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Abstract: One important issue regarding the implementation of cellular manufacturing systems relates to 

deciding whether to convert an existing job shop into a cellular manufacturing system comprehensively in a 

single go, or in stages incrementally by forming cells one after the other taking the advantage of the 

experiences of implementation. In this paper two heuristic methods based on multi-stage programming and 

genetic algorithm are proposed for incremental cell formation. The results show that the multi-stage 

programming solves small problems faster than exact algorithms such as branch and bound. A heuristic 

procedure based on genetic algorithm is developed on the multi-stage programming to test larger problem 

sizes.  
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1   Introduction 
Global competition impels industries produce 

goods with low cost, high quality and just in 

time. Flexible manufacturing systems are tools to 

achieve these criteria.Cellular manufacturing is 
an application of flexible manufacturing system. 

It is the result of a direct application of the group 

technology philosophy. Parts with similar 

processing requirements such as machines, tools, 

route and/or geometrical shapes are classified 

into part families. 

Many researchers used of mathematical models 

to solve their problems. Adam and Mihai [1] in a 

study mentioned to mathematical methods used 

in engineering. Cell formation is an area of 

engineering that considers designing the layout 

of industries.  

The essential problem in designing of a cellular 

manufacturing system (CMS) is determination of 

machine-groups and part families popularly 

known as the machine cell formation (MCF), or 

also known as machine-component grouping 

(MCG) problem. Many researches considered the 

cell formation problem and proposed numerous 

techniques. Mahesh and Srinivasan [10] clustered 

a number of techniques and provided an 

overview of various algorithms that forms cells 

comprehensively (i.e., non-incrementally) in 

total. As pointed out by Mahesh and Srinivasan 

[10], Wemmerlov and Johnson [17] and several 

others, all the above methods aim at creating a 

comprehensive CMS in total in a single go. In 

practice, however, from the viewpoints of 
planning and implementation and also for capital 

investment reasons, it would be desirable to 

move progressively towards conversion of the 

existing system into cells one after the other.  

Adil and Ghosh [2] developed a mathematical 

model which forms cells incrementally based on 

greedy random adaptive search procedures.   

Balakrishnan and Cheng [3] proposed a model 

which considers cell formation over a multi-

period planning horizon with demand and 

resource uncertainties. In this study, cell 

formation has been done non-incrementally 

where at each period the cell configuration can 

be changed; however, planning, implementation 

or capital investment issues have not been 

addressed. Rezaeian et al. [15] in a study 

presented a new non-linear model to form cells 

incrementally and the problem is solved via a 

genetic algorithm.   Many researchers have tried 

to compare CM, hybrid CM and job shop 

together  ( [7], [11], [16], [18]).   

In this paper a new nonlinear integer 

programming model is designed to convert an 

existing functional layout to a cellular 

manufacturing system. Cell formation is done 

incrementally. Two methods based on multi-
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stage programming and genetic algorithms (GA) 

are applied for solving the model.   

The rest of the paper is organized as follows. 

Section 2 introduces the problem; this is done by 

giving problem description, assumptions, 

notations and a new mathematical model. Our 

proposed algorithm based on multi-stage 

programming approach, genetic algorithm are 

designed in Section 3, 4 respectively. In Section 

5, some experimentations and comparison are 

shown. Finally, Section 6 presents conclusions.  

 

 

2   Problem Formulation 

2.1  Problem description 

We focus on cell formation decisions 

incrementally. Hence, here a functional layout  is 

considered in the beginning of the planning 

horizon with the planning horizon being 

composed of multi periods. N parts are 

considered with each part visiting shops based on 

its requirements. Generally M machines are 

available in shops. The objective is to decide the 

number of cells formed in a period, and the 

assignment of machines to cells such that the 

total cost is minimized. The total cost consists of 

intra-cell and inter-cell material handling, intra-

shop material handling, inter-shop material 

handling and material handling between cell and 

shop costs. 

Assumptions 
1. The demand for each part type in each 

period is known.  

2. The number of cells formed in each 

period is limited. 

3. Each cell consists of a minimum and 

maximum number of machines. 
4. The unit cost of inter-cell movements, 

intra-cell movements and movements between 

cell and shop are known and constant over time. 

5. The number of machines available is 

known and constant over time.     

Notations 

The following notations are used throughout the 

paper:  

c index for cells 

u , t  indices for periods 

m index for machines 

p index for parts 

s index for shops  

α  intra-cell material handling cost 

β  inter-cell material handling cost 

γ  cost of material handling between cell 

and shop 

ω  inter-shop material handling cost 

pt
D  demand for product p in period t 

LB       minimum number of machines to be 

assigned to a cell 

UB      maximum number of machines to be 

assigned to a cell 

Cmax     maximum number of cells can be formed 

in a period 

M  Number of machines 

S Number of shops in the beginning of 

planning horizon 

P  Number of parts 

T  Number of periods 

jk  Number of members of set kj  
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2.2 Mathematical model  
The objective function and constraints can be 

formulated as follows:  

If cell c is formed in period u 

otherwise 

If machine  m is assigned to cell c  in period u 

otherwise 

If part  p needs machine  m 

otherwise 

If part p visits cell c in period u 

otherwise 

If part  p visits a cell in period t 

otherwise 

   If machine m belongs to shop s in period t 

  Otherwise  

If part p visits a shop in period t 

otherwise 

If part p visits shop s in period t 

otherwise 
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     The objective function (1) represents the total 

cost. The total cost consists the costs of intra-cell 

material handling (first term in objective 

function), inter-cell material handling (second 

term), material handling between cell and shop 

(third term) and inter-shop material handling 

(fourth term). Eq. (2) ensures the order of cell 

formation in a period. Eqs. (3) and (4) show that 

part p visits cell c, when at least one of the 

required machines to process the part is allocated 

to the cell. Eq. (5) is to ensure that a machine 

could belong to a shop if it was in that shop in 

preceding period. Eq. (6) represents that a 

machine can be allocated only to a cell or a shop 

in each period. Eqs. (7) and (8) show that part p 

visits shop s when at least one of the required 

machines to process the part is allocated to this 

shop. Eqs. (9) and (10) ensure that a part moves 

inter-cell if the part visits more than one cell in a 

period. Eq. (11) ensures that each machine can 

be allocated to at most one cell in each period. 

Eqs. (12) and (13) ensure that a cell is formed in 

a period if at least one machine is allocated to the 

cell. Eqs. (14) and (15) show that part p visits 

shop s, when at least one of the required 

machines to process the part is allocated to the 

shop. 

 

 

3      Multi-stage programming 
Multi-stage programming is a powerful 

optimization technique that is particularly 

applicable to many complex problems requiring 

a sequence of interrelated decisions. Suarez and 

Roldan [4] presented a type of multi-stage 

programming as dynamic programming in Marko 

decision processes. Here our proposed algorithm 

is based on a multi-stage approach. Therefore, 

before applying the algorithm, the number of 

cells, formed in each period, and the initial 

location of each machine should be known. We 

apply a forward recursive approach to solve the 

problem.    

The recursive relation defining the dynamic step 

is given by the following equation:  
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jiF

jkkk means the minimum total 

cost from period 1 to period i, when j cells are 
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formed, and kj shows the machines in cell j. ψ
(X) is the value of objective function based on 

the objective function (1) in current period and X 

is the vector of update values of decision 

variables in the period. k = φ  means that no cells 

is formed. The optimum solution is achieved as 

follows: 

ψ *
= min


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




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


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×= ),min(,..,2,1,0

),(
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  (17) 

3.1   Proposed algorithm  
Here, the steps of algorithm based on multi-stage 
programming are proposed. 

Step 1. Setting the initial value of decision 

variables  
According to the initial layout, in which all 

machines are assigned to shops before planning, 
no cells are formed. The decision variable values 
are set as follow: 

 0=cuX  for c = 1,2..,,Cmax and u =1,2,..,T 

0=mcuY  for m = 1,2,..,M , c = 1,2,..,Cmax and u 

=1,2,..,T 

0=
pcu

B  for p = 1,2,..,P , c =1,2,..,Cmax and u 

=1,2,..,T 

0=
pt

δ   for p = 1,2,..,P , t = 1,2,..,T 

 





=
0

1
0msK  

  

0=mstK  for m =1,2,..,m , s =1,2,..,S and t 

=1,2,..,T 

0=ptλ  for p = 1,2,..,P , t =1,2,..,T 

Set t=1 

Step 2. Combination of machines 
Here, all feasible sets of machines are 
constituted. A set of machines includes at least 

LB and at last UB machines and is feasible if the 
machines, belonging to the set has not been 

assigned to any cell in previous periods and 

belongs to the remaining shops.  
A machine can be assigned to no cell and remain 
in the shop and remainder shop is such a cell.   

Step 3. Cell formation 
Here, a set of machines is assigned to a cell. 
When the cell is formed in the current period, the 

related variables will be updated according to the 

following rules. Each cell contains a feasible set 
of machines.  

Rule 1: In period t a machine can be assigned to 

a cell if it has not been assigned to any cell in 

this and previous periods. In other worlds the 
machine should belong to reminder shop before 
period t. 

Rule 2: If machine m is assigned to cell c in 

period t then the decision variables are set as 

follow:  

1=mctY  and 0=mcuY  for u = t+1, t+2, ..., T 

and c= 1,2,..,Cmax. 

0=mstK  for s= 1,2,..,S and t= t,t+1,..,T. 

Rule 3: If machine m belongs to cell c in period t 

( 1=mctY ) and part p needs machine m then 

1=
pcu

B  and 1=
pt

δ . 

Rule 4: If machine m belongs to shop s in period 

t ( 1=mstK ) and part p needs machine m then

1=ptλ .  

Rule 5: In period t a machine cannot be assigned 
to a cell and a shop at the same time. In other 
words, in each period the following relation 

should be satisfied:  

0=× mctmst YK . 

Step 4. Completion a solution, when a solution is 
completed, all machines in the period are 

assigned to a cell or remainder shop.  

Step 5. Calculate the objective function with 
update variables.  

Step 6. Using the recursive relation (16) and the 

value obtained in Step 5, use a multi-stage 
programming to obtain a value for the current 

solution.  

Step 7. For all possible solutions in the current 
period repeat steps 3-6. 

Step 8. Set t= t+1 

Step 9. If t ≤ T then go to step 2 else go to step 
10.       
Step 10. Determine the best programming. 

 

 

3.2   Numerical illustration 

Here, a numerical example to demonstrate the 

proposed dynamic programming algorithm is 
presented. In this example, four machine types 

(M = 4) are required to process four parts (P = 4) 

a minimum and maximum of two machines per 
cell (LB=UB=2), a maximum of two cells each 
period and three periods in planning horizontal 

were considered. The machine-part incidence 

matrix is shown in Table 1. In Table 2 the 
demands for the parts in the three time periods 

are given. In the initial layout, machines 1 and 3 

belong to shop 1 and machines 2 and 4 belong to 

shop 2 ( 1110 =K  , 1310 =K , 1220 =K , 

If machine m belongs to shop s in initial layout 

otherwise 
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1420 =K ). The unit cost of intra-cell movements 

and inter-cell movements, inter shop movements, 

unit cost of intra shop movements and unit cost 
of movements between cells and shops are 

considered to be 4,10,12,6,8, respectively.  Also 
maximum number of cells, which can be formed 

in each period, (Cmax) is set to 2. The details of 
the solution process for this example follow next, 

   
Table 1. Machine-part incidence matrix 

Part 
Machine 

M1 M2 M3 M4 

P1 1 0 1 0 

P2 1 0 1 0 

P3 0 1 0 1 

P4 0 1 0 1 

 

   Table 2. Demand for parts 

Part 
Period 

1 2 3 

P1 10 0 15 

P2 20 0 25 
P3 0 30 5 

P4 0 40 10 
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The optimum solution is obtained from the 

following equation: 

ψ *
= min 


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
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×= ),min(,..,2,1,0
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min { )0,3(φF , )1,3()2,1(F , )1,3()3,1(F , )1,3()4,1(F , 

)1,3()3,2(F , )1,3()4,2(F , )1,3()4,3(F , 

)2,3()}4,3(),2,1{(F , )2,3()}4,2(),3,1{(F , 

)2,3()}3,2(),4,1{(F }= min {1860, 790, 1220, 1220, 

1220, 1220, 760, 620 , 1350 , 1350} = 620  

Thus, the minimum total cost is 620, which corresponds 
to the following program. Two cells are formed, cell 1 

consists of machines 1 and 2 and is formed in period 1, 

cell 2 consists of machines 3 and 4 and is formed in 
period 2.   
 

 

4     Genetic algorithm 
Genetic algorithms are heuristic search methods 

that emulate survival of the fittest with 

operations similar to those occurring naturally. 
Many researchers tried to solve optimization 

problems with GA or a hybrid algorithm of GA 
and other algorithms. Non-linear optimization is 

such problem that GA is applicable to solve it. 
Nopiah et al. [14] developed a GA-based 

clustering method in cluster analysis of hetero 

scaled dataset. Javadian et al. [9] in a study used 
of GA to solve a cell formation problem. 

Mastorakis proposed a genetic algorithm [13] 
and combination of GA and Nelder-Mead [12] to 
solve non-linear problems. Here, we used of a 

proposed form of GA to solve cell formation 

problem.  
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4.1   GA approach   
In this section a genetic algorithm for solving the 

problm is introduces. The components of genetic 

algorithm are selected based on Jans and 

Degraeve [8] study which review metaheuristic 
algorithm in a dynamic environment. The 

proposed GA consists of following steps: 

 
  

4.1.1  Representation  
In the increment cell formation problem, each 
solution is presented by a T × M matrix which 
rows show periods and columns show machines. 

The values of cells are set between zero and Cmax, 

each value demonstrates the position of a 
machine in a period.             

    Table 3. Problem representation-chromosome 

  M1       M2 M3 M4 M5 M6 

P1 0 0 0 0 0 0 

P2 0 1 0 0 1 0 

P3 2 1 2 3 1 3 

P4 2 1 2 3 1 3 

 

4.1.2   Initialization and evaluation  
The initialization process is executed with a 

randomly generated solution space. An initial 
population size (popsize) is set 50. The objective 

function is transformed fitness function infinite 
cost is attached to this for infeasible solution. 
(Dellaert et al. [6]): 

f
 i
(t)= 







 <−

otherwiseif

ftgwhentgf iiii

0

)()( maxmax

 

Where f i(t) is the fitness value of solution i, g i(t) 

is the objective function with penalty cost and 
ifmax  is the largest objeve function value in the 

current solution.  

 

 

4.1.3  Selection strategy  
The selection of individuals to produce 

successive generations plays an extremely 
important role in a genetic algorithm. There are 
many methods for selecting the population and 

each has its own advantages and disadvantages. 

In this study, we use the roulette wheel and elitist 
as selection strategies, the two most popular 

methods in cell formation (CF). 
 
 

4.1.4 Genetic operators: crossover and 

mutation  
Reproduction is carried out on the selected 
parents by using genetic operators. Crossover 

and mutation are the two major types of 

operators. 
Here, the one column cross-over (Dellaert and 

Jeunet [5]) the matrixes of the two parents are cut 

in two at some random point and are recombined 
into one new solution. The crossover operator is 

given in Fig.1   
 

 

 M1       M2 M3 M4 M5 M6  M1       M2 M3 M4 M5 M6 

P1 0 0 0 0 0 0  1 0 0 1 0 0 

P2 0 1 0 0 1 0  1 2 2 1 0 0 

P3 2 1 2 3 1 3  1 2 2 1 0 0 

P4 2 1 2 3 1 3  1 2 2 1 3 3 

 
 M1       M2 M3 M4 M5 M6 

P1 0 0 0 0 0 0 

P2 0 1 0 0 0 0 

P3 2 1 2 0 0 0 

P4 2 1 2 3 3 3 

          Figure 1. Crossover operator 

  

6 Machines  

4 Periods  

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1114 Issue 10, Volume 9, October 2010



The mutation operator changes the value of a cell 
randomly, for example Fig.2 shows the mutation  
operator.  

 

 

 

 M1       M2 M3 M4 M5 M6  M1       M2 M3 M4 M5 M6 

P1 0 0 0 0 0 0  0 0 0 0 0 0 

P2 0 1 0 0 0 0  0 1 0 0 0 0 

P3 2 1 2 3 0 0  2 1 2 0 0 0 

P4 2 1 2 3 3 3  2 1 2 3 3 3 

Figure 2. Mutation operator 

 

5    Some experiments and 

comparisons 

In this section a number of numerical examples are solved 

using the multi-stage programming and genetic algorithm. 

Results along with the computational times and quality 
solutions are compared with branch and bound algorithm. 

The results are shown in Fig. 3. Our programs were 

written in Delphi 7 and tested on a PC (core2duo 2 GHz) 

running Windows XP Home Edition. Branch and bound 
(B and B) and Global solvers are applied for using Lingo 
9. The results are shown in Fig. 3.The relatively few 

research papers that deal with the incremental cell 
formation problem, the experimental data are produced 

randomly in small, medium and large scales.  The costs 

considered are the same as the ones specified in the 

previous example in section 6.   

Example 
Number 

of Parts 

Number 

of 

Machines 

Number 

of 

Periods 

Cmax 

B&B or Global solver (LINGO) 

Multistage 

Programming 

Genetic Algorithm 

Best 

solution 

Optimal 

solution 

Computati

onal time 

Best 

solution 

Computat

ional time 

Best 

solution 

Computation

al time 

1 4 4 2 2 3050 3050 0:0:1 3050 0:0:10 3050 0:0:0 

2 6 6 3 2 19560 19560 0:0:8 19560 0:0:50 19560 0:0:1 

3 6 8 3 2 30284 ___ 0:0:20 30284 0:1:00 30284 0:0:5 

4 6 10 3 2 43452 ___ 0:2:00 43452 0:5:00 43452 0:1:0 

5 6 10 3 3 35641 ___ 0:3:00 35641 0:8:00 35641 0:0:48 

6 6 10 3 4 28377 ___ 0:2:00 28377 0:7:00 28377 0:0:59 

7 8 10 4 3 78743 ___ 0:4:00 78743 0:9:00 78743 0:1:30 

8 8 10 4 4 66858 ___ 0:4:10 66858 0:10:20 66858 0:1:57 

9 10 10 4 4 85070 ___ 0:10:00 85070 0:6:30 87624 0:2:08 

10 10 12 4 3 129144 ___ 0:3:00 129144 0:7:25 129177 0:2:18 

11 10 12 4 4 110646 ___ 0:3:20 110646 
0:30:56 

110646 0:2:25 

12 10 12 5 3 156921 ___ 0:5:50 156921 
0:45:35 

156921 0:2:35 

13 10 15 5 3 232758 ___ 0:6:20 232758 
1:0:34 

229798 0:2:22 

14 10 15 5 4 367189 ___ 0:8:20 367189 
1:35:25 

367189 0:2:59 

15 10 20 5 4 252894 ___ 0:9:0 252894 
2:5:45 

274937 0:3:00 

15 10 20 8 4 528386 ___ 0:27:0 528386 
2:35:33 

542615 0:2:31 

17 15 20 8 4 907905 ___ 1:45:0 ___ ___ 949276 0:4:45 

18 20 20 8 4 1383520 ___ 2:0:0 ___ ___ 1129510 0:5:56 

19 20 20 10 4 ___ ___ 2:0:0 ___ ___ 1921456 0:7:12 

20 20 30 10 4 ___ ___ 2:0:0 ___ ___ 2134862 0:8:0 

Figure 3. Comparative analysis (Computational time (hour : minute : second)) 
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For clarity, the data of Fig. 3 is clustered into two 

performance measures as solution quality and 

computational time and demonstrated graphically 

in Fig 4 and 5.  

 
 

 

From Fig. 4, it can be easily found that proposed 

genetic algorithm performs on solution quality as 

well as exact branch and bound algorithm, but 

branch and bound algorithm cannot find any 

feasible solution in a reasonable time. Hence the 

consumed computational time for solving test 

problems is an important performance measure.  

This performance measure is analyzed according 

Fig. 5.  

 

   

 

It is clear that the proposed genetic algorithm is 

faster than exact algorithms such as branch and 

bound, multi-stage programming. 

 

 

 

 

 

 

 

  

6 Conclusion 
This paper addresses a nonlinear programming 

model for designing a cellular manufacturing 

system incrementally. The proposed algorithms 

based on multi-stage programming approach and 

genetic algorithm are applied to 20 experimental 

data and the results are compared with branch 

and bound and global solver techniques.  
The branch and bound technique doesn’t yield 

any feasible solution in a reasonable time, but the 

global solver finds local optimum solutions. 

Compared with these methods,the multi-stage 

method provides the optimal solutions in lesser 

number of iterations and number of levels for 

small size problems and hence the computational 

time is the least. For large size problems genetic 

algorithm is applied which produce good 

solutions in a reasonable time. Thus the proposed 

methods have the advantage of fast and accurate 

computations and have the ability to handle 

large-scale industrial problems. The present work 

also leads to several interesting areas of further 

research. Comparison of incremental and non-

incremental cell formation problems and 

application of other metaheuristics such as 

simulated annealing, tabu search and etc. are the 

area for more work. 

3000

103000

203000

303000

403000

503000

1 3 5 7 9 11 13 15

Branch & 

Bound 

Muli-stage 

programming

Genetic 

Algorithm

0

2000

4000

6000

8000

10000

1 3 5 7 9 11 13 15

Branch & 

Bound

Multi-stage 

prodramming

Genetic 

algorithm

Figure 4. Comparison of solutions quality  

 

Figure 5. Comparison of computational time  
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