Romanian Black Sea Resorts. Study on the Summer Offers

MIRELA-CATRINEL VOICU
Faculty of Economics and Business Administration
West University of Timisoara
ROMANIA
mirelavoicu@feaa.uvt.ro, http://www.feaa.uvt.ro

Abstract

In Romania, the Black Sea seaside is one of the most popular places for the summer holidays. In this paper we present a database model including information about resorts, hotels, hotel star classifications, hotel room types, room amenities, hotel facilities, the holiday time period, the number of days for a holiday stay, meal types, rates for accommodation, etc. We built this database model based on data presented in travel agencies' catalogues. To explore the database data, we apply algorithms of aggregation. Our study is focused on detecting the best rates (depending on tourist preferences) for the summer holiday according to some other features.

Key-Words: - tourism, seaside summer offer, database, algorithms.

1 Introduction

In this paper we propose an algorithm used to explore information on the rates for summer offers at Romanian Black Sea resorts.

Starting from the 2009 summer catalogues of two famous travel agencies from Romania (Mareea and Eximtur), we build a database with data, which will be exploited in our study.

In the Section 2 we present information on the data from these catalogues. This information refers to: resorts, hotels, star classification, hotel facilities, room types, room amenities, children facilities and pet access in hotels. The room rates are influenced by all these factors, by the number of nights for a stay and by meal types (breakfast, lunch and dinner).

In Section 3, firstly, we build a database with the information presented in Section 2; we recall an algorithm (see also [13]) which can be used in the case of the summer offer study and in the last part of the Section 3 we apply this algorithm to our database.
These studies can help the tourist in order to quickly find an offer which is more suitable to his preference. At the same time he can estimate the suitable rate for himself. But in the same manner, these studies can help people who work in different tourism activity areas.

2 Data presentation

We have offers for 10 resorts: Mamaia, Eforie Nord, Eforie Sud, Costineşti, Olimp, Neptun, Jupiter, Cap Aurora, Venus and Saturn. One travel agency (Mareea) has offers for the Mangalia town. The present offer consists of 100 hotels for the first travel agency and of 130 hotels for the second one. 74 hotels are being offered by both agencies.

We are now presenting the number of hotels for each resort, offered by both catalogues of the agencies above: Mamaia - 47 hotels, Eforie Nord-26 hotels, Neptun-18 hotels, Costineşti-14 hotels, Venus-12 hotels, Jupiter-11 hotels, Saturn-10 hotels, Olimp-9 hotels, Eforie Sud-6 hotels, Cap Aurora-3 hotels and Mangalia-2 hotels.

We have 158 different hotels. Depending on the number of stars, we find: two 5 -star hotels, twenty one 4 -star hotels, sixty three 3 - star hotels, seventy one 2 star hotels and one 1 -star hotel. At the same time we would like to mention that: on the Romanian seaside, there are hotels with a 12 months full activity. For these hotels, the rates depend on the seasons and also on the week days (Fridays, Saturdays and Mondays are more expensive than the other nights). In this study we are exclusively focused on the summer offers. In these offers, the day of week is not significant for the stay rate, but the time period of the whole stay is.

In Table 1 we present, for each resort, the number of hotels depending on the star classification. We find 36 hotel facilities. Now, we enumerate these facilities and the number of hotels where we can find them: restaurant - 150 hotels; parking-112 hotels; bar-101 hotels; terrace-74 hotels; safe-59 hotels; conference rooms-50 hotels; outdoor swimming pool-47 hotels; Internet-45 hotels; children playground or elevator-34 hotels; luggage room-31 hotels; fitness or laundry-21 hotels; garden or beauty salon-19 hotels; massage-15 hotels; sauna- 14 hotels; drying room-13 hotels; Jacuzzi, billiards or medical treatments-9 hotels; shop-8 hotels; table tennis or tennis court-7 hotels; spa-6 hotels; football-5 hotels; volleyball or confectionary-4 hotels; disco-2 hotels; church, medical center, pharmacy, park, basketball court or track bowling-1 hotel. We use these
information exclusive from the travel agency catalogues.

Resort	$\begin{gathered} \text { No } \\ \text { hotels } \end{gathered}$	Stars	Resort	$\begin{gathered} \text { No } \\ \text { hotels } \end{gathered}$	Stars	Resort	$\begin{gathered} \text { No } \\ \text { hotels } \end{gathered}$	Stars
Mamaia	1	5	Costinesti	3	4	Jupiter	6	3
Mamaia	10	4	Costinesti	4	3	Jupiter	5	2
Mamaia	14	3	Costinesți	7	2	Cap Aurora	2	3
Mamaia	22	2	Olimp	3	4	Cap Aurora	1	2
Mangalia	2	3	Olimp	2	3	Venus	2	4
Eforie Nord	1	4	Olimp	4	2	Venus	4	3
Eforie Nord	16	3	Neptun	1	4	Venus	6	2
Eforie Nord Efone	9	2	Neptun	7	3	Satum	1	5
Sud Eforie	1	3	Neptun	9	2	Satum	1	4
Sud	5	2	Neptun	1	1	Satum Saturn	5 3	3 2

Table 1 Resorts and hotel stars

Figure 1 Number of facilities for 2, 3 and 4-star hotels
We find that a hotel has between 1 and 18 from the 36 hotel facilities enumerated above. In Table 2 we present, in a decreasing order by number of facilities, the corresponding number of hotels. In Table 2 we consider all hotels from all resorts in the studied
catalogues. In this way, we can observe that most hotels have less than 10 facilities.

| Number
 of
 facilities
 18 | Number
 of
 hotels | 1 | Number
 of
 facilities |
| :---: | :---: | :---: | :---: | | Number |
| :---: |
| of |
| hotels |
| 17 |

Table 2: Number of hotels corresponding to different numbers of facilities

Hotel Star	Minimum number of facilities	Maximum number of facilities
5	12	16
4	2	15
3	1	18
2	1	9
1	6	6

Table 3: Minimum and maximum number of facilities per no star hotels

In Table 3 we present the minimum and the maximum number of hotel facilities, depending on the number of stars.

Resort	Stars	min_no_f	max_no_f	Resort	Stars	min_no_f	max_no_f
Mamaia	5	16	16	Neptun	3	3	8
Mamaia	4	6	12	Neptun	2	2	8
Mamaia	3	2	17	Neptun	1	6	6
Mamaia	2	2	8	Jupiter	3	5	18
Eforie							
Nord	4	6	6	Jupiter	2	1	9
Eforie							
Nord	3	1					
Eforie					Cap Aurora		2

Table 4 Minimum and maximum number of facilities per no star hotels for each resort

In Figure 1, we have a chart for the number of hotel facilities for 2, 3 and 4-star hotels. In all of these cases
we can observe that the interval of values between the minimum and maximum value has no blanks.

In Table 4 we can view the minimum and maximum number of hotel facilities, according to the number of stars and the resort.

We find the following room types: apartments in 12 hotels, double rooms in 156 hotels, double attic rooms in 3 hotels, superior double rooms in 12 hotels, studio in 4 hotels, matrimonial rooms in 3 hotels and triple rooms in 1 hotel. In this section we present only the amenities for double rooms.

Amenity	Number of hotels
shower	150
TV	145
balcony	123
air conditioning	98
Mini-bar	88
phone	70
refrigerator	54
hair dryer	29
safe	14
room service	5
long chair	3
kitchen	1
Jacuzzi	1

Table 5 Room amenities and the number of hotels, which provide them

For double rooms, we find the following amenities: air conditioning, balcony, shower, refrigerator, minibar, TV, phone, safe, hair dryer, Jacuzzi, room -service, long chair and kitchen. In Table 5 we present the number of hotels which provide the amenities mentioned above.

In Table 6 we present the number of hotels which provide different room amenities depending on star classification.

The value from the column on the right represents the number of hotels with the number of stars presented in the first column. We write this value only in the first line of each star number.

156 hotels have discount for children. In Table 7 we present, in the case of each facility, the minimum and maximum extra charge and the corresponding maximum interval of children ages. There have been found 147 of different cases, but we have extracted in Table 7 only those which represent the extremes for each child facility. Even if the extra charge for children facilities covers 147 cases, there is a good picture of these values given by Tables 7 and 8. The percentage on the columns refers to the percentage of the adult rate.

Stars	Amenity	No h	Stars	Amenity	No h	
5	hair dryer	2	2	3	shower	63
5	Mini-bar	2	3	TV	58	
5	TV	2	3	air		
	air				55	
5	conditioning	2	3	balcony	51	
5	balcony	1	3	Mini-bar	37	
5	Jacuzzi	1	3	phone	35	
5	long chair	1	3	refrigerator	24	
5	phone	2	3	hair dryer	14	
5	safe	2	3	safe	9	
5	shower	2	3	room service	3	
4	TV	21	21	3	long chair	2
	air					
4	conditioning	21	2	shower	69	71
4	shower	21	2	TV	65	
4	phone	18	2	balcony	55	
4	Mini-bar	18	2	Mini-bar	31	
4	balcony	16	2	refrigerator	29	
4	hair dryer	10	2	air		
4	safe	4	2	phone	21	
4	kitchen	1	2	hair dryer	3	
4	refrigerator	1	2	room service	1	1
4	room service	1	1	shower	1	

Table 6: Room amenities and the number of hotels which provide them, depending on the number of hotel stars

Facility	Min age	Max age	Extra charge
all inclusive	0	5	0%
all inclusive	12	18	75%
breakfast	0	12	0%
breakfast	7	12	75%
extra bed	0	18	10%
extra bed	12	18	80%
no bed	0	18	0%
no bed	12	14	40%

Table 7 Children facilities and extra charges
156 hotels have discount for children. In Table 7 we present, in the case of each facility, the minimum and maximum extra charge and the corresponding maximum interval of children ages. There have been found 147 of different cases, but we have extracted in Table 7 only those which represent the extremes for each child facility.

Even if the extra charge for children facilities covers 147 cases, there is a good picture of these values given by Tables 7 and 8 . The percentage on the columns refers to the percentage of the adult rate.

Pets are allowed only in 18 hotels. The extra charge for pets is between 0 and 50% of the adult rate, or 60 RON in just one case.

We have 32411 different rates. The start date of a stay is between April $19^{\text {th }}$ and October $4^{\text {th }}$. We find that a
hotel has between 11 and 79 start dates for stays. These values are presented in Table 10.

Stars	Facility	Min extra charge	Max extra charge
5	all inclusive	0%	50%
5	breakfast	0%	0%
5	extra bed	50%	50%
5	no bed	0%	0%
4	all inclusive	0%	75%
4	breakfast	0%	10%
4	extra bed	30%	80%
4	no bed	0%	0%
3	all inclusive	0%	70%
3	breakfast	0%	75%
3	extra bed	10%	75%
3	no bed	0%	25%
2	breakfast	0%	75%
2	extra bed	10%	75%
2	no bed	0%	40%
1	extra bed	50%	50%

Table 8 Children extra charge according to star hotels

Stars	Observation	Extra charge	No hotels
4	rate	60	1
4	percent	20%	2
4	percent	10%	1
4		0%	1
3	percent	50%	1
3	percent	30%	2
3	percent	20%	2
3		0%	1
2	percent	30%	3
2	percent	20%	4

Table 9 Extra charges for pets

Stars	Minimum number of start dates	Maximum number of start dates
5	21	50
4	13	57
3	13	79
2	11	58
1	14	14

Table 10 Number of different stays at a hotel during the summer offers

Table 11 provides information about the last date for starting the summer stays (which is $19^{\text {th }}$ of June) and the first date of the last stay (which is $24^{\text {th }}$ of August). This means that during the period between June $19^{\text {th }}$
and August $24^{\text {th }}$, all the hotels provide summer offers. For 2, 3 and 4 star hotels, in Figure 2, we present charts with these first and the last dates.

Figure 2 Interval of time for a summer stay

Stars	Minimum for the first date	Maximum for the first date	Minimum for the last date	Maximum for the last date
5	07 -May-09	07 -June-09	15-September-09	22-September-09
4	19-April-09	13-June-09	28-August-09	04 -October-09
3	28-April-09	20-June-09	24-August-09	02 -October-09
2	01 -May-09	19-June-09	26-August-09	24-September-09
1	05 -June-09	05-June-09	04-September-09	04-September-09

Table 11 Interval of stay dates, according to the star classification

Table 12 presents information about the duration of a stay, which can start from 5 nights up to 10 nights. The duration of a stay, usually increases for the 2 star hotels or the 3 star ones.

The offers include all possibilities, depending on the number of meals, as it follows: 1-no meals; 2-breakfast; 3-lunch; 4-dinner; 5-breakfast and lunch; 6-breakfast
and dinner; 7-lunch and dinner; 8-breakfast, lunch and dinner. In Table 13, we present, for each case of meals, the corresponding number of offers.

Stars	No nights	No hotels
5	7	1
5	6	1
5	5	2
4	7	17
4	6	6
4	5	10
3	10	8
3	8	8
3	7	51
3	6	27
3	5	30
2	10	10
2	8	20
2	7	44
2	6	33
2	5	29
1	7	1

Table 12 Number of nights for a stay
54 hotels offer 8 possibilities for the number of meals and 6 hotels offer 5 possibilities.

86 hotels offer 4 possibilities which are: 2, 5, 6 and 8, mentioned above.

3 hotels offer 3 possibilities for the number of meals, while 5 hotels offer just one possibility.

Meals	No of offers
1	2478
2	6074
3	1763
4	1763
5	6784
6	6669
7	1822
8	6858

Table 13 Type of meals and number of offers
Now, we present some rate results. Table 14 reveals the minimum and the maximum rate, depending on different periods of time. The rates refer to one person per night. As it shows, the table mentions 21 RON for a minimum rate and 566 RON for a maximum one. All rates are in RON.

All the hotels with all their meal offers have been considered in Table 14. This is the reason why the differences between rates are that significant. It is our intention to develop combinations of offers, depending on certain periods of time, which are supported by all types of budgets.

Lowest rates usually do not imply best conditions, while the highest rates do not imply bad conditions.

Based on these facts, it is advisable that everyone interested in these offers should consider a proper interval of rates for their own interest. However, it is also a common situation when the rates for the 4 star hotels are more affordable than the ones for the 3 star hotels.

Interval	Date of start between		Min RON/night	Max RON/night
1	14.04 .2009	23.04 .2009	91	205
2	24.04 .2009	03.05 .2009	38	230
3	04.05 .2009	13.05 .2009	23	230
4	14.05 .2009	23.05 .2009	23	282
5	24.05 .2009	02.06 .2009	21	288
6	03.06 .2009	12.06 .2009	24	298
7	13.06 .2009	22.06 .2009	24	347
8	23.06 .2009	02.07 .2009	30	533
9	03.07 .2009	12.07 .2009	34	533
10	13.07 .2009	22.07 .2009	39	556
11	23.07 .2009	01.08 .2009	44	541
12	02.08 .2009	11.08 .2009	53	556
13	12.08 .2009	21.08 .2009	37	541
14	22.08 .2009	31.08 .2009	28	556
15	01.09 .2009	10.09 .2009	23	347
16	11.09 .2009	20.09 .2009	24	313
17	21.09 .2009	30.09 .2009	25	230
18	01.10 .2009	10.10 .2009	81	205

Table 14 Minimum and maximum rate for different time intervals

In Table 15, we present these rates depending on the star classification of hotels.

The top image in Figure 3 presents the difference between the maximum rate and the minimum rate for each hotel, during summer. The maximum difference is 369 RON. We would like to mention that we are taking into consideration the difference in the rates of the same hotels, but we are not taking into consideration the influence of meals.

Stars	Interval	Min	Max	Stars	Interval	Min	Max	Stars	Interval	Min	Max
5	3	98	213	4	12	85	458	2	4	28	161
5	4	98	213	4	13	71	458	2	5	21	190
5	5	98	230	4	14	57	389	2	6	24	190
5	6	115	298	4	15	46	347	2	7	24	207
5	7	115	313	4	16	52	278	2	8	30	236
5	8	115	533	4	17	91	205	2	9	35	247
5	9	253	533	4	18	91	205	2	10	46	318
5	10	300	556	3	2	69	230	2	11	53	318
5	11	300	541	3	3	23	230	2	12	53	318
5	12	300	556	3	4	23	230	2	13	37	282
5	13	264	541	3	5	27	264	2	14	28	258
5	14	192	556	3	6	29	264	2	15	23	207
5	15	115	313	3	7	38	273	2	16	24	192
5	16	98	313	3	8	41	334	2	17	34	132
5	17	98	213	3	9	48	384	1	6	26	107
4	1	91	205	3	10	66	384	1	7	26	107
4	2	69	218	3	11	78	384	1	8	31	111
4	3	52	219	3	12	84	384	1	9	34	132
4	4	52	282	3	13	53	384	1	10	48	132
4	5	52	288	3	14	42	312	1	11	54	138
4	6	58	293	3	15	27	273	1	12	54	138
4	7	65	347	3	16	25	230	1	13	37	138
4	8	78	362	3	17	25	230	1	14	30	111
4	9	82	397	3	18	81	161	1	15	26	107
4	10	82	450	2	2	38	154				
4	11	85	458	2	3	29	161				2

Table 15 Rates for summer offers
In fact, the type of meals strongly influences the rate, not only the time period of a stay.

In Figure 3, in the image at the bottom, we present a percentage corresponding to the part of the minimum rate according to the maximum rate for each hotel.

Figure 3 Rate difference

From both images in Figure 3, we can observe that these differences are very important and they must be taken into consideration.

3 Database presentation

In order to highlight the best rates (according to tourist preferences) for the summer holidays in Romanian Black Sea resorts, we have built a database model containing information about the resort hotels. The information refers to resorts, star classification, room types, hotel facilities, room amenities, time period and duration of the stays, etc. In this subsection we describe all the database tables and the significance of their fields. Starting from the data presented in the travel agency catalogues or websites, we build the database presented in Figure 4. Now, we present the database tables.

In the Resorts table, we have the following fields: ID_resort, Resort and Description. In the Description field we save some information about each resort. The Hotels table has the fields: ID_hotel, ID_resort, Hotel, Phone, Fax, Stars (this field refers to the hotel star classification), Address, Web_address, E_mail and Beach_description (in this field we save information about the beach near the hotel).

In the Area_ Information table, we save information about the hotel location inside the resort (restaurants,
spa treatments, churches, mosques, theatre, etc).
All the possible facilities are saved in the Facility field, in the Hotel_facility_types table. In the Hotel_facilities table we specify all the facilities per hotel. For each facility, in the No field, we save their corresponding number. For example, if a hotel has two Outdoor Swimming Pools, then in the No field we have the value 2. The Extra_charge field contains number values. These values are 0 in the case in which the facility rate is included in the holiday series rate. In the Description field, we save a detailed description of each facility.

In the Hotel_rooms table we save information on the rooms of the hotels, including their corresponding number. Data about the room amenities are saved in the Room_amenity_types table. In the Rooms_amenities table, in the case of each hotel, we save the corresponding amenities for each room type. The No, Extra_charge and Description fields have the same significance as in the Hotel_facilities table.

In the Hotel_policies table, we have information on the policies of all hotels. The most common policies are the following: Check-In, Check-Out, Cancellation, Accepted credit cards, etc.

In the Photos (Movies) table we save the path of the image (video) files. These images (videos) refer to hotels, rooms, facilities, etc.

In the Children table we save all children facility types, specifying the extra charge, according with the child age.

In the Pets table we have information if pets are allowed in hotel and the corresponding extra charge in the affirmative case.

In the Travel_agencies table we have data about travel agencies.

The payment is made either at the hotel, or at different travel agencies. Travel agencies offer different duration of stays for hotels.

The rates are different from one agency to another (we find situations where the rates are significantly different). Generally, the highest rates are applied if you pay directly at the hotel.
In the Rate field, for each agency and for each type of hotel room, we save the following information: the rate for one person per night, depending on the number of meals (including or not breakfast, lunch or dinner); the start date of the stay and number of nights per stay.

3.1 Algorithm for obtaining aggregated values sets

Data analysis is used in many departments or sectors such as finance departments, marketing departments, manufacturing sector, sales departments etc. Data analysis applications typically aggregate data across
many dimensions ($n>=0$). For aggregations, many tools are known. We recall some from these:

An $S Q L$ aggregate function $(A F)$ produces one answer:
Select AF (attribute_value) from table which corresponds to one aggregation type.

An $S Q L$ aggregate function $(A F)$ and the Group by operator also yield one answer:
Select attribute_1,...,attribute_n, AF (attribute_value) from table group by attribute_1,...,attribute_n which corresponds to one aggregation type.

Figure 4 Database for studying summer offers

The Rollup operator (from Oracle) - corresponds to $n+1$ aggregation types.

The Cube operator - corresponds to 2^{n} aggregation types (the maximal set possible).

In the case in which n is not small, 2^{n} is a considerable value. In the case in which the user wants to obtain (in the same result table) other subsets of aggregated values than the sets given by the known tools, we propose the following algorithm.

In the beginning, we recall how we want to refer to the sets of aggregation types (see [10]). In order to specify the aggregation types, we propose that the user make specifications, which contain combinations of " m " and/or " f " and/or " "", where:
f - means one field used for grouping,
u - means one field not used for grouping,
m - means zero, one or more fields not used for grouping.
Now, we consider the table presented in Figure 5. Here, the fields field1, field2, field3, field4, field5 form the maximal set used for grouping and the field fvalue is used for aggregation.

The specification $m f m$ produces the results presented in Figure 6 (which correspond to five aggregation types).

The specification $m f u f m$ produces the results presented in Figure 7 (which correspond to three aggregation types).

Figure 5: An initial table

Figure 6: The result for $m f m$
The specification $f m f m$ produces the results presented in Figure 8 (which correspond to four aggregation types). In such specifications we can also eliminate some fields for a certain f.

Figure 7: The result for $m f u f m$

The user must specify the n fields used for grouping. Using specifications, which are composed of " f " or/and " m " or/and "u", the user can obtain any wanted subsets of aggregation types for the n specified fields.

The implementation is presented in [13], using a programming environment (the current demonstration has been developed in Delphi) and a database (any relational database, here it is used an Access database).

Figure 8: The result for $f m f m$
For grouping and for aggregation, we can use fields from one or more tables. Also, we can build new tables with fields, regarding the criteria on the fields from the initial tables, like in the following examples.

3.2 Examples of aggregation used in the study of the rates per stay

Example 1 We present an example for studying the hotel room rates according to the resorts, the hotel star classification, room type and meal type.

We now present a situation in which for grouping we use fields from the tables presented in Figure 4.

Figure 9: Tables, fields, relationships and aggregated function

We assume that in the result tables we want to have the following header: Resort, Stars, Number_of_nights, Room_type, Observation, Breakfast, Lunch, Dinner, Number_of_offers, Minimum_Rate, Maximum_Rate.
Here, for grouping we use the following fields: Resort (from the Resorts table), Stars (from the Hotels table), Number_of_nights (from the Rates table), Room_type
(from the Hotel_rooms table), Observation, Breakfast, Lunch, Dinner (from the Rates table).

For aggregation we use the count, \min and \max functions on the Rate field (from the Rates table). We recall that the Rates field refers to the rate per person per night.

Figure 10: The specification of aggregation types
We have 8 fields used for grouping and this means that we have $2^{8}=256$ different possibilities of aggregation. We can formulate specifications of aggregation types, in the following way:

We specify the fields used for grouping and the fields used for aggregation with the corresponding aggregation function, like in Figure 9.
In Figure 10, we present the way in which we formulate the aggregation types.
We can obtain the aggregated values in the same result table or we can obtain different result tables corresponding to the selected aggregation type, like in Figure 11.

Now, we present some specification of aggregation types:

Figure 11: Result tables
c1.fmfmuu - which means that for grouping we use the following fields: Resort Stars // Resort Number_of_nights // Resort Room_type// Resort Observation.

From the 8 possible fields (Resort, Stars, Number_of_nights, Room_type, Observation, Breakfast, Lunch, Dinner - used in the header of the result table), in the case $c 1$, we use only 2 fields for grouping: the first field - Resort and any other field, with the exception of
the following three fields - Breakfast, Lunch and Dinner. In this way, we use 4 aggregation types which correspond to the number of 1 -combination from a set of 4 elements.

Table 16: Results for specification $f f f f f f f f$ (the Mamaia resort)

| Resort | S N | B | L | D | O | Min Max | | Resort | S | N B | L | D | O | Min Max |
| ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 17: Results for specification $f m f m f f f$ (the Mamaia resort)
c2. fmfmfmuu \mathbf{f} - which means that for grouping we use the following fields: Resort Stars Number_of_nights // Resort Stars Room_type // Resort Stars Observation // Resort Number_of_nights Room_type // Resort Number_of_nights Observation // Resort Room_type Observation.
From the 8 possible fields, in the case $c 2$, we use only 3 fields for grouping: the first field - Resort and any other 2 fields, with the exception of the following three fields - Breakfast, Lunch and Dinner. In this way, we use 6 aggregation types which correspond to the number of 2-combinations from a set of 4 elements.
c 3. $\mathbf{f m} \mathbf{f m} \mathbf{f m} \mathbf{f m u u}$ - which means that for grouping we use the following fields: Resort Stars Number_of_nights Room_type // Resort Stars Number_of_nights Observation // Resort Stars Room_type Observation // Resort Number_of_nights Room_type Observation.
In the case $c 3$, we use 4 fields for grouping: the first field - Resort and any other 3 fields, with the exception of the following three fields - Breakfast, Lunch and Dinner. In this way, we use 4 aggregation types which correspond to the number of 3 -combinations from a set of 4 elements.
c 4.fffffuuc- which means that for grouping we use the following fields: Resort Stars Number_of_nights Room_type Observation.
c5.fmfmfff which means that for grouping we use the following fields: Resort Stars Breakfast Lunch Dinner // Resort Number_of_nights Breakfast Lunch Dinner // Resort Room_type Breakfast Lunch Dinner // Resort Observation Breakfast Lunch Dinner.

Resort	S	N	B L D	O	Min	Max
1 Mamaia	2	5		2169	32	306
2 Mamaia	2	6		1019	38	208
3 Mamaia	2	7		2939	29	318
4 Mamaia	2	8		379	38	216
5 Mamaia	2	10		148	38	204
6 Mamaia	3	5	847	46	366	
7 Mamaia	3	6		681	46	384
8 Mamaia	3	7	1740	46	384	
9 Mamaia	3	8	278	46	234	
10 Mamaia	3	10	294	46	264	
11 Mamaia	4	5	809	69	458	
12 Mamaia	4	6	56	129	285	
13 Mamaia	4	7	863	69	389	
14 Mamaia	5	5	21	283	556	

Table 18: Results for specification $f f f f f$ и и и (the Mamaia resort)

From the 8 possible fields (Resort, Stars, Number_of_nights, Room_type, Observation, Breakfast, Lunch, Dinner - used in the header of the result table), in the case $c 5$, we use only 5 fields for grouping:
the first field - Resort, the last three fields (Breakfast, Lunch, Dinner) and any other field. In this way, we use 4 aggregation types which correspond to the number of 1combination from a set of 4 elements.
c 6.fmfmfmfffewhich means that for grouping we use the following fields: Resort Stars Number_of_nights Breakfast Lunch Dinner // Resort Stars Room_type Breakfast Lunch Dinner // Resort Stars Observation Breakfast Lunch Dinner // Resort Number_of_nights Room_type Breakfast Lunch Dinner // Resort Number_of_nights Observation Breakfast Lunch Dinner // Resort Room_type Observation Breakfast Lunch Dinner.
From the 8 possible fields, in the case $c 6$, we use 6 fields for grouping: the first field - Resort, the last three fields (Breakfast, Lunch, Dinner) and any other 2 fields. In this way, we use 6 aggregation types which correspond to the number of 2 - combinations from a set of 4 elements.
c 7.fmfmfmfmfff-which means that for grouping we use the following fields: Resort Stars Number_of_nights Room_type Breakfast Lunch Dinner // Resort Stars Number_of_nights Observation Breakfast Lunch Dinner // Resort Stars Room_type Observation Breakfast Lunch Dinner // Resort Number_of_nights Room_type Observation Breakfast Lunch Dinner.
From the 8 possible fields, in the case $c 7$, we use 7 fields for grouping: the first field - Resort, the last three fields (Breakfast, Lunch, Dinner) and any other 3 fields. Here, we use 4 aggregation types which correspond to the number of 3 - combinations from a set of 4 elements.
c 8.ffffffff-which means that for grouping we use the following fields: Resort Stars Number_of_nights Room_type Observation Breakfast Lunch Dinner.

Resort	S N B L D	O	Min		Max
1 Mamaia	2		6654	29	318
2 Mamaia	3		3840	46	384
3 Mamaia	4		1728	69	458
4 Mamaia	5		21	283	556
5 Mamaia	5	3846	32	556	
6 Mamaia	6	1756	38	384	
7 Mamaia	7	5542	29	389	
8 Mamaia	8	657	38	234	
9 Mamaia	10	442	38	264	

Table 19: Results for specification $f m f m и и и$ (the Mamaia resort)
The difference between the group of cases c1-c4 and the group of cases $c 5-c 8$ is that, in the last group, the results depend on the meal type (the Breakfast, Lunch and Dinner fields). In the cases c1-c8 we have 30 aggregation types out of all 256 . We can use all these specifications of aggregation types (this means obtaining all the results in the same table) or only some of them, for different result tables.

We apply this example of our database with real data. For the Observation field from the Rates table we have in all cases the Catalogue Rate value. For the Room_type field we have the value double. In order to have an image on these results, we present (for some cases presented above) the result values corresponding to the Mamaia resort. In Tables 16-19 we present only the following fields: Resort, Star (S), Number_of_nights (N), Breakfast (B), Number_of_offers (O), Minimum_Rat (Min) and Maximum_Rate (Max).

Example 2 In this example, we are interested on the stays that have the start date between August $1^{\text {th }}$ and August $8^{\text {th }}$. We present an example for studying the hotel room rates depending on the resorts, the hotel star classification, number of nights and meal type.
In the result tables we want to have the following header: Resort, Stars, Number_of_nights, Breakfast, Lunch, Dinner, Number_of_offers Minimum_Rate, Maximum_Rate. Here, for grouping we use the following fields: Resort (from the Resorts table), Stars (from the Hotels table), Number_of_nights (from the Rates table), Breakfast, Lunch and Dinner (from the Rates table). For aggregation we use the count, \min and max functions on the Rate field (from the Rates table). We have 6 fields used for grouping and this means that we have $2^{6}=64$ different possibilities of aggregation. For exemplification, we can use the following specifications of 14 aggregation types (for two cases, we present results in Tables 21 and 22).:

	Resort	\mathbf{S}	\mathbf{N}	\mathbf{B}	\mathbf{L}	\mathbf{D}	\mathbf{O}	Min	Max
1	Cap Aurora	2					44	78	161
2	Cap Aurora	3				24	132	228	
3	Costinesti	2				126	66	224	
4	Costinesti	3				52	84	216	
5	Costinesti	4				28	106	306	
6	Eforie Nord	2				113	78	240	
7	Eforie Nord	3				157	102	332	
8	Eforie Sud	2				40	60	176	
9	Eforie Sud	3				4	122	230	
10	Jupiter	2				90	72	216	
11	Jupiter	3				104	90	300	
12	Mamaia	2				458	72	318	
13	Mamaia	3				198	114	384	
14	Mamaia	4				97	149	458	
15	Mamaia	5				2	525	556	
16	Mangalia	3				11	144	241	
17	Neptun	1				8	54	138	
18	Neptun	2			162	53	192		
19	Neptun	3			126	102	300		
20	Neptun	4			4	210	270		
21	Olimp	2			62	96	216		
22	Olimp	3			5	168	252		
23	Olimp	4			21	186	324		
24	Saturn	2			22	67	153		
25	Saturn	3				91	160	311	
	2								

Table 21: Results for specification $m f m f m и и и-I$

	Resort	S	N	B	L	D	O	Min	Max
26	Saturn	4					14	85	260
27	Saturn	5					3	300	300
28	Venus	2					126	64	161
29	Venus	3					47	84	251
30	Venus	4					11	156	357
31	Cap Aurora		5			8	132	222	
32	Cap Aurora	6			36	78	228		
33	Cap Aurora	7			4	132	222		
34	Cap Aurora		8			12	78	228	
35	Cap Aurora	10			8	78	143		
36	Costinesti		5			26	126	261	
37	Costinesti	6		126	66	261			
38	Costinesti	7			54	84	306		
39	Eforie Nord	5			73	78	252		
40	Eforie Nord	6			56	90	332		
41	Eforie Nord	7			88	78	252		
42	Eforie Nord	8			33	78	240		
43	Eforie Nord	10			20	90	168		
44	Eforie Sud	5			11	60	153		
45	Eforie Sud	6			6	121	153		
46	Eforie Sud	7		27	67	230			
47	Jupiter	5		67	90	300			
48	Jupiter	6		17	84	186			
49	Jupiter	7		85	73	264			
50	Jupiter	8		25	72	186			

Table 20: Results for specification $m f m u u u$
c1. $\mathbf{m} \mathbf{f m u u}$ - which means that for grouping we use the following fields: Resort // Stars // Number_of_nights. We use 3 aggregation types which correspond to the number of 1 - combinations from a set of 3 elements (see Table 20).

	Resort	S	N		L	D	0	Min	Max
1	Cap Aurora						68	78	228
2	Costinesti						206	66	306
3	Eforie Nord						270	78	332
4	Eforie Sud						44	60	230
5	Jupiter						194	72	300
6	Mamaia						755	72	556
7	Mangalia						11	144	241
8	Neptun						300	53	300
9	Olimp						88	96	324
10	Saturn						130	67	311
11	Venus						184	64	357
12		1					8	54	138
13		2					1243	53	318
14		3					819	84	384
15		4					175	85	458
16		5					5	300	556
17				5			625	60	556
18				6			546	64	384
19				7			814	53	389
20				8			198	61	240
21			10				67	78	264

[^0]

	Resort	S	N	B	L	D	0	Min	Max		Resort	S	N	B	L	D	0	Min	Max
51	Mamaia		5				247	84	556	72	Venus		6				30	64	252
52	Mamaia		6				117	84	384	73	Venus		7				55	66	357
53	Mamaia		7				312	72	389	74	Venus		8				27	64	204
54	Mamaia		8				49	84	234	75	Venus		10				3	181	226
55	Mamaia		10				30	84	264	76		1	7				8	54	138
56	Mangalia		6				8	144	228	77		2	5				286	60	306
57	Mangalia		7				3	193	241	78		2	6				344	64	240
58	Neptun		5				75	76	252	79		2	7				420	53	318
59	Neptun		6				72	72	270	80		2	8				151	61	240
60	Neptun		7				116	53	300	81		2	10				42	78	204
61	Neptun		8				37	61	188	82		3	5				270	90	366
62	Olimp		5				10	118	264	83		3	6				178	84	384
63	Olimp		6				36	96	324	84		3	7				299	84	384
64	Olimp		7				38	96	324	85		3	8				47	84	234
65	Olimp		8				4	118	190	86		3	10				25	114	264
66	Saturn		5				39	85	311	87		4	5				66	85	458
67	Saturn		6				42	121	300	88		4	6				23	156	324
68	Saturn		7				32	67	300	89		4	7				86	106	389
69	Saturn		8				11	160	226	90		5	5				3	300	556
70	Saturn		10				6	181	226	91		5	6				1	300	300
71	Venus		5				69	66	251	92		5	7				1	300	300

Table 22: Results for specification $m f m f m u u u$-II
c2. $m \mathbf{f m} \mathbf{f m u} \mathbf{u}$ - which means that for grouping we use the following fields: Resort Stars // Resort Number_of_nights// Stars Number_of_nights. We use 3 aggregation types which correspond to the number of 2 - combinations from a set of 3 elements (see Tables 20 22).
c3. $\mathbf{f f f m u u}$ - which means that for grouping we use the following fields: Resort Stars Number_of_nights. We use 1 aggregation type which corresponds to the number of 3 - combinations from a set of 3 elements.
c4. $\mathbf{m f m} \mathbf{f f} \mathbf{f}$ - which means that for grouping we use the following fields: Resort Breakfast Lunch Dinner // Stars Breakfast Lunch Dinner// Number_of_nights Breakfast Lunch Dinner. We use 3 aggregation types which correspond to the number of 1 - combinations from a set of 3 elements.
c5. mfmfmfff - which means that for grouping we use the following fields: Resort Stars Breakfast Lunch Dinner// Resort Number_of_nights Breakfast Lunch Dinner// Stars Number_of_nights Breakfast Lunch Dinner.
We use 3 aggregation types which correspond to the number of 2 - combinations from a set of 3 elements.
c6. fffmuuu - which means that for grouping we use the following fields: Resort Stars Number_of_nights Breakfast Lunch Dinner. We use 1 aggregation type which corresponds to the number of 3 - combinations from a set of 3 elements.

Example 3 In the Examples 1 and 2 the stay rates are detected depending exclusively on the fields from the tables presented in Figure 4. If we want, with our algorithms, we can detect rates depending on values from tables. More clearly, in Section 2 we have presented the hotel facilities and room amenities, which are values in the database presented in Figure 4. In order to detect rates depending on hotel facilities and room amenities, we now consider the following situation:

We are interested in the offers that have the start date between August $1^{\text {th }}$ and August $8^{\text {th }}$, the resort is Mamaia, the number of hotel stars is 4 , the number of nights is 5 .

We suppose that we are interested in the offers where among the hotel facilities we find all the following values: restaurant, outdoor swimming pool and parking. Additionally, although it is not obligatory, we prefer to find the following facilities: bar, terrace, garden, luggage room, safe, children playground, Internet and elevator.

We suppose that we are interested in the offers where among the room amenities we find all the following values: air conditioning and shower. Additionally, although it is not obligatory, we prefer to find the following amenities: balcony, TV and mini-bar. In order to solve this problem, we create a result table with the offers that verify the following conditions: the start date between August $1^{\text {th }}$ and August $8^{\text {th }}$, the resort is Mamaia, the number of stars is 4 , the number of
nights is 5. This table has the following fields: Breakfast, Lunch, Dinner, Rate (from the Rates table presented in Figure 5.4), fl-fll and al-a5. We denote the hotel facilities with $f 1-f 11$, in the following way: restaurant-f1, outdoor swimming pool-f2, parking-f3, bar-f4, terrace-f5, garden-f6, luggage room-f7, safe-f8, children playground-f9, Internet-f10 and elevator-f11. We denote the room amenities with al-a5, in the following way: air conditioning-a1, shower-a2, balcony-a3, TV-a 4 and mini-bar - a5. In the fields f1f11 we have the value 1 if we find the facility at the corresponding hotel and the value 0 if we do not. In the fields a1-a 5 we have the value 1 if we find the facility at the corresponding hotel and the value 0 in the contrary case.

We present an example for studying the hotel room rates depending on meal type, hotel facilities and room amenities.
In the result tables we want to have the following header: Breakfast, Lunch, Dinner, $f 1, f 2, f 3, f 4, f 5, f 6, f 7$, f8, f9, f10, f11, a1, a2, a3, a4, a5 Number_of_offers, Minimum_Rate, Maximum_Rate.

For aggregation we use the count, \min and max functions from the Rate field (from the Rates table).
We have 19 fields used for grouping and this means that we have $2^{19}=524288$ different possibilities of aggregation. We formulate the following specification of aggregation types:
c1. $\mathbf{f f f f f m f m f m f f m e m ~ - ~ w h i c h ~ m e a n s ~ t h a t ~ f o r ~}$ grouping we use the following fields: Breakfast Lunch Dinner f1 f2 f3 f4 f5 a1 a2 a3 // Breakfast Lunch Dinner f1 f2 f3 f4 f5 a1 a2 a4// c Breakfast Lunch Dinner f1 f2 $\mathrm{f} 3 \mathrm{f} 4 \mathrm{f5} \mathrm{a} 1 \mathrm{a} 2 \mathrm{a} / / /$ Breakfast Lunch Dinner f1 f2 f3 f4 f6 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f4 f6 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f4 f6 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f4 f7 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f4 f7 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f4 f7 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f4 f8 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f4 f8 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f4 f8 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f4 f9 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f4 f9 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f4 f9 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f4 f10 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f4 f10 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f4 f10 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f4 f11 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f4 f11 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f4 f11 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f5 f6 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f5 f6 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f5 f6 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f5 f7 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f5 f7 a1 a2 a4//

Breakfast Lunch Dinner f1 f2 f3 f5 f7 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f5 f8 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f5 f8 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f5 f8 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f5 f9 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f5 f9 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f5 f9 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f5 f10 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f5 f10 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f5 f10 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f5 f11 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f5 f11 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f5 f11 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f6 f7 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f6 f7 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f6 f7 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f6 f8 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f6 f8 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f6 f8 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f6 f9 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f6 f9 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f6 f9 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f6 f10 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f6 f10 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f6 f10 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f6 f11 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f6 f11 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f6 f11 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f7 f8 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f7 f8 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f7 f8 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f7 f9 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f7 f9 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f7 f9 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f7 f10 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f7 f10 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f7 f10 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f7 f11 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f7 f11 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f7 f11 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f8 f9 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f8 f9 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f8 f9 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f8 f10 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f8 f10 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f8 f10 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f8 f11 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f8 f11 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f8 f11 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f9 f10 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f9 f10 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f9 f10 a1 a2 a5// Breakfast Lunch Dinner f1 f2 f3 f9 f11 a1 a2 a3// Breakfast Lunch Dinner f1 f2 f3 f9 f11 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f9 f11 a1 a2 a5//

Breakfast Lunch Dinner f1 f2 f3 f10 f11 a1 a2 a3//
Breakfast Lunch Dinner f1 f2 f3 f10 f11 a1 a2 a4// Breakfast Lunch Dinner f1 f2 f3 f10 f11 a1 a2 a5.
We use 84 aggregation types which correspond to the number of 2 - combinations from a set of 8 elements (28-ffffffmfmfmffmfm) multiply by the number of 1 - combination from a set of 3 elements (3ffffffmimfmffmfm).

In order to generate the set of fields used for grouping, presented above, we can use the following program in Clips:
(deffacts f1
(c Breakfast Lunch Dinner f1 f2 f3 f4 f5 f6f7f8f9f10
f11 al a2 a3 a4 a5))
(defrule rl
(c ?b ?l ?d ?f1 ?f2 ?f3 \$? ?y \$? ?z \$? ?a1 \& al ?a2 \& a2 \$? ? x \$?)
=>
(assert (c ?b ?l ?d ?f1 ?f2 ?f3 ?y ?z ?a1 ?a2 ?x)))
In this way, with a single specification of aggregation types, we obtain, in the same table, the results corresponding to 84 aggregation types (see Tables 23-26).

	8		D	${ }^{1} 1$		12 f3		44	$5 \mathrm{f6}$	167		f8	f9 f	10	$f 11$	a1	a 2	a3	3 a	4 as			Min	Max			10	f1	$1{ }_{12}$	f	fa_{4}	f6	$f 7$	f8	f9	$f 10$	f11	a1	a 2	a3	34		M		Max
	1 y			1		11	1	1	1							1	1	1	1			1	253	253	26	V	y	1	1	1	1			1				1	1	1			30		37
	2 y		v	1		1.	1	1	1							1	1	1	1			1	307	307		y	v	1	1		1			1				1	1	1			30		37
	3 y			1		1.	1	1	1							1		1	1			1	307	307		y V	v y	1	1		1			1				1	1	1			36		361
	4 y	v		1		1.	1	1	1							1	1	1	1			1	361	361	29				1		1			1				1	1		1.		19		53
	5 y			1		1.	1	1	1							1	1	1		1		3	194	253	30		y	1	1		1			1				1	1		1		25		37
	6 y		v	1		1.	1	1	1							1	1	1		1		3	254	307	31	$y>$	$y \mathrm{y}$		1		1			1				1	1			1	31		361
	y			1		1.	1	1	1							1	1	1		1		3	255	307		y^{7}		1	1		1			1				1	1		1		25		37
	3 y	v		1		1.	1	1	1							1	1	1		1		3	315	361	33	y_{y}	y y	1	1		1			1				1	1		1		31		31
	9			1.		1.	1	1	1								1	1				3	194	253	34				1		1			1				1	1			1	19		53
	y		v	1		12	1	1	1							1	1	1				3	254	307	35		y	1	1		1			1				1	1			1	25		37
11	1 y	v		1		1	1	1	1							1	1	1				3	255	307		y_{y}			1		1			1				1	1			1	25		37
12	2 y	v		1		11	1	1	1							1	1	1				3	315	361		y	v y	1	1		1					1		1	1		1		31		30
	3 y	v		1.		1.	1	1			1					1.	1	1	1			1	307	307	38	V		1	1	1	1					1		1	1		1		19		09
14	4 y	y		1		1.		1			1					1.			1			1	361	361	39	y	r		1		1					1		1	1		1		25		269
15	5			1		12	1	1			1					1	1	1		1		1	253	253		y		1	1		1					1		1	1		1		25		270
16	v		v	1		1.	1	1			1					1	1	1		1		1	307	307	41	v		1	1	1	1					1		1	1			1	19		209
17	y	v		1		1	1	1			1					1	1	1		1		1	307	307	42	v	y	1	1		1					1		1	1			12	25		69
18	8 y	v		1		1.	1	1			1						1	1		1		1	361	361		V^{2}		1	1		1					1		1	1			1	25		270
19	V			1.		1.1	1	1			1							1			1.		253	253		4 y	y y		1		1					1		1	1			1	31		330
20	y		v	1		1.	1	1			1					1	1	1				1	307	307	45	y			1		1						1	1	1		1.		19		09
21	1 V	v		1		11		1			1					1	1	1					307	307		y_{1}		1	1		1						1	1	1				25		270
22	2 y	v		1		1.	1	1			1					1	1	1			1		361	361	47	y y	v y	1	1	1	1						1	1	1			1	31		30
23	3 y			1		11		1				1				1	1	1	1			1	253	253	48	V		1	1	1	1							1	1	1			25		53
24	4 V			1				1			1.								1			1	253	253	49	V	y		,		1							1	1	1		1	30		37
25	5 y		v	1	1	1	1	1			1					1	1	1	1			1	307	307	50	v	y	1	1	1	1						1	1	1		1		25		69

Table 23: Results for specification $f f f f f f m f m f m f f m f m-\mathrm{I}$

Table 24: Results for specification $f f f f f f m f m f m f f m f m$-II

		B 1.	D	f1 ${ }_{1}$	$1 \mathrm{fz} \mathrm{f}^{\text {f }}$		f4	f5	f6 f7	f7	f8 f9	69 f	$f 10$	$f 11$	a1	a2	a3	34	as	0	Min		Max		B	1	D	$f 1$	f2	$f 3$	$f 4$	65	$f 6$	f7	18	f9	$f 10$	$f 11$	a1	a2	a3	34	as	0	Min	Max
101	y	v		1	1.	1		1							1.	1	1	1		1	253		253	126	,		y	1	1	1				1					1	1	1		1	1	307	307
102	y	v	y	1	1	1		1							1	1	1	1		1	307		307	127	v	\checkmark		1	1	1				1					1	1	1		1	1	307	307
103	v	y		1	1	1		1							1	1	1	1		1	307		307	128	y	y	y	1	1	1				1					1	1	1		1	1	361	361
104	y	y	y	1	1	1		1							1	1	1	1		1	361		361	129	y	y		1	1	1					1		1		1	1		1		2	255	270
105	y			1	1	1		1.							1	1	1		1	1	253		253	130	y	y	y	1	1	1					1		1		1	1		1		2	315	330
106	y	V	y	1	1	1		1.							1.	1.	1		1	11	307		307	131	y			1	1	1					1.		1		1.	1			1.	2	194	209
107	y	y		1	1	1		1							1	1	1		1	1	307		307	132	y		y	1	1	1					1.		1		1.	1			1	2	254	269
108	y	y	y	1	1	1		1.							1.	1	1			11	361		361	133	y			1	1	1					1		1		1	1		1		2	194	209
109	r			1	1	1				1	1				1	1.	1			1	253		253	134	y		y	1	1	1					1		1		1	1		1		2	254	269
110	y	v	y	1	11	1				1	1				1	1	1			1	307		307	135	y	y		1	1	1					1.		1		1.	1			1.	2	255	270
111	y	y		1	1	1				1	1				1.	1.	1			1	307		307	136	y	y	y	1	1	1					1.		1		1	1			1	2	315	330
112	y	y	y	1	1	1				1.	1				1	1		1		1	361		361	137	y			1	1	1					1.			1	1	1		1		2	194	209
113	y	v		1	1	1				1	1				1	1				11	253		253	138	y		y	1	1	1					1			1	1	1		1		2	254	269
114	v	γ	y	1	1	1				1	1				1.	1			1	1	307		307	139	r	y		1	1	1					1.			1	1	1		1		2	255	270
115	y	y		1	1	1				1	1				1	1.			1	11	307		307	140	r	y	y	1	1	1					1			1	1	1		1		2	315	330
116	y	y	y	1	1	1				1	1				1	1	1			1	361		361	141	y			1	1	1					1			1	1	1			1.	2	194	209
117	y	v		1	1	1				1	1				1	1		1		1	253		253	142	y		y	1	1	1					1			1	1	1			1.	2	254	269
118	y	v	y	1	1	1				1.	1				1	1		1		1	307		307	143	y			1	1	1					1				1	1	1	1		1	253	253
119	y	y		1	11	1				1	1				1	1		1		1	307		307	144	y		y	1	1	1					1				1	1	1	1		1	307	307
120	y	y	y	1	1	1				1.	1				1.	1.				11	361		361	145	y	y		1	1	1					1.			1	1	1			1.	2	255	270
121	y	1		1	1	1				1.					1.	1	1	1		1	253		253	146	y	y	y	1	1	1					1.			1	1	1			1	2	315	330
122	y	V	y	1	12	1				1					1	1	1	1		1	307		307	147	y	y		1	1	1					1				1.	1	1	1		1	307	307
123	y	y		1	1.	1				1					1	1	1	1		1	307		307	148	V	y	y	1	1	1					1				1.	1	1	1		1	361	361
124	y	y	y	1	1	1				1					1	1	1	1		1	361		361	149	y			1	1	1					1.				1	1	1		1.	1	253	253
125				1	11	1				1					1	1	1			11	253		253	150	y		y	1	1	1					1				1	1	1		1	1	307	307

Table 25: Results for specification $f f f f f f m f m f m f f m f m$-III

Table 26: Results for specification $f f f f f f m f m f m f f$ $m f m$-IV

4 Conclusion

Using algorithms like the one presented in Section 3, we can perform different studies on the room rates in the resort hotels. This type of study can help the tourist to make a good choice for his holiday and also can help the hotel managers to develop their business. The case presented in this paper is just an example and we consider that it can be adapted to many other types of tourism from Romania and other countries.

References.

[1] Ceballos Sierra, Fco. Javier - Java 2 - Ra-Ma Publisher, Madrid, 2008
[2] Chopra Vivek, Sing Li, Jeff Genender - Apache Tomcat 6 - Anaya Multimedia Publisher, 2008, Madrid
[3] Eximtur - Catalogue of Black Sea Seaside 2009 (www.eximtur.ro)
[4] Ielenicz M, Comanescu L - The tourist potential of Romania, Ed. Universitara, Bucharest, 2006
[5] Lupu, Nicolae - The Hotel. Economy and management All Beck Publisher House, 2005, Bucharest, Romania
[6] Mareea - Catalogue of Romanian Seaside 2009 (http://www.mareea.ro/)
[7] Mastorakis, N.E. - Genetic algorithms with Nelder-Mead optimization in the variational methods of boundary value problems March 2009, WSEAS Transactions on Mathematics, Volume 8, Issue 3
[8] Muntean M.C., Nistor R., Nistor C. - Competitiveness of Developing Regions in Romania - WSEAS TRANSACTIONS on BUSINESS and ECONOMICS Volume 7, 2010, ISSN: 1109-9526
[9] Petcu Nicoleta - Statistics in tourism. Theory and applications - Blue Publisher House, 2005, Cluj-Napoca, Romania
[10] Riviera Magazine - Summer Edition 2009 (http://revistariviera.ro/)
[11] Scoarță I., Bâră A., Constantinescu R., Zota R., Năstase F. - Improvingorganizational efficiency and effectiveness in a Romanian Higher Education Institution, WSEAS Transactions on Computers, Volume 8, Issue 10, pp. 1641 - 1650, october 2009, ISSN:1109-2750
[12] Stănciulescu Gabriela,Micu Cristina- Economy and management in tourism - C. H. Beck Publisher House, 2009, Bucharest, Romania
[13] Voicu M.C. - Algorithms used to obtain aggregated value sets from relational databases - 9th WSEAS International Conference on MATHEMATICS \& COMPUTERS IN BUSINESS \&ECONOMICS (MCBE '08), Bucharest, Romania, June 24-26, 2008.
[14] Voicu M.C., Bânciu A., Dragota M., Turcu R.A. - Study on Residential Assemblies. Database and Algorithms , 10th WSEAS Int. Conf. on MATHEMATICS AND COMPUTERS IN BUSINESS AND ECONOMICS (MCBE'09), Prague, Czech Republic, March 23-25, 2009, pag. 159-164
[15] http://www.infotravelromania.ro
[16] http://www.litoralulromanesc.ro
[17] http://www.romaniatourism.com/blacksea.html

[^0]: