
HDS: a Software Framework
for the Realization of Pervasive Applications

AGOSTINO POGGI

Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma

Viale G.P. Usberti 181A, Parma, 43100
ITALY

agostino.poggi@unipr.it http://www.ce.unipr.it/people/poggi

Abstract: - Nowadays pervasive computing is one of the most active research fields because it promises the
creation of environments where computing and communication devices are gracefully integrated with users so
that applications can provide largely invisible support for tasks performed by users. This paper presents a
software framework, called HDS (Heterogeneous Distributed System), that tries to simplify the realization of
pervasive applications by merging the client-server and the peer-to-peer paradigms and by implementing all the
interactions among the processes of a system through the exchange of typed messages and the use of
composition filters for driving and dynamically adapting the behavior of the system. Typed messages and
computational filters are the elements that mainly characterize such a software framework. In fact, typed
messages can be considered an object-oriented “implementation” of the types of message defined by an agent
communication language and so they are means that make HDS a suitable software framework both for the
realization of multi-agent systems and for the reuse of multi-agent model and techniques in non-agent based
systems. Composition filters drive and adapt the behavior of a system by acting on the exchange of messages.
In fact, on the one hand, composition filters can constrain the exchange of messages (e.g., they can block the
sending/reception of some messages to/from some processes), they can modify the flow of messages (e.g., they
can redirect some messages to another destination) and they can manipulate messages (e.g., they can encrypt
and descript messages). On the other hand, processes can dynamically add and remove some composition
filters to adapt the behavior of a system to any hardware and software new configuration and to any new user
requirement.

Key-Words: - Typed messages, Composition filters, Software framework, Pervasive systems, Multi-agent
systems, Java.

1 Introduction
Nowadays pervasive computing is one of the most
active research fields because it promises the
creation of environments where computing and
communication devices are gracefully integrated
with users so that applications can provide largely
invisible support for tasks performed by users
[20,21].

Several works discussed about the features that
make a software infrastructure suitable for the
realization of such environments (see, for example,
[10,12,14,18]). The list of such features is very long
and includes: adaptation, context awareness,
distribution, interoperability, invisibility, mobility
and scalability.

These features are not independent among them
and, in particular, adaptation can be considered a
mandatory requirement for the realization of
pervasive applications that exhibit the previous

features. In fact, adaptation allows to overcome the
intrinsically dynamic nature of pervasive
environments where users, devices and software
components can dynamically enter, leave or move
and where users can at any time require support for
new tasks [6,9,15,20,22,23].

 In this paper, we present a software framework,
called HDS (Heterogeneous Distributed System)
whose goal is to simplify the realization of
distributed and adaptive applications by taking
advantage of typed messages and message filters.
The next section introduces the HDS software
framework. Section three presents the three models
that concur to the definition of the architecture of a
HDS application. Section four describes typed
messages communication support. Section five
gives some notes on the implementation of the
software framework.. Section six introduces the

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1149 Issue 10, Volume 9, October 2010

reasons for which HDS is suitable for the realization
of pervasive applications. Section seven discusses
about the experimentation of such a framework.
Finally, section eight concludes the paper sketching
some future research directions.

2 HDS
HDS (Heterogeneous Distributed System) is a
software framework that has the goal of simplifying
the realization of distributed applications by
merging the client-server and the peer-to-peer
paradigms and by implementing all the interactions
among all the processes of a system through the
exchange of messages.

This software framework allows the realization
of systems based on two types of processes: actors
and servers. Actors have their own thread of
execution and perform tasks interacting, if
necessary, with other processes through
synchronous and asynchronous messages. Servers
perform tasks on request of other processes by
composing, if necessary, the services offered by
other processes through synchronous messages.
Moreover, while both servers and actors may
directly take advantage of the services provided by
other kinds of application, only the servers can
provide services to external applications by simply
providing one or more public interfaces.

Fig. 1. The architecture of an HDS distributed
system.

Actors and servers can be distributed on a
(heterogeneous) network of computational nodes
(from now called runtime nodes) for the realization
of different kinds of application (see Figure 1). In
particular, actors and servers are grouped into some
runtime nodes that realize a platform. An

application can be obtained by combining some
preexistent applications by realizing a federation.

3 Model
The software architecture of a HDS application can
be described through the three different models:
- the concurrency model, that describes how the

processes of a runtime node can interact and
share resources.

- the runtime model, that describes the services
available for managing the processes of an
application.

- the distribution model, that describes how the
processes of different runtime nodes can
communicate.

3.1 Concurrency Model
The concurrency model is based on seven main
elements: process, description, description selector,
mailer, message, content and message filter.

A process is a computational unit able to
performs one or more tasks taking, if necessary,
advantage of the tasks provided by other processes.
To facilitate the cooperation among processes, a
process can advertize itself making available to the
other processes its description. The default
information contained in a description is represented
by the process identifier and the process type;
however, a process may introduce some additional
information in its description.

A process can be either an actor or a server. An
actor is an active process that can have a proactive
behavior and so can start the execution of some
tasks without the request of other processes. A
server is a passive process that is only able to
perform tasks in response of the request of other
processes.

A process can interact with the other processes
through the exchange of messages based on one of
the following three types of communication:
- synchronous communication, the process sends

a message to another process and waits for its
answer;

- asynchronous communication, the process
sends a message to another process, performs
some actions and then waits for its answer;

- one-way communication, the process sends a
message to another process, but it does not wait
for an answer.

In particular, while an actor can start all the three
previous types of communication with all the other
processes, a server can only respond to the requests

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1150 Issue 10, Volume 9, October 2010

of the other processes in case serving them
composing the services provided by other processes
through synchronous communications. Moreover, a
server can respond to a request through more than
one answer (e.g., when it acts as broker in a
publisher subscriber system) and can forward a
request to another server for its execution.

A process has also the ability of discovering the
other processes of the application. In fact, it can
both get the identifiers of the other mailers of the
systems and check if an identifier is bound to
another mailer of the system taking advantage of the
registry service provided by HDS middleware.

Moreover, a process can take advantage of some
special objects, called description selectors, for
requiring the listing of specific subsets of mailer
identifiers. In fact, a description selector allows the
definition of some constraints on the information
maintained by the process descriptions (e.g., the
process must be of a specific type, the process
identifier must have a specific prefix and the process
must be located in a specific runtime node) and the
registry service is able to apply their constraints on
the information of the registered descriptions for
building the required subsets of identifiers.

A process does not exchange directly messages
with the other processes, but delegates this duty to a
mailer. In fact, a mailer provides a complete
management of the messages of a process: it
receives messages from the mailers of the other
processes, maintains them up to the process requests
theirs processing and, finally, sends messages to the
mailers of the other processes.

In a similar way to a process, a mailer can be
either an actor mailer or a server mailer. Of course,
it depends on the fact that, as described above, an
actor and a server can assume a different set of roles
in message exchanging.

A message contains the typical information used
for exchanging data on the net, i.e., some fields
representing the header information, and a special
object, called content, that contains the data to be
exchanged. In particular, the content object is used
for defining the semantics of messages (e.g., if the
content is an instance of the Ping class, then the
message represents a ping request and if the content
is an instance of the Result class, then the message
contains the result of a previous request).

Normally, a mailer can communicate with all the
other mailers and the sending of messages does not
involve any operation that is not related to deliver
messages to the destination; however, the presence
of message filters can modify the normal delivery of
messages.

A message filter is a composition filter [5] whose
primary scope is to define the constraints on the
reception/sending of messages; however, it can also
be used for manipulating messages (e.g., their
encryption and decryption) and for the
implementation of replication and logging services.

Each mailer has two lists of message filters: the
ones of the first list, called input message filters, are
applied to the input messages and the others, called
output message filters, are applied to the output
messages (figure 2 shows the flow of the messages
from the input message filters to the output message
filters). When a new message arrives or must be
sent, the message filters of the appropriate list are
applied to it in sequence until a message filter fails;
therefore, such a message is stored in the input
queue or is sent only if all the message filters have
success.

Fig. 2. Flow of the messages from the input to
the output message filters.

Message filters are not only used for customizing
the reception and the sending of messages, but are
also used by the processes for asking their mailer for
the input messages they need for completing their
current task. In fact, as described above, a message
filter allows to define the constraints that are
necessary to identify a specific message and a
mailer is able to use it for selecting the first message
in the input queue that satisfies its constraints (e.g.,
the reply to a message sent by the process, a
message sent by a specific process and a message
with a specific kind of content).

3.2 Runtime Model
The runtime model defines the basic services
provided by the middleware to the processes of an
application. This model is based on four main
elements: registry, processer, filterer and porter.

A registry is a runtime service that allows the
discovery of the processes of the application. In fact,
a registry provides the binding and unbinding of the
processes with their identifiers, the listing of the
identifiers of the processes and the retrieval of a

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1151 Issue 10, Volume 9, October 2010

special object, called reference, on the basis of the
process identifier.

A reference is a proxy of the process that makes
transparent the communication respect to the
location of the process. Therefore, when a process
wants to send a message to another process, it must
obtain the reference to the other process and then
use it for sending the message.

A processer is a runtime service that has the duty
of creating new processes in the local runtime node.
Of course, an important side effect of the creation of
a process is the creation of the related mailer. The
creation is performed on the basis of the qualified
name of the class implementing the process, a list
initialization parameters.

The lists of message filters cannot be directly
modified by the processes, but they can do it taking
advantage of a filterer. A filterer is a runtime service
that allows the creation and modification of the lists
of message filters associated with the processes of
the local runtime node. Therefore, a process can use
such a service for managing the lists of its message
filters, but also for modifying the lists of message
filters associated with the other processes of the
local runtime node.

Finally, a porter is a runtime service that has the
duty of creating some special objects, called ports,
that allows an external application to use the
services implemented by a server of the local
runtime node. In particular, a port is a wrapper that
encapsulates a server for limiting the access to the
functionalities of the process by masquerading the
use of some its services and by adding some
constraints on the use of some other its services.

3.3 Distribution Model
The distribution model has the goal of defining the
software infrastructure that allows the
communication of a runtime node with the other
nodes of an application possibly through different
types of communication supports, guaranteeing a
transparent communication among their processes.
This model is based on three kinds of element:
distributor, connector and connection.

A distributor has the duty of managing the
connections with the other runtime nodes of the
application. This distributor manages connections
that can be realized with different kinds of
communication technology through the use of
different connectors (see Figure 3). Moreover, a pair
of runtime nodes can be connected through different
connections.

A connector is a connections handler that
manages the connections of a runtime node with a
specific communication technology allowing the
exchange of messages between the processes of the
accessible runtime nodes that support such a
communication technology.

Fig. 3. An HDS application based on three
runtime nodes connected through RMI and JMS

technologies.

A connection is a mono-directional
communication channel that provides the
communication between the processes of two
runtime nodes through the use of remote references.
In particular, a connection provides a remote lookup
service offering the listing of the remote processes
and the access to their remote references..

4 Communication
Processes interact through messages that can be
considered typed because of their content. In fact,
the content of a message is represent by an object
whose type indicates the use that the receiver should
make of the content of the message.

Typed messages allow to couple the meaning of
the communicative acts of an ACL with the
meaning of the concepts expressed by a domain
ontology. In fact, a first hierarchy of Java interfaces
can allow to split the messages on the basis of their
ACL communicative act, i.e., their performatives,
and then other interfaces and concrete classes can
specialize such interfaces for defining the ontology
of a specific application domain, i.e., the messages
ex-changed during the execution of the tasks of such
an application domain.

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1152 Issue 10, Volume 9, October 2010

Fig. 4. Classification of the content of the
messages derived from ACL communicative acts.

The communication module partially takes
advantage of the classification of ACL messages on
the basis of their performatives by refining the
concept of message content through a hierarchy of
Java interfaces. However, messages are not
classified on the basis of the complete list of the
communicative acts provided by an ACL (e.g.,
KQML [10] or FIPA ACL [11], but: i) messages are
split into request and response messages,
distinguishing the messages starting and interaction
from the ones that reply to them (in this case, the
term “request” has a different meaning of the typical
ACL related term), ii) request messages are split
into perform and query messages, and iii) response
messages are split into result and exception
messages.

It was done because from our experience and
from the analysis of several real application
scenarios and software implementations, what can
be important (or at least can simplify the
implementation) in some kinds of application is to
be able to distinguish: i) the requests that require the
reading and the sending of data (i.e., query requests)
from the ones that require the execution of actions
that can also modify the state of the process (i.e.,
perform requests), and ii) the positive and negative
responses. Figure 4 shows the hierarchy of
interfaces classifying message content on the basis
of ACL communicative acts.

5 Implementation
The HDS software framework has been realized
taking advantage of the Java programming
language. The application architecture model has
been defined through the use of Java interfaces and
its implementation has been divided in two modules.

The first module contains the software
components that define the software infrastructure
and that are not directly used by the developer, that

is, all the software components necessary for
managing the lifecycle of processes, the local and
remote delivery of messages and their filtering. In
particular, the remote delivery of messages has been
provided through both Java RMI [16] and JMS [13]
communication technologies.

The second module contains both the software
components that application developers extend,
implement or at least use in their code, and the
software components that help them in the
deployment and execution of the realized
applications. The identification of such software
components can be easily done by analyzing what
application developers need to realize: i) the actor
and server classes used for the implementation of
the processes involved in the application, ii) the
description selector classes used for the discovery of
the processes involved in common tasks, iii) the
message filter classes used for customizing the
communication among the processes, iv) the typed
messages used in the interaction among the
processes, and v) the artifacts (i.e., Java classes
and/or configuration files) for the deployment of the
runtime nodes and of the communication channels
among runtime nodes, and for the startup of the
initial sets of processes and message filters.

It implies that such a module needs to contain; i)
some software components for simplifying the
realization of actors, servers, description selectors
and message filters (realized through four abstract
classes called AbstractActor, AbstractServer,
AbstractSelector and AbstractFilter), ii) a set of
abstract and concrete typed messages useful for
realizing the typical communication protocols used
in distributed applications, and ii) a software tool
that allows the deployment of a HDS software
application through the use of a set of configuration
files (realized through a concrete class called
Launcher).

 In regard to type messages and the related
communication protocols, the software framework
provides the basis interfaces and classes for
realizing application dependent client-server
protocols and the basic interfaces and classes for
supporting the interaction among processes through
the use of communication language derived by the
agent communication language (ACL) defined in
the FIPA specifications [8]. This communication
language differs from the ACL defined by FIPA
specifications in the fact that the content object that
defines a typed message groups together the

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1153 Issue 10, Volume 9, October 2010

meaning of the performative, content and ontology
of a FIPA ACL message.

Moreover, the features provided by typed
messages make them suitable for implementing the
usual coordination and negotiation techniques
expressed by multi-agent systems and for using such
techniques also outside of a multi-agent system and
without any (or with a limited) knowledge about
agent communication languages and ontologies.

In particular, the software framework provides
an abstract implementation of some interaction
protocols (i.e. the English and Dutch auction
protocols, the Contracted Net and the iterated
Contract Net protocols and the brokering and the
recruiting protocols) that derive from the interaction
protocols defined in the FIPA specifications [8].
This implementation replaces the ACL messages
with typed messages and delegates to the
application developer only the duty of writing the
code for processing the content of the messages,
selecting the messages to be sent and building their
content.

For example, the abstract implementation of the
iterated Contract Net protocol is based on two
abstract classes, that describe the two roles involved
in the protocol, i.e., the initiator and the participant,
and an interface, called Contract, used in the content
of the exchanged messages for maintaining the
information about both the task to be executed and
the bids of the participants.

The abstract class that represent the initiator role
defines three main methods; the first method sends a
“offer” message to the list of processes acting as
participants. The second method is an abstract
method whose implementation must select the
participant to which send either an “accept” or
another “offer” message. Finally, the third method is
an abstract method whose implementation must
process the message containing the results of the
execution of the required task.

The abstract class, that represent the participant
role, defines two main methods. The first method is
an abstract method whose implementation must
decide to propose a bit for the task described by the
“offer” message or to refuse it. The second message
must decide to execute the task and then must send
the information about the results of its execution.

Therefore, the used of the iterated Contract Net
protocol inside an application requires: i) the
definition of concrete class implementing the
Contract interface, ii) the definition of a concrete
class that extend the initiator abstract class

implementing the methods for accepting, refusing or
sending an updated contract and for processing the
result received by the participant(s) to which the
contract(s) have been assigned, and iii) the
definition of at least a concrete class that extend the
participant abstract class implementing the methods
for accepting or refusing an offer and for performing
the task associated with the contract.

Fig. 5. An UML activity diagram showing a
description of the typed messages based iterated

Contract Net protocol.

For example, the abstract implementation of the
iterated Contract Net protocol is based on two
abstract classes, that describe the two roles involved
in the protocol, i.e., the initiator and the participant,
and an interface, called Contract, used in the content
of the exchanged messages for maintaining the
information about the task to be executed and the
bids of the participants.

The abstract class, that represent the initiator
role, defines three main methods; the first method
sends a “offer” message to the list of processes
received as input parameter. The second method is
an abstract method whose implementation must

Send
Offer

Receive
Propose/Refuse

Manage
Done/Error

Initiator

Participant 1

Send
Accept/Reject

Propose/Refuse

Done/Error

Send
Propose/Refuse

Receive
Accept/Reject

Send
Done/Error

Offer Accept/Reject

[Reject received][Refuse sent]

[Propose/Refuse Waited]

[All Reject sent][All Refuse received]

Participant 2

Send
Propose/Refuse

Receive
Accept/Reject

Offer Accept/Reject

[Reject received][Refuse sent]

Participant N

Send
Propose/Refuse

Receive
Accept/Reject

Offer Accept/Reject

[Reject received][Refuse sent]

[Offer sent]

Send
Done/Error

Send
Done/Error

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1154 Issue 10, Volume 9, October 2010

select the participant to which send either an
“accept” or another “offer” message. Finally, the
third method is an abstract method whose
implementation must process the message
containing the results of the execution of the
required task.

The abstract class, that represent the participant
role, defines two main methods. The first method is
an abstract method whose implementation must
decide to propose a bit for the task described by the
“offer” message or to refuse it. The second message
must decide to execute the task and then must send
the information about the results of its execution.

Figure 5 shows a UML activity diagram that
presents a partial description of the behavior of the
iterated Contract Net protocol described above. This
partial description allows to simplify the graphical
representation of the behavior of the protocol
removing all the arcs connecting the input messages
to an activity with the source of the message: it is
possible because, of course all the input messages of
the initiator activities come from the participants
and all the input messages of the activities of a
participant come from the initiator.

6 HDS and Pervasive Adaptation
Providing adaptation in a pervasive environment is a
challenging task as the adaptation concern affects
multiple elements (devices, services, etc.) in the
environment. The problem is further compounded
by the fact that the elements are geographically
distributed and in many instances there is no central
node controlling the operation of the pervasive
environment [13,26].

 HDS integrates multi-agent systems and
aspect-oriented techniques for the realization of
adaptive and pervasive applications. In fact, multi-
agent systems are based on autonomous software
entities that can interact with their environment, and
therefore they adapt well to the dynamic nature of
pervasive applications [6,7,12,21,31,34]. Aspect-
oriented techniques [8,14] are considered a suitable
means for the realization of complex applications
that are composed of different interleaved cross-
cutting concerns (properties or areas of interest such
as energy consumption, fault tolerance, and
security) and then they are indicated for providing
adaptation in pervasive environments given that
adaptation largely affects the other features
(concerns) of such environments [26,13].

 HDS is not a software framework specialized
for the development of multi-agent systems,

however, its actors and its typed messages allow
both the development of specific software
components for the realization of multi-agent
systems (e.g., agent oriented architectures and
abstract implementations of agent interaction
protocols) and the use of agent-based techniques
and models in other kinds of software systems.

 In particular, actors can provide the
autonomous and proactive behavior that is
fundamental to realize systems that relieve users of
the burden of the manual reconfiguration operations
needed when such systems must be adapted to new
situations. To be able to perform such a
reconfiguration, actors need to cooperate among
them; it can be done through the use of typed
messages for implementing all the negotiation
protocols that are necessary for the coordination of
the reconfiguration activities.

 In principle, the combination of actors and
typed messages may be sufficient for realizing
effective adaptive and pervasive applications,
however, in practice, the corresponding
performance and the development costs may be too
high to be used for real adaptive and pervasive
applications. Therefore, actors and typed messages
are not used to adapt the behavior of an application,
but are used for driving the adaptation of the
application by modifying the sets of input and
output message filters associated with the processes
involved in the application.

 Messages filters allow the adaptation of the
behavior of an application with a limited
computational overhead. In fact, besides to be used
for implementing the typical services of an aspect
oriented support, i.e., security, persistence and
logging, message filters can be used for adapting the
application to any hardware and software
modification and for personalizing the application to
the users that are using it (e.g., an input and the
corresponding output message filter can adapt the
interface between a client and a server, a set of
messages filters, distributed on a net of processes,
can route a request towards the most appropriate
process (or user) that can serve the request or can
combine the tasks of different processes to provide
new kinds of service).

 As introduced Above, message filters are able
to adapt an application with a limited overhead, this
is possible because each message filter usually
realizes a very simple task (e.g., it forwards or
transforms a message) and because their
management is very simple (i.e., a message filter

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1155 Issue 10, Volume 9, October 2010

can either propagate a message to the next filter of
the list or stop the propagation of the message).
However, message filters can be considered the
suitable “bricks” for adapting an application, but
they need some additional software supports that
allow to move the application among different
configurations of the message filters that are
suitable for guaranteeing a correct behavior of the
application in all the possible states of the
environment.

 Therefore, message filters are only used for
guaranteeing the appropriate behavior of a pervasive
application in a specific state of the environment
and delegate the dynamic adaptation of the
application to a set of actors. Moreover, as
introduced above, the use of the actor for the
dynamic adaptation of an application may introduce
important overhead on the performance of the
application when the reconfiguration of the message
filters requires complex reasoning and negotiation
tasks. However, it should be an exception and not
the norm because the state of a pervasive
environment evolves through a sequences of
changes that usually in few cases cause important
modifications in the environment and then the
reconfiguration overhead is usually limited

7 Experimentation
A first experimentation of the HDS software
framework has been and is still now done and is
oriented to demonstrate that: i) such a software
framework is suitable to realize complex
applications and multi-agent systems, and ii) makes
easy the reuse of the typical models and techniques,
that are exhibited in multi-agent systems (i.e., the
interaction protocols), in other kinds of software
systems.

The experimentation of the software framework
as means for realizing complex system consists in
the development of an environment for the
provision of collaborative services for social
networks and, in particular, for supporting the
sharing of information among users.

The current release of such an environment
allows the interaction among users that are
connected through heterogeneous networks (e.g.,
traditional wired and wireless computer networks
and GSM and UMTS phone networks), devices
(e.g., personal computers and smart phones),
software (e.g., users can interact either through a
Web portal or through specialized application, and
users can have at their disposal applications that are

able to either visualize and modify or only visualize
documents) and rights (e.g., some users have not the
right of performing a subset of the actions that are
possible in the environment). The experimentation
is still in the first phase, but has been already
sufficient to realize that the integration between
actors, servers and message filters is a profitable
solution for the realization of adaptive and pervasive
applications.

The experimentation of the use of multi-agent
typical models and techniques and of the use of such
a software framework for realizing multi-agent
systems started with the development of an abstract
implementation of the BDI agent architecture [19],
and then continued on the parallel development of
two prototypes of a market place application: both
the prototypes are based on the HDS
implementation of FIPA interaction protocols, but
only the first realize the prototype as a multi-agent
system by taking advantage of realized BDI agent
abstract architecture.

The abstract BDI agent architecture was realized
in few time by simply extending the abstract actor
class with: i) a working memory, where maintaining
the beliefs, desires and intentions of the agent, ii) a
plan library, where maintaining the set of predefined
plans and iii) an interpreter able to select the plan
that must be used to achieve the current intension,
and then able to execute it. Therefore, starting from
this abstract implementation, a concrete BDI agent
can be obtained by providing the code for
initializing and updating the working memory and
for filling the plan library.

After the realization of such abstract agent
architecture, we start the parallel development of the
prototypes of a market place where agents can buy
and sell goods through the use of English and Dutch
auctions.

This experimentation was done by two groups of
master students: the students of the first group had a
good knowledge about artificial intelligence and
agent-based systems, because they followed two
courses on those topics, and the students of the
second group had few knowledge about such topics,
because they did not follow any related course.

In few words, the results of the experimentation
were that: all the students had not difficulties to
obtain a good implementation of the version of the
application with-out the use of the BDI agents, but
while the students without any knowledge about
artificial intelligence and agent-based system had
great difficulties for realizing the version of the

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1156 Issue 10, Volume 9, October 2010

application based on the use of BDI agents and
realized some prototypes that do not completely
exploit the characteristic of BDI agents, the other
students did it obtaining more flexible prototypes in
respect to the ones without BDI agents, but
spending a lot of time in their implementation.

8 Conclusion
This paper presented a software framework, called
HDS, that has the goal of simplifying the realization
of distributed applications by merging the client-
server and the peer-to-peer paradigms and by
implementing the interactions among all the
processes of a system through the exchange of typed
messages.

HDS is implemented by using the Java language
and its use simplify the realization of systems in
heterogeneous environments where computers,
mobile and sensor devices must cooperate for the
execution of tasks. Moreover, the possibility of
using different communication protocols for the
exchange of messages between the processes of
different computational nodes of an application
opens the way for a multi-language implementation
of the HDS framework allowing the integration of
hardware and software platforms that do not provide
a Java support.

HDS can be considered a software framework
for the realization of any kind of distributed system.
Some of its functionalities derive from the one
offered by JADE [3,4], a software framework that
can be considered one of the most known and used
software framework for the developing of multi-
agent systems. This derivation does not depend only
on the fact that some of the people involved in the
development of the HDS software framework were
involved in the development of JADE too, but
because HDS tries to propose a new view of multi-
agent systems where the respect of the FIPA
specifications are not considered mandatory and
ACL messages can be expressed in a way that is
more usable by software developers outside the
multi-agent system community. This work may be
important not only for enriching other theories and
technologies with some aspects of multi-agent
system theories and technologies, but also for
providing new opportunities for the diffusion of
both the knowledge and use of multi-agent system
theory and technologies.

HDS is a suitable software framework for the
realization of pervasive applications. Some of its

features introduced above (i.e., the java
implementation, the possibility of using different
communication protocols and the possibility a
multi-language implementation) are fit for such
kinds of application. However, the combination of
multi-agent and aspect-oriented techniques might be
one of the best solutions for providing an
appropriate adaptation level in a pervasive
application. In fact, this solution allows to couple
the power of multi-agent based solutions with the
simplicity of compositional filters solutions
guaranteeing both a good adaptation to the evolution
of the environment and a limited overhead to the
performances of the applications.

Currently we are using HDS for the realization
of: i) an agent based social network and ii) a Java
framework for prototyping and evaluating
distributed constraint satisfaction algorithms.

In the first application, HDS is used for
providing an agent based support layer for the
interaction among users in the social network In
particular, agents are associated with the users and
agents can proactively act on the behalf of their
users by taking advantage the information contained
in their profile. In fact, agents have two main roles:
i) they mediate the access to the profile information
of their users (allowing or refusing queries from
other agents) ii) they use information in the profile
in order to discover new friendships and
acquaintances on their owner's behalf.

In the second application, HDS is used for
implementing the agents that concur to the
resolution of a problem through the use of a
distributed constraint satisfaction algorithms. Of
course, such an application takes advantage of both
type messages and messages filters: coordination
algorithms among agents are realized through the
exchange of typed messages and message filters are
used for the instrumentation of the code enabling
performance measurement, debugging and fine
tuning of the algorithms without any modification to
their code.

Future research activities will be dedicated,
besides to continue the experimentation and
validation of the HDS software framework in the
realization of collaborative services for social
network, to the improvement of the HDS software
framework. In particular, current activities are
dedicated to: i) the implementation of more
sophisticated adaptation services based on message
filters taking advantages of the solutions presented
by PICO [11] and by PCOM [2], ii) the automatic

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1157 Issue 10, Volume 9, October 2010

creation of the Java classes representing the typed
messages from OWL ontologies taking advantage of
the O3L software library [17], and iii) the extension
of the software framework with a high-performance
software library to support the communication
between remote processes, i.e., MINA [1].

References:
[1] Apache Foundation. MINA software. Web site.

Available from: http://mina.apache.org.
[2] Becker, C., Hante, M., Schiele, G., and

Rotheemel, K. PCOM - a component system
for pervasive computing. In Proceedings of the
2nd IEEE Conference on Pervasive Computing
and Communications (PerCom 2004), Orlando,
FL, 67-76, 2004.

[3] Bellifemine, F., Poggi, A., and Rimassa, G.
Developing multi agent systems with a FIPA-
compliant agent framework. Software Practice
& Experience, 31:103-128, 2001.

[4] Bellifemine, F., Caire, G., Poggi, A., and
Rimassa, G.. JADE: a Software Framework for
Developing Multi-Agent Applications. Lessons
Learned. Information and Software Technology
Journal, 50:10-21, 2008.

[5] Bergmans, L., and Aksit, M. Composing
crosscutting concerns using composition filters.
Communications of ACM, 44(10):51-57, 2001.

[6] Cabri, G., Ferrari, L., and Zambonelli, F. 2004.
Role-Based Approaches for Engineering
Interactions in Large-Scale Multi-agent
Systems. In C. Lucena, A. Garcia, A.
Romanovsky, J. Castro, P. Alencar eds.
Software Engineering for Multi-Agent Systems
II, Lecture Notes in Computer Science, 2940,
pp. 243-263, Springer-Verlag, Berlin,
Germany.

[7] Chakraborty, D., Takahashi, H., Suganuma, T.,
Takeda, A., Kitagata, G., Hashimoto, K., and
Shiratori, N. An adaptive context aware
communication system for ubiquitous
environment based on overlay network. In
Proceedings of the 12th WSEAS International
Conference on Computers N. E. Mastorakis, V.
Mladenov, Z. Bojkovic, D. Simian, S.
Kartalopoulos, A. Varonides, C. Udriste, E.
Kindler, S. Narayanan, J. L. Mauri, H. Parsiani,
and K. L. Man, Eds. Recent Advances In
Computer Engineering, pp. 832-837, World
Scientific and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin,
2008.

[8] Cheng, S., Garlan, D., Schmeri, B.R., Sousa,
J.P., Spitznagel, B., Steenkiste, P., and Hu, N.
Software Architecture-Based Adaptation for

Pervasive Systems. In H. Schmeck, T. Ungerer,
and L.C. Wolf, Eds. Trends in Network and
Pervasive Computing, Lecture Notes In
Computer Science, 2299, pp. 67-82, Springer-
Verlag, London, U.K., 2002.

[9] Filman, R., Elrad, T., Clarke, S., and Aksit, M.
Aspect-Oriented Software Development.
Addison-Wesley, 2004.

[10] Finin, T., Fritzson, R., McKay, D. and
McEntire, R. KQML as an agent
communication language. In Proceedings of the
3rd International Conference on information
and Knowledge Management, pp. 456-463,
Gaithersburg, MD, 1994.

[11] FIPA Consortium. FIPA Specifications.
Available from http://www.fipa.org.

[12] Fok, C., Roman, G., and Lu, C. Agilla: A
mobile agent middleware for self-adaptive
wireless sensor networks. ACM Transactions
on Autonomous and Adaptive Systems, 4(3):1-
26, 2009.

[13] Funk, C., Schultheis, A., Linnhoff-Popien, C.,
Mitic, J., and Kuhmunch, C. Adaptation of
Composite Services in Pervasive Computing
Environments. In Proceedings of IEEE
International Conference on Pervasive
Services, Istanbul, Turkey, 242-249, 2007.

[14] Fuentes, L., Gamez, N., and Sanchez, P.
Aspect-oriented design and implementation of
context-aware pervasive applications.
Innovations in Systems and Software
Engineering, 5(1):79-93, 2009.

[15] Kiczales, G., Lamping, J., Mendhekar, A.,
Maeda, C., Lopes, C., Loingtier, J. M., and
Irwin, J. Aspect-oriented programming. In M,
Aksit and S. Matsuoka eds. Proceedings of the
European Conference on Object-Oriented
Programming (ECOOP). Lecture Notes in
Computer Science, 1241, pp. 220-242,
Springer-Verlag, Berlin, Germany, 1997.

[16] Kindberg, T., and Fox, A. System Software for
Ubiquitous Computing. IEEE Pervasive
Computing, 1(1):70-81, 2002.

[17] 17] Kumar, M., Shirazi, B.A., Das, S.K., Sung,
B.Y., Levine, D., and Singhal, M. PICO: A
Middleware Framework for Pervasive
Computing. IEEE Pervasive Computing,
2(3):72-79, 2003.

[18] Kumar, M., and Zambonelli, F. Middleware for
pervasive computing. Pervasive Mobile
Computing, 3(4):329-331, 2007.

[19] Monson-Haefel, R. and Chappell, D. Java
Message Service. O'Reilly & Associates, 2000.

[20] Niemelä, E., and Latvakoski, J. 2004. Survey of
requirements and solutions for ubiquitous

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1158 Issue 10, Volume 9, October 2010

software. In Proceedings of the 3rd
International Conference on Mobile and
Ubiquitous Multimedia, College Park, MD, 71-
78, 2004.

[21] Porekar, J., Dolinar, K., and Jerman-Blazic, B.
Middleware for Privacy Protection of Ambient
Intelligence and Pervasive Systems. WSEAS
Transactions on Information Science &
Applications, 3(4):633-639, 2007.

[22] Pham, H., Paluska, J.M., Saif, U., Stawarz, C.,
Terman, C., and Ward, S. A dynamic platform
for runtime adaptation. Pervasive and Mobile
Computing, 5(6):676-696, 2009.

[23] Platon, E., Mamei, M., Sabouret, N., Honiden,
S., and Parunak, H.V. Mechanisms for
environments in multi-agent systems: Survey
and opportunities. Autonomous Agents and
Multi-Agent Systems, 14(1):31-47, 2007.

[24] Pitt, E. McNiff, K. Java.rmi: the Remote
Method Invocation Guide. Addison-Wesley,
2001.

[25] Poggi, A. Developing Ontology Based
Applications with O3L. WSEAS Transactions
on Computers, 8(8):1286-1295, 2009

[26] Raatikainen, K., Chrisrensen, H.B., and
Nakajima, T. Application requirements for
middleware for mobile and pervasive systems.
ACM SIGMOBILE - Mobile Computing and
Communications Review. 6(4):16-24, 2002.

[27] Rao, A.S., and Georgeff, M.P. BDI Agents:
From Theory to Practice. In Proceedings of the
First International Conference on Multiagent
Systems, pp. 312-319, San Francisco, CA,
1995.

[28] Rashid A., and Kortuemì, G. Adaptation as an
Aspect in Pervasive Computing. In Proceedings
of the Workshop on Building Software for
Pervasive Computing at the Conference on
Object-Oriented Programming Systems,
Languages, and Applications (OOPSA 2004),
Vancouver, Canada, 2004. Available
from: http://www.ics.uci.edu/~lopes/bspc04-
documents/RashidKorteum.pdf.

[29] Saha, D., and Mukherjee, A. Pervasive
Computing: A Paradigm for the 21st Century.
Computer 36(3):25-31, 2003.

[30] Satyanarayanam, M. Pervasive Computing
Vision and Challenges. IEEE Personal
Communications, 6(8):10-17, 2001.

[31] Sousa, J. P., Poladian, V., Garlan, D.,
Schmeri, B., and Shaw, M. Task-based
adaptation for ubiquitous computing. IEEE
Transactions on Systems, Man, and
Cybernetics, 36(3):328-340, 2006.

[32] Soylu, A., De Causmacker, P, and Desmet, P.
Context and Adaptivity in Pervasive
Computing Environments: Links with Software
Engineering and Ontological Engineering.
Journal of Software, 4(9):992-1013, 2009.

[33] Tesauro G., Chess, D.M., Walsh, W.E., Das,
R., Segal, A., Whalley, I., Kephart, J. O., and
White, S.R. A Multi-Agent Systems Approach
to Autonomic Computing. In Proceedings of
the 3rd international Joint Conference on
Autonomous Agents and Multiagent Systems,
pp. 464-471, New York, NY, 2004.

[34] Wu, Q. and Wang, D. An adaptive requirement
framework for SCUDW are middleware in
ubiquitous computing. WSEAS Transactions
on Computer, 8(1):163-173, 2009.

WSEAS TRANSACTIONS on COMPUTERS Agostino Poggi

ISSN: 1109-2750 1159 Issue 10, Volume 9, October 2010

