping rules are similar to the text to model transfor-

mation. Both approaches generate metamodel driven

models one based on Ecore and the other on Prolog.

Other program transformation tools and langua-

ges offer specific methodologies for language engi-

neers like: Fermat - industrial strength program trans-

formation system based on WSL language; Design

Maintenance System (DMS) - set of industrial tools

for complex source program analysis and transforma-

tion; Monticore - framework for the design and pro-

cessing DLS, etc.

8 Conclusions and Perspectives

In this paper we show how a program can be trans-

lated into logic representation conforming to a desired

metamodel by using a grammar aware approach. The

source code was parsed by a JavaCC grammar gener-

ated parser that produces the AST of the code. The

logic model is obtained by collecting data from the

AST following the metamodel rules. To help access-

ing data from the AST we configured and extended

the Java AST nodes with special methods.

Our approach is simple and pragmatic having the

determined goal of generating logic representation for

object-oriented programming languages. One of the

main advantages of this approach is that mapping

rules are written in a language that conforms to the

Java syntax and even make use of the JavaCC ex-

tended library that we implemented. Thus, there is no

need to parse the expressions used to specify mapping

rules. The automatic generator can copy and paste

them in the output Java code and possible errors will

be discovered by the Java compiler itself upon compi-

lation of the generated Java sources.

The approach was experimented with success on

an industrial strength language, namely Eiffel. The

complexity of the Eiffel grammar prevented us from

describing the whole process, we only managed to of-

fer a simple idea about the methodology being used.

We describe two concrete use cases for the logic

representation. One use case describes the implemen-

tation of one exheritace class relationship mechanism.

The generic routines dealing with searching, cloning,

replacing nodes can be applied to any model which is

described by the given metamodel. This means that

those rules can be applied to programs written in any

programming language, but expressed as logic facts

respecting the metamodel. The metamodel presented

in section 3 is not the only or the best choice to de-

scribe the structure of logic facts. The second use

case deals with the detection of design anti-patterns in

object-oriented systems. Anti-pattern detection Pro-

log rules are much expressive and close to natural

language principle than writing imperative commands

like visitors on an abstract syntax tree.

As perspectives, we plan to implement the auto-

matic generator of semantic actions in a visitor of the

abstract syntax tree. We also plan to provide mapping

rules for other general purpose programming langua-

ges like C++, Java, C#. Another useful feature would

be to be able to automatically regenerate the target

program from Prolog facts. That way, the full path

presented in figure 6 is complete.
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Kniesel, and Philippe Lahire. Generic rules for

logic representation transformations. In Pro-

ceedings of 2010 International Conference on

Automation, Quality and Testing, Robotics -

AQTR’2010, volume 3, pages 142–148, May

2010.

WSEAS TRANSACTIONS on COMPUTERS Ciprian-Bogdan Chirila, Calin Jebelean, Titus Slavici, Vladimir Cretu

ISSN: 1109-2750 1210 Issue 10, Volume 9, October 2010



[5] Free Software Foundation. SWI-Prolog, 2008.

[6] Erich Gamma, Richard Helm, Ralph Johnson,

and John Vlissides. Design patterns: Elements

of reusable object-oriented software. Addison-

Wesley, 1995.

[7] Florian Heidenreich, Jendrik Johannes, Sven

Karol, Mirko Seifert, and Christian Wende. De-

rivation and refinement of textual syntax for

models. In Model Driven Architecture - Foun-

dations and Applications, pages 114–129. June

2009.

[8] ECMA International. Standard ECMA-367 Eif-

fel: Analysis, design and programming lan-

guage. www.ecma-international.org, June 2006.
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