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Abstract: Starting from a two-dimensional rectangular Cutting-Stock pattern with gaps, this paper is focuses on the
problem of determination if the pattern is with guillotine restrictions or not and proposes an algorithm for solving
it. First we present two new graph representations of the cutting pattern, weighted graph of downward adjacency
and weighted graph of rightward adjacency. Using these representations we propose a method to verify guillotine
restrictions of the pattern which can be apply for cutting-stock pattern with gaps but also for the cutting or covering
pattern without gaps and overlapping.
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1 Introduction
One of the NP-hard problems presented in the litera-
ture is the problem of cutting of concrete or abstract
objects. This problem, together with the dual problem
of covering (packing), appears under various specifi-
cations [4]: cutting-stock problems, knapsack prob-
lems, container and vehicle loading problems, pal-
let loading, bin-packing, assembly line balancing, etc.
The problem of cutting and covering arises in various
production processes with applications varying from
the home-textile to the glass, steel, wood, and pa-
per industries, where rectangular figures are cut from
large rectangular sheets of materials. Furthermore,
an arguably more complicated problem called Cutting
and Covering [5] can be derived by cutting a piece of
material into small pieces which are then used to cover
a surface without overlapping or leaving any gaps.

Dyckhoff provided in [4] a classification of the
various types of cutting problems such as: one dimen-
sional, two dimensional and three dimensional with
different types of constrains. For these problems it is
also possible to find the packing order by using a topo-
logical sorting algorithm [13, 14]. A frequent con-
strain, imposed by industrial applications of the two
or three dimensional problem, is the so-called guil-
lotine restriction which states that the resulting pat-
terns need to be guillotine cuttable. Many applications
of two-dimensional cutting and covering in the glass,
wood, and paper industries, for example, are restricted
to guillotine cutting.

Because of the strong link between cutting prob-

lem and covering problem based on the duality of ma-
terial and space, it seems to be obvious to examine
both within a general framework. There are still some
differences between cutting and covering problems.

In the literature have been proposed several tech-
niques that solve the cutting and covering problems
such as formulating the problem as a mixed integer
problem, heuristics [17], genetic algorithms [7] as
well as approximation algorithms [6]. All these meth-
ods result in a pattern or a set of patterns but they are
not adequate for constructing cutting patterns when
the approach is used to solve the guillotine cutting-
stock problem.

In [1] a polynomial algorithm is presented in case
of guillotine cutting a rectangle into small rectangles
of two kinds: rectangles of the first kind with the
same width but their heights can be various and rect-
angles of the second kind with the same height, and
their widths can be various. However, the guillo-
tine restrictions are difficult to respect in the general
pattern-generation process. So instead of generation
of a cutting-stock pattern with guillotine restrictions
it is possible to use an analytic method to verify if
the pattern, obtained by some methods used in case
of non-guillotine cutting, is with or without guillotine
restrictions [11]. Nevertheless, this method is rather
unpractical since the cutting pattern is represented as
an array pattern [12], which implies a large matrix rep-
resentation. Another analytical method, presented in
[15], used the graph representation [8, 9] of a cover-
ing pattern without gaps or overlapping. This method
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developed an algorithm for guillotine restrictions ver-
ification, based on connections between guillotine cut
and the connex components of the graphs. Unfortu-
nately this algorithm is useless in case of a cutting-
stock pattern with gaps. For this kind of pattern we
propose in [16] another method based on two new
kinds of graph representations, weighed graph repre-
sentations, which it is more general comparing with
the method presented in [15].

This paper is an extended paper of [16] and
presents an algorithm for determination of the guillo-
tine restrictions for a rectangular cutting-stock pattern
with gaps.

2 Problem formulation
Let P , a rectangular plate, characterized by length L
and width W. From plateP we cut k rectangular items,
Ci , i =1, 2, ..., k. An item Ci is characterized by
length li and width wi.

Definition 1 A rectangular cutting-stock pattern is an
arrangement of the k rectangular items Ci on the sup-
porting plate P , so that the borders of the items Ci to
be parallel with the borders of the plate P .

For this kind of patterns we have presented in
[8, 9] two graph representations. Starting from these
representations we complete the graphs by adding a
value for each arc from the two graphs.

Definition 2 A rectangular cutting pattern has guil-
lotine restrictions if at every moment of the cutting
process the remaining supporting rectangle is sepa-
rated in two new rectangles by a cut from an edge to
the opposite edge of the rectangle and the cutting line
is parallel with the two remaining edges.

In the set of the rectangles {C1, C2,. . . , Ck} from
the covering pattern we define a downwards adjacency
relation and a rightwards adjacency relation.

Definition 3 The rectangle Ci is downward adjacent
(rightward adjacent) with rectangle Cj if in the cut-
ting pattern, Cj is to be found downward (respec-
tively rightward) Ci and their borders have at least
two common points.

Let C = { C1 , C2,..., Ck } and Rd, Rr /∈ C. For
any covering pattern, we defined in [8, 9], a graph of
downwards adjacency and another one of rightwards
adjacency. We define now two new graphs a weighted
graph of downwards adjacency, Gd, and another one
of rightwards adjacency, Gr. We will use in these
definitions the notation V (X, Y ) for the value of the
arc (X, Y ).

Figure 1: The rectangular cutting-stock pattern

Definition 4 The weighted graph of downward
adjacency Gd = (C∪{Rd}, Γd) has as vertices the
rectangles C1, C2, ..., Ck and a new vertex Rd

symbolizing the northern borderline of the supporting
plate P. The Γd is defined as follows:

Γd(Ci) 3 Cj if Ci is downward adjacent
with Cj

Γd(Rd) 3 Ci if Ci touches the North border
of the support plate P

V (X, Cj) = wj ,∀X ∈ C ∪Rd and Cj ∈ C

.

Definition 5 The weighted graph of rightward adja-
cency Gr = (C∪{Rr}, Γr), where Rr symbolizes the
western border. The Γr is defined as follows:

Γr(Ci) 3 Cj if Ci is rightward adjacent
with Cj

Γr(Rr) 3 Ci if Ci touches the West border
of the support plate P

V (X, Cj) = lj ,∀X ∈ C ∪Rr and Cj ∈ C

.

Let the cutting-stock pattern from Figure 1. The
weighted graphs Gd and Gr, are represented in Figure
2 and Figure 3.

We remark that in the graphs Gd and Gr the ver-
tex Rd (respectively Rr) is connected by an arc to the
vertex Ci if and only if Ci touches the northern (re-
spectively the western) border of the support P .

Remark 6 In the following we consider only the rect-
angular cutting-stock pattern where the rectangles are
not situated under or to the right of an empty spaces.
When it is not true (see Figure 4), we can define an-
other pattern (equivalent) by moving the rectangles
(in Figure 4 this rectangle is C) down or to the left
till they touch the border of another rectangle. In the
sense of the cutting-stock problem with a minimum
rest, for every cutting-stock pattern there is always an
equivalent pattern of this form.
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Figure 2: The graph Gd

Figure 3: The graph Gr

Figure 4: Moving directions

From the Remark 6 it results that the weighted
graphs Gd and Gr attached to a cutting-stock pattern
have the following properties [9]: the graphs are quasi
strongly connected and have no circuit.

Let us have a cutting-stock pattern with guillotine
restrictions. From [10] it follows that it is possible to
represent a rectangular cutting-stock pattern with guil-
lotine restrictions using an expression with two oper-
ations:

1. 	 - the s-line concatenation, an operation for hor-
izontal cuts;

2. � - the s-column concatenation, an operation for
vertical cuts.

For example, the cutting pattern from Figure 1 will be
described by the following expression:

	�	AE �	BDC � FG.

3 Cuts determination

In [15] we presented an algorithm for cuts determina-
tion in case of a cutting pattern without gaps. But it
is not possible to apply this algorithm in the case of a
cutting-stock pattern with gaps.

Starting from a rectangular cutting-stock pattern
with gaps we intend to find a connection between guil-
lotine restrictions and the two weighted graphs of ad-
jacency, Gd and Gr.

For this purpose we will use the notation
Lpd(Rd, Ci), respectively Lpr(Rr, Ci) for the length
of the path from Rd to Ci in the graphs Gd, respec-
tively Gr. We remark that Lpd(Rd, Ci) represents the
distance from the northern border of the plate P to the
southern border of piece Ci and similarly Lpr(Rr, Ci)
represents the distance from the western border of the
plate P to the eastern border of piece Ci.

Remark 7 If a cutting-stock pattern has an horizon-
tal guillotine cut situated to a distance M from the
North border of the supporting plate P then the set of
the items, C, can be separated in two subsets S1, the
set of the items situated above this cut, and S2 the set
of the items situated below this cut. Of course in the
weighted graph Gd we have:

1. Lpd(Rd, Ci) ≤M for every Ci ∈ S1;

2. Lpd(Rd, Ci) > M for every Ci ∈ S2.

We obtain a similar result if the cutting-stock pat-
tern has a vertical cut.

The two conditions from the above remarks are
necessary but not sufficient because it is possible the
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cut to intersect some items from the set S2. We present
in the following necessary and sufficient conditions
for a guillotine cut.

Theorem 8 Let a rectangular cutting-stock pattern
with possible gaps and the weighted graph Gd at-
tached to the pattern. The cutting-stock pattern has an
horizontal guillotine cut on the distance M from the
northern border of the supporting plate if and only if
it is possible to separate the sets of the items, C, in
two subsets, S1 and S2 so that:

1. C = S1 ∪ S2, S1 ∪ S2 = ∅;

2. For every Cj ∈ C so that (Rd, Cj) ∈ Γd it fol-
lows that Cj ∈ S1;

3. Lpd(Rd, Ci) ≤M for every Ci ∈ S1;

4. If there is Cj ∈ S1 so that Lpd(Rd, Cj) < M
then all direct descender of Cj will be in S1.

Proof:
i. Suppose that the cutting-stock pattern has a ver-

tical guillotine cut. That means the sets of items C can
be separated in two subsets, S1, the set of the vertices
situated above the cut, and S2, the set of the vertices
situated below the cut. From the Remark 7 it follows
that the conditions 1, 2 and 3 are fulfilled.

Suppose that the condition 4 is not fulfilled. That
means there are two items Cj ∈ S1 and Ci ∈ S2

so that Lpd(Rd, Cj) < M and the item Ci is a
successor of Cj . Because Ci ∈ S2 it follows that
Lpd(Rd, Ci) > M and an horizontal cut situated on
the distance M from the northern border of the sup-
porting plate will intersect the item Ci. It means that
without the condition 4 it is impossible to separate the
set of the items by an horizontal cut. So our supposi-
tion that the condition 4 is not fulfilled is false.

ii. Suppose all the conditions 1-4 are fulfilled but
it is not possible to make an horizontal cut on the dis-
tance M in the cutting-stock pattern. It follows that
there is at least item Ci ∈ S2 which is intersected
by such a cut. It means that the distance from the
northern border of the supporting plate to the northern
border of the item Ci is less than M and the distance
from the northern border of the supporting plate to the
southern border of the item Ci is greater than M .

But from the Remark 7 it follows that the north-
ern border of the item Ci is identical with the south-
ern border of some item Cj , situated above Ci. That
means (Cj , Ci) ∈ Γd and Lpd(Rd, Cj) < M and so
Cj ∈ S1. From condition 4, because Ci is a successor
of Cj , it follows that Ci must be in S1 in contradiction
with our hypothesis. That means that if the conditions
1-4 are fulfilled then there is an horizontal guillotine
cut in the cutting-stock pattern. ut

We obtain a similar result if we consider the
weighted graph of rightwards adjacency.

4 The algorithm for verification of
the guillotine restrictions

The results from the previous theorem suggest an al-
gorithm for verification of the guillotine restrictions,
in case of a cutting-stock pattern with gaps.

Input data: The weighted graphs Gd or Gr at-
tached to a rectangular cutting pattern.

Output data: The s-pictural representation of the
cutting pattern like a formula in a Polish prefixed
form.

Method: The algorithm constructs the syntax tree
for the s-pictural representation of the cutting pat-
tern, starting from the root to the leaves (procedure
PRORD). For every vertex of the tree it verifies if it is
possible to make a vertical (procedure VCUT) or hor-
izontal cut (HCUT), using an algorithm for decompo-
sition of a graph in two components, S1 and S2.

We will use the following notations:
- G′

r, G
′
d are the subgraphs of Gr|X , respectively

Gd|X , where we can add, if it is necessary, the root
Rr(Rd) and the arcs starting from Rr (Rd), like in
Definition 4.

- L1(L2) is the weight of the first (second) cutting
support which contains all the items from S1(S2).

- succ(Ci|G) is the set of successors of the item
Ci in the graph G.

The method ADD() is used for addition of the
next member in the Polish prefixed form.

We remark that we can apply this algoritm also
in case of a cutting-stock pattern without gaps and, of
course, in the case of covering pattern with or without
gaps.

4.1 Example

Let us have the cutting-stock pattern from Figure 1
with the weighted graphs, Gd and Gr.

For this example L = 8, W = 5.5, and first we
are trying an horizontal cut. We obtain two sets, one
composed from nodes {A, E, B, D,C} and {F,G},
see Figure 5, Figure 6 .

In the syntactic tree from Figure 7 we have 2 com-
ponents connected using the operation column con-
catenation 	 for the horizontal cut. Like we said be-
fore, the 2 components are obtained taking in consid-
eration L = 8 and W = 5.5, in the first component
we have the nodes from the left side of the cut and in
the second the remaining nodes.
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PROCEDURE PRORD(G, C,L, W, ADD())
begin

VCUT(Gr, C, L, W, err, Sl, S2, L1, L2);
if err = 0 then

if |C| = 1 then ADD(C)
else ADD(�);
PRORD(Gd, S1, L1, W, ADD());
PRORD(Gd, S2, L2, W, ADD());

end
else

HCUT(Gd, C, L, W, err, S1, S2, W1, W2);
if err = 0 then

if |C| = 1 then ADD(C)
else ADD(	);
PRORD(Gr, S1, L,W1, ADD());
PRORD(Gr, S2, L,W2, ADD());

end
else No guillotine restrictions

end
end
PROCEDURE
VCUT(Gr, X, L, W, err, S1, S2, L1, L2)
begin

err = 0;
CONSTRUCT-SUBGRAPH(Gr, G

′
r, X, Rr);

V :=
⋃
{Ci|Ci ∈ X, (Rr, Ci) ∈ Γr}, where

all the elements are unmarked
maxM := max{li|Ci ∈ V }
Pi:= {li|Ci ∈ V }
while ∃Ci ∈ V unmarked element do

mark Ci;
if Pi < maxM then

for Cj ∈ succ(Ci|G′
r
) do

V := V
⋃
{Cj | where Cj is an

unmarked element};
Pj := Pi + lj ;
if Pj > maxM then

MaxM := Pj ;
end

end
end

end
maxM := max{Lpd(Rr, Ci)|Ci ∈ V }
if maxM = L then

err = 1;
end
L1 := maxM ;
L2 := L−maxM ;
S1 := V ;
S2 := X − V ;

end

Figure 5: The first horizontal cut

Figure 6: The two sets from the horizontal cut
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Figure 7: The first syntactic tree

Figure 8: The two sets from the vertical cut

The prefix Polish notation for this syntactic tree
from Figure 7 is:

	.

Using the first component we are trying a verti-
cal cut, we have maxM = 2.5. In Figures 8 and
9, we have the decomposition in two other sets, one
of them contains the items {A, E}, and the other one
{B, D,C}.

In Figure 10 we are adding to the syntactic tree
the components 3 and 4, containing the sets of items
above mentioned, which are connected using the oper-
ation of collumn concatenation � for the vertical cut.

The prefix notation for this tree from Figure 10 is:

	� .

We continue to make horizontal or vertical cut for
the left and right components from the syntactic tree
until every component contains only one item from
the covering pattern.

Figure 9: A vertical cut

Figure 10: The syntactic tree
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Figure 11: One horizontal cut

Figure 12: The sets obtained from the previous cut

On the third component, consists of items {A, E}
we are trying an horizontal cut, a decomposition of the
component 3 in A and E. Both of them are leaves of
the syntactic tree. We did the horizontal cut in Figure
11, and we can see the sets obtained in Figure 12.

The syntactic tree associated is presented in Fig-
ure 13.

The prefixed notation associated to the syntax tree
from Figure 13 is:

	�	AE.

On the fourth component, we are looking for an
horizontal cut, but this is nor possible so we are do-
ing a vertical one, see Figure 14 which divides it in
a simple node, C and a new component, component
number 5. In Figure 15 we have effective the cuts and
in Figure 16 we have the syntactic tree, wuth the leaf
of the tree, C.

On the fifth component we are trying an horizon-
tal cut, Figure 17, Figure 18 and we have in Figure 19
the two new leaves added to the syntactic tree.

We determinated the all left side of the syntactic
tree corresponding to our covering pattern using the
two kinds of cuts.

The polish notation obtained from the left side of

Figure 13: The syntactic tree

Figure 14: A vertical cut on the fourth component

Figure 15: The cuts obtained
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Figure 16: The syntactic tree

Figure 17: The horizontal cut on the fifth component

Figure 18: The cuts

Figure 19: The syntactic tree

Figure 20: The horizontal cut on the second compo-
nent

the syntax tree is:

	�	AE �	BDC.

Let’s consider now the right side of the syntactic
tree. Using the second component obtained from the
first cut that we did at the beginning, we are trying an
horizontal cut, but it is not possible, so in Figure 20 we
have the vertical cut, which means the decomposition
of the component 2 in two nodes, F and G.

The derived syntactic tree is presented in Figure
21.

The polish notation for the tree from Figure 21 is:

	�	AE �	BDC � FG.

4.2 Correctness and Complexity

The correctness of the algorithm follows from the the-
orems 1, that make the connection between a guillo-
tine cut and the decomposition of a graph in two sub-
graphs.
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Figure 21: The syntactic tree

The procedure PREORD() represents a preorder
traversal of a graph, so the complexity is O(k) [3, 2],
where k is the number of the cutting items. Also, in
the procedure VCUT, respectively HCUT we traverse
a subgraph of the initial graph. So, the complexity of
the algorithm is O(k2).

5 Conclusions

Indifferently if it is a guillotine covering [15] or
cutting-stock, with gaps or without gaps, the problem,
the so-called two-dimensional guillotine problem, is a
constraint on a complete partition of two-dimensional
space. The partitioning of two-dimensional space is
a ubiquitous problem in industry. It appears in many
forms from pallet loading to floor tile tessellation.

A subset of the problem, the two-dimensional
guillotine problem, is almost as pervasive. Various as-
pects of the problem are found in industries that pro-
duce two dimensional sheets of glass, textiles, paper
or other material. A similar problem arises in the de-
sign of layouts for integrated circuitshow should the
subcircuits be arranged to minimize the total chip area
required or in the design of an optimal placement of
a set of solar panels. Like the complete partition, the
guillotine problem remains NP hard. For this reason it
is better to use an algorithm for generating an uncon-
strained covering or cutting-stock pattern and, after
that or in each step, to use our algorithms for verifying
the guillotine restrictions of the generated pattern.
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