
Application of genetic algorithm for designing cellular manufacturing

system incrementally

J. REZAEIAN
a
, N. JAVADIAN

a
, R. TAVAKKOLI-MOGHADDAM

b
,

a,bDepartment of Industrial Engineering
a
Mazandaran University of Science and Technology,

b
University of Tehran

a,bP.O.Box 734, Babol
a,b

Iran

j_rezaeian@ustmb.ac.ir, n.javadian@ustmb.ac.ir, tavakoli@ut.ac.ir

Abstract: One important issue regarding the implementation of cellular manufacturing systems relates to

deciding whether to convert an existing job shop into a cellular manufacturing system comprehensively in a

single go, or in stages incrementally by forming cells one after the other taking the advantage of the

experiences of implementation. In this paper two heuristic methods based on multi-stage programming and

genetic algorithm are proposed for incremental cell formation. The results show that the multi-stage

programming solves small problems faster than exact algorithms such as branch and bound. A heuristic

procedure based on genetic algorithm is developed on the multi-stage programming to test larger problem

sizes.

Key-Words: Incremental cell formation; Cellular manufacturing system; Multi-Stage programming; Genetic

 algorithm; Job shop; Comprehensive cell formation

1 Introduction
Global competition impels industries produce

goods with low cost, high quality and just in

time. Flexible manufacturing systems are tools to

achieve these criteria.Cellular manufacturing is
an application of flexible manufacturing system.

It is the result of a direct application of the group

technology philosophy. Parts with similar

processing requirements such as machines, tools,

route and/or geometrical shapes are classified

into part families.

Many researchers used of mathematical models

to solve their problems. Adam and Mihai [1] in a

study mentioned to mathematical methods used

in engineering. Cell formation is an area of

engineering that considers designing the layout

of industries.

The essential problem in designing of a cellular

manufacturing system (CMS) is determination of

machine-groups and part families popularly

known as the machine cell formation (MCF), or

also known as machine-component grouping

(MCG) problem. Many researches considered the

cell formation problem and proposed numerous

techniques. Mahesh and Srinivasan [10] clustered

a number of techniques and provided an

overview of various algorithms that forms cells

comprehensively (i.e., non-incrementally) in

total. As pointed out by Mahesh and Srinivasan

[10], Wemmerlov and Johnson [17] and several

others, all the above methods aim at creating a

comprehensive CMS in total in a single go. In

practice, however, from the viewpoints of
planning and implementation and also for capital

investment reasons, it would be desirable to

move progressively towards conversion of the

existing system into cells one after the other.

Adil and Ghosh [2] developed a mathematical

model which forms cells incrementally based on

greedy random adaptive search procedures.

Balakrishnan and Cheng [3] proposed a model

which considers cell formation over a multi-

period planning horizon with demand and

resource uncertainties. In this study, cell

formation has been done non-incrementally

where at each period the cell configuration can

be changed; however, planning, implementation

or capital investment issues have not been

addressed. Rezaeian et al. [15] in a study

presented a new non-linear model to form cells

incrementally and the problem is solved via a

genetic algorithm. Many researchers have tried

to compare CM, hybrid CM and job shop

together ([7], [11], [16], [18]).

In this paper a new nonlinear integer

programming model is designed to convert an

existing functional layout to a cellular

manufacturing system. Cell formation is done

incrementally. Two methods based on multi-

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1108 Issue 10, Volume 9, October 2010

stage programming and genetic algorithms (GA)

are applied for solving the model.

The rest of the paper is organized as follows.

Section 2 introduces the problem; this is done by

giving problem description, assumptions,

notations and a new mathematical model. Our

proposed algorithm based on multi-stage

programming approach, genetic algorithm are

designed in Section 3, 4 respectively. In Section

5, some experimentations and comparison are

shown. Finally, Section 6 presents conclusions.

2 Problem Formulation

2.1 Problem description

We focus on cell formation decisions

incrementally. Hence, here a functional layout is

considered in the beginning of the planning

horizon with the planning horizon being

composed of multi periods. N parts are

considered with each part visiting shops based on

its requirements. Generally M machines are

available in shops. The objective is to decide the

number of cells formed in a period, and the

assignment of machines to cells such that the

total cost is minimized. The total cost consists of

intra-cell and inter-cell material handling, intra-

shop material handling, inter-shop material

handling and material handling between cell and

shop costs.

Assumptions
1. The demand for each part type in each

period is known.

2. The number of cells formed in each

period is limited.

3. Each cell consists of a minimum and

maximum number of machines.
4. The unit cost of inter-cell movements,

intra-cell movements and movements between

cell and shop are known and constant over time.

5. The number of machines available is

known and constant over time.

Notations

The following notations are used throughout the

paper:

c index for cells

u , t indices for periods

m index for machines

p index for parts

s index for shops

α intra-cell material handling cost

β inter-cell material handling cost

γ cost of material handling between cell

and shop

ω inter-shop material handling cost

pt
D demand for product p in period t

LB minimum number of machines to be

assigned to a cell

UB maximum number of machines to be

assigned to a cell

Cmax maximum number of cells can be formed

in a period

M Number of machines

S Number of shops in the beginning of

planning horizon

P Number of parts

T Number of periods

jk Number of members of set kj





=
0

1
cuX





=
0

1
mcuY





=
0

1
pmZ





=
0

1
pcuB





=
0

1
ptδ





=
0

1
mstK





=
0

1
ptλ





=
0

1
pstς

2.2 Mathematical model
The objective function and constraints can be

formulated as follows:

If cell c is formed in period u

otherwise

If machine m is assigned to cell c in period u

otherwise

If part p needs machine m

otherwise

If part p visits cell c in period u

otherwise

If part p visits a cell in period t

otherwise

 If machine m belongs to shop s in period t

 Otherwise

If part p visits a shop in period t

otherwise

If part p visits shop s in period t

otherwise

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1109 Issue 10, Volume 9, October 2010

Min ψ (Ymcu,Xcu,Bpcu, ptδ ,Kmst, pstζ , ptλ)

=

∑∑∑ ∑ ∑
= = = = =

−
T

t

t

u

c

c

P

p

M

m

pcupmmcuptcu BZYDX
1 1 1 1 1

max

]).(.[..α

+ ∑∑ ∑ ∑
= = = =

−
T

t

P

p

t

u

c

c

ptpcucupt BXD
1 1 1 1

max

]).([.. δβ +

∑∑
= =

T

t

P

p

ptptpt D
1 1

... δλγ +

∑∑ ∑
= = =

−
T

t

P

p

S

s

ptpstptD
1 1 1

][. λζω , (1)

where

uccu XX)1(+≥

 (2)

∑
−

=−
M

m

pmmcupcu ZYB
1

0.).1(

(3)

∑
=

≥
M

m

pcupmmcu BZY
1

.

(4)

0).1()1(=− +umsmsu
KK

(5)

∑
=

++ =−−
max

1

)1()1(0.
C

c

umcumsmsumsu YKKK

(6)

∑∑
= =

=−
S

s

M

m

pmmstpt ZK
1 1

0.).1(λ

(7)

ptpm

M

m

mst

S

s

ZK λ≥∑∑
== 11

.

(8)

∑
=

=−
max

1

0).1(
C

c

pcupt Bδ

(9)

∑
=

≥
max

1

C

c

ptpcuB δ

(10)

∑
=

≤
max

1

1
C

c

mcuY

(11)

∑
=

=−
M

m

mcucu YX
1

0).1(

(12)

∑
=

≥
M

m

cumcu XY
1

(13)

∑
−

=−
M

m

pmmstpst ZK
1

0.).1(ζ (14)

..
1

pst

M

m

pmmst ZK ζ∑
−

≥

(15)

 The objective function (1) represents the total

cost. The total cost consists the costs of intra-cell

material handling (first term in objective

function), inter-cell material handling (second

term), material handling between cell and shop

(third term) and inter-shop material handling

(fourth term). Eq. (2) ensures the order of cell

formation in a period. Eqs. (3) and (4) show that

part p visits cell c, when at least one of the

required machines to process the part is allocated

to the cell. Eq. (5) is to ensure that a machine

could belong to a shop if it was in that shop in

preceding period. Eq. (6) represents that a

machine can be allocated only to a cell or a shop

in each period. Eqs. (7) and (8) show that part p

visits shop s when at least one of the required

machines to process the part is allocated to this

shop. Eqs. (9) and (10) ensure that a part moves

inter-cell if the part visits more than one cell in a

period. Eq. (11) ensures that each machine can

be allocated to at most one cell in each period.

Eqs. (12) and (13) ensure that a cell is formed in

a period if at least one machine is allocated to the

cell. Eqs. (14) and (15) show that part p visits

shop s, when at least one of the required

machines to process the part is allocated to the

shop.

3 Multi-stage programming
Multi-stage programming is a powerful

optimization technique that is particularly

applicable to many complex problems requiring

a sequence of interrelated decisions. Suarez and

Roldan [4] presented a type of multi-stage

programming as dynamic programming in Marko

decision processes. Here our proposed algorithm

is based on a multi-stage approach. Therefore,

before applying the algorithm, the number of

cells, formed in each period, and the initial

location of each machine should be known. We

apply a forward recursive approach to solve the

problem.

The recursive relation defining the dynamic step

is given by the following equation:

{ }
{ }

,

,*,...,1,0

,,..,2,1

,0

)16(,
),K, ,B,X,(Y

),1(
min),(

max

pimsipcicimci

,..,,

,..,,
21

21

UBkLB

cij

Ti

Ch

hjiF
jiF

j

kkk

kkkk
hj

j

≤≤

=

=

≤≤













 +−−
= −

=
λψ

X = (Ymcu,Xcu,Bpcu, ptδ ,Kmst, ptλ),

where { }),(,..,, 21
jiF

jkkk means the minimum total

cost from period 1 to period i, when j cells are

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1110 Issue 10, Volume 9, October 2010

formed, and kj shows the machines in cell j. ψ
(X) is the value of objective function based on

the objective function (1) in current period and X

is the vector of update values of decision

variables in the period. k = φ means that no cells

is formed. The optimum solution is achieved as

follows:

ψ *
= min

















×=),min(,..,2,1,0

),(

LB

M
CTj

jTF

 (17)

3.1 Proposed algorithm
Here, the steps of algorithm based on multi-stage
programming are proposed.

Step 1. Setting the initial value of decision

variables
According to the initial layout, in which all

machines are assigned to shops before planning,
no cells are formed. The decision variable values
are set as follow:

 0=cuX for c = 1,2..,,Cmax and u =1,2,..,T

0=mcuY for m = 1,2,..,M , c = 1,2,..,Cmax and u

=1,2,..,T

0=
pcu

B for p = 1,2,..,P , c =1,2,..,Cmax and u

=1,2,..,T

0=
pt

δ for p = 1,2,..,P , t = 1,2,..,T





=
0

1
0msK

0=mstK for m =1,2,..,m , s =1,2,..,S and t

=1,2,..,T

0=ptλ for p = 1,2,..,P , t =1,2,..,T

Set t=1

Step 2. Combination of machines
Here, all feasible sets of machines are
constituted. A set of machines includes at least

LB and at last UB machines and is feasible if the
machines, belonging to the set has not been

assigned to any cell in previous periods and

belongs to the remaining shops.
A machine can be assigned to no cell and remain
in the shop and remainder shop is such a cell.

Step 3. Cell formation
Here, a set of machines is assigned to a cell.
When the cell is formed in the current period, the

related variables will be updated according to the

following rules. Each cell contains a feasible set
of machines.

Rule 1: In period t a machine can be assigned to

a cell if it has not been assigned to any cell in

this and previous periods. In other worlds the
machine should belong to reminder shop before
period t.

Rule 2: If machine m is assigned to cell c in

period t then the decision variables are set as

follow:

1=mctY and 0=mcuY for u = t+1, t+2, ..., T

and c= 1,2,..,Cmax.

0=mstK for s= 1,2,..,S and t= t,t+1,..,T.

Rule 3: If machine m belongs to cell c in period t

(1=mctY) and part p needs machine m then

1=
pcu

B and 1=
pt

δ .

Rule 4: If machine m belongs to shop s in period

t (1=mstK) and part p needs machine m then

1=ptλ .

Rule 5: In period t a machine cannot be assigned
to a cell and a shop at the same time. In other
words, in each period the following relation

should be satisfied:

0=× mctmst YK .

Step 4. Completion a solution, when a solution is
completed, all machines in the period are

assigned to a cell or remainder shop.

Step 5. Calculate the objective function with
update variables.

Step 6. Using the recursive relation (16) and the

value obtained in Step 5, use a multi-stage
programming to obtain a value for the current

solution.

Step 7. For all possible solutions in the current
period repeat steps 3-6.

Step 8. Set t= t+1

Step 9. If t ≤ T then go to step 2 else go to step
10.
Step 10. Determine the best programming.

3.2 Numerical illustration

Here, a numerical example to demonstrate the

proposed dynamic programming algorithm is
presented. In this example, four machine types

(M = 4) are required to process four parts (P = 4)

a minimum and maximum of two machines per
cell (LB=UB=2), a maximum of two cells each
period and three periods in planning horizontal

were considered. The machine-part incidence

matrix is shown in Table 1. In Table 2 the
demands for the parts in the three time periods

are given. In the initial layout, machines 1 and 3

belong to shop 1 and machines 2 and 4 belong to

shop 2 (1110 =K , 1310 =K , 1220 =K ,

If machine m belongs to shop s in initial layout

otherwise

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1111 Issue 10, Volume 9, October 2010

1420 =K). The unit cost of intra-cell movements

and inter-cell movements, inter shop movements,

unit cost of intra shop movements and unit cost
of movements between cells and shops are

considered to be 4,10,12,6,8, respectively. Also
maximum number of cells, which can be formed

in each period, (Cmax) is set to 2. The details of
the solution process for this example follow next,

Table 1. Machine-part incidence matrix

Part
Machine

M1 M2 M3 M4

P1 1 0 1 0

P2 1 0 1 0

P3 0 1 0 1

P4 0 1 0 1

 Table 2. Demand for parts

Part
Period

1 2 3

P1 10 0 15

P2 20 0 25
P3 0 30 5

P4 0 40 10

460}4*)4030(180,4*)4030(360min{)}0

,0,1,1,1,1()1,1(),1

,1,2,1,1,1()0,1(min{)1,2(

800}8*)4030(240,8*)4030(360min{)}0

,1,0,1,1,1()1,1(),0,

1,0,1,1,1()0,1(min{)1,2(

800}8*)4030(240,8*)4030(360min{)}1,0,0

,1,1,1()1,1(),1,0,

0,1,1,1()0,1(min{)1,2(

4213112211114131)43(421

31122111142320)43(

4213112211114121)42(421

31122111142220)42(

421311

2211113121)32(421311

2211113222)32(

=++++==

=====+=

=====+=

=++++==

=====+=

=====+=

=++++===

====+==

====+=

kkkkyyFk

kkkyyFF

kkkkyyFk

kkkyyFF

kk

kkyyFkk

kkyyFF

و

و

و

و

و

و

ψ

ψ

ψ

ψ

ψ

ψφ

940}10*)4030(240,10*)4030(240min{)}0

,0,0,0,1,1,1,1(

)1,1(),0,0,0,0,1,

1,1,1()1,1(min{)2,2(

940}10*)4030(240,

10*)4030(240min{)}0,0,0,0

,1,1,1,1()1,1(

),0,0,0,0,1,1

,1,1()1,1(min{)2,2(

400}4*)4030(180,

4*)4030(120min{)}0,0,0,0

,1,1,1,1()1,1(

),0,0,0,0,1,1

,1,1()1,1(min{)2,2(

421

31122111142123121

)32(42131122111132

224111)4,1()}32)(4,1{(

421311221

11132124121)42(

4213112211114222

3111)3,1()}42)(3,1{(

421311221

11122124131)43(

4213112211114232

2111)2,1()}43)(2,1{(

=++++==

=======

+=====

===+=

=++

++====

=====+

======

==+=

=++

++====

=====+

======

==+=

k

kkkyyyy

Fkkkky

yyyFF

kkk

kyyyyF

kkkkyy

yyFF

kkk

kyyyyF

kkkkyy

yyFF

و

و

و

و

و

و

ψ

ψ

ψ

ψ

ψ

ψ

()

() ()

{ }

() ()

{ }

() ()

{ }

() ()

{ }

() ()

{ }

() ()

{ }

() ()

{ } 1806*)2010(

,1,1,1,1(0,01,1

2408*)2010()0,1

,0,1,1,1(0,01,1

2408*)2010()1,0

,0,1,1,1(0,01,1

2408*)2010()0,0

,1,0,1,1(0,01,1

2408*)2010()1,0

,1,0,1,1(0,01,1

1204*)2010()1,1

,0,0,1,1(0,01,1

36012*)2010(

)1,1,1,1(0,00,1

00,0

2211114131)4,3(

421

2211114121)4,2(

421

2211113121)3,2(

421

2211114111)4,1(

421311

2211113111)3,1(

421311

2211112111)2,1(

421311221111

=+=

====+=

=+===

====+=

=+===

====+=

=+===

====+=

=+===

====+=

=+===

====+=

=+=

====+=

=

kkyyFF

k

kkyyFF

k

kkyyFF

k

kkyyFF

kk

kkyyFF

kk

kkyyFF

kkkkFF

F

ψ

ψ

ψ

ψ

ψ

ψ

ψ

φ

φ

φ

φ

φ

φ

φφ

φ

540}6*)4030(120

)4030(360min{)}1,1,0

1,1()1,1(),1,1,0

,1,1()0,1(min{)1,2(

1200}12*)4030(360{)}1

,1,1,1()0,1({)0,2(

421311221

2111)2,1(421311

1112212)2,1(

311221111

=++

++====

==+===

==+=

=++==

===+=

kkk

yyFkk

kyyFF

kkkkFF

ψ

ψ

ψ

φ

φφ

800}8*)4030(240,8*)4030(360min{)}0,1

,1,0,1,1()1,1(),0,1

,1,0,1,1()0,1(min{)1,2(

800}8*)4030(240

,8*)4030(360min{)}1,0,

1,0,1,1()1,1(),1,0,

1,0,1,1()0,1(min{)1,2(

421

3112211114111)4,1(421

3112211114212)4,1(

421311

2211113111)3,1(421311

2211113212)3,1(

=++++===

====+==

====+=

=++

++===

====+==

====+=

k

kkkyyFk

kkkyyFF

kk

kkyyFkk

kkyyFF

ψ

ψ

ψ

ψ

φ

φ

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1112 Issue 10, Volume 9, October 2010

1220}8*)1052515(800,8*)105

2515(1200min{)}1,0,1,0,

1,1()1,2(),1,0,1

,0,1,1()0,2(min{)1,3(

790}6*)105(

4*)2515(540,6*)105(4*)2515(

1200min{)}1,1,0,0,1

,1()1,2(),1,1,0,

0,1,1()0,2(min{)1,3(

1860}12*)1252515(1200{)}1,

1,1,1()0,2(min{)0,3(

421311221111

3111)3,1(421311221

1113313)3,1(

421311221111

2111)21(421311221

1112313)2,1(

421

311221111

=++++++

++=====

==+===

===+=

=+

++++++

+======

=+===

===+=

=++++==

===+=

kkkk

yyFkkk

kyyFF

kkkk

yyFkkk

kyyFF

k

kkkFF

و

ψ

ψ

ψ

ψ

ψ

φ

φ

φφ

760}4*)105(6*)2515(460,4*)105(6*

)2515(1200min{)}1,1,1,1,

1,1()1,2(),0,0,1

,1,1,1()0,2(min{)1,3(

1220}8*)1052515(800,8*)1052515(

1200min{)}0,1,0,1,1

,1()1,2(),0,1,0,

1,1,1()0,2(min{)1,3(

1220}8*)1052515(

800,8*)1052515(1200min{

)}1,1,0,1,1

,1()1,2(),1,0,0,1

,1,1()0,2(min{)1,3(

1220}8*)105

2515(800,8*)1052515(1200min{

)}0,1,1,0,1,1

()1,2(),0,1,1,0

,1,1()0,2(min{)1,3(

421311221111

4131)4,3(421311221

1114333)4,3(

421311221111

4121)4,2(421311221

1114323)4,2(

42131122111131

21)3,2(421311221

1113323)3,2(

42131122111141

11)4,1(421311221

1114313)4,1(

=++++++

++=====

==+===

===+=

=+++++++

+======

=+===

===+=

=+++

+++++

======

=+===

===+=

=+

+++++++

=======

+====

==+=

kkkk

yyFkkk

kyyFF

kkkk

yyFkkk

kyyFF

kkkky

yFkkk

kyyFF

kkkky

yFkkk

kyyFF

ψ

ψ

ψ

ψ

ψ

ψ

ψ

ψ

φ

φ

φ

φ

The optimum solution is obtained from the

following equation:

ψ *
= min

















×=),min(,..,2,1,0

),(

LB

M
CTj

jTF

=

min {)0,3(φF ,)1,3()2,1(F ,)1,3()3,1(F ,)1,3()4,1(F ,

)1,3()3,2(F ,)1,3()4,2(F ,)1,3()4,3(F ,

)2,3()}4,3(),2,1{(F ,)2,3()}4,2(),3,1{(F ,

)2,3()}3,2(),4,1{(F }= min {1860, 790, 1220, 1220,

1220, 1220, 760, 620 , 1350 , 1350} = 620

Thus, the minimum total cost is 620, which corresponds
to the following program. Two cells are formed, cell 1

consists of machines 1 and 2 and is formed in period 1,

cell 2 consists of machines 3 and 4 and is formed in
period 2.

4 Genetic algorithm
Genetic algorithms are heuristic search methods

that emulate survival of the fittest with

operations similar to those occurring naturally.
Many researchers tried to solve optimization

problems with GA or a hybrid algorithm of GA
and other algorithms. Non-linear optimization is

such problem that GA is applicable to solve it.
Nopiah et al. [14] developed a GA-based

clustering method in cluster analysis of hetero

scaled dataset. Javadian et al. [9] in a study used
of GA to solve a cell formation problem.

Mastorakis proposed a genetic algorithm [13]
and combination of GA and Nelder-Mead [12] to
solve non-linear problems. Here, we used of a

proposed form of GA to solve cell formation

problem.

1350}10*)1052515(800,

10*)1052515(800,10*)1052515(940min{

)}0,0,0,0,1,1,

1,1()1,2(),0,0,0

,0,1,1,1,1()1,2(

),0,0,0,0,1,1

,1,1()2,2(min{)2,3(

620}4*)1052515(460,

4*)1052515(540,4*)1052515(400min{

)}0,0,0,0,1,1,

1,1()1,2(),0,0,0,

0,1,1,1,1()1,2(

),0,0,0,0,1,1,

1,1()2,2(min{)2,3(

4213112211113313

4121)4,2(421311221

11143233111)3,1(

4213112211114222

3111)4,2(),3,1{()}42)(3,1{(

4213112211114333

2111)2,1(421311221

11123134131)43(

4213112211114232

2111)4,3(),2,1{()}43)(2,1{(

=++++

++++++++

=======

==+===

=====+

======

==+=

=++++

++++++++

=======

==+===

=====+

======

==+=

kkkkyy

yyFkkk

kyyyyF

kkkkyy

yyFF

kkkkyy

yyFkkk

kyyyyF

kkkkyy

yyFF

و

و

و

ψ

ψ

ψ

ψ

ψ

ψ

1350}10*)1052515(800,10*)1052515(800,

10*)1052515(940min{)}0,0,0

,0,1,1,1,1()1,2(

),0,0,0,0

,1,1,1,1()1,2(

),0,0,0,0,1,1

,1,1()2,2(min{)2,3(

421311221

11143133121)3,2(

421311221

11133234111)41(

4213112211113222

4111)3,2(),4,1{()}3,2)(4,1{(

=++++++++

++++====

=====+

====

====+

======

==+=

kkk

kyyyyF

kkk

kyyyyF

kkkkyy

yyFF

و

ψ

ψ

ψ

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1113 Issue 10, Volume 9, October 2010

4.1 GA approach
In this section a genetic algorithm for solving the

problm is introduces. The components of genetic

algorithm are selected based on Jans and

Degraeve [8] study which review metaheuristic
algorithm in a dynamic environment. The

proposed GA consists of following steps:

4.1.1 Representation
In the increment cell formation problem, each
solution is presented by a T × M matrix which
rows show periods and columns show machines.

The values of cells are set between zero and Cmax,

each value demonstrates the position of a
machine in a period.

 Table 3. Problem representation-chromosome

 M1 M2 M3 M4 M5 M6

P1 0 0 0 0 0 0

P2 0 1 0 0 1 0

P3 2 1 2 3 1 3

P4 2 1 2 3 1 3

4.1.2 Initialization and evaluation
The initialization process is executed with a

randomly generated solution space. An initial
population size (popsize) is set 50. The objective

function is transformed fitness function infinite
cost is attached to this for infeasible solution.
(Dellaert et al. [6]):

f
 i
(t)=







 <−

otherwiseif

ftgwhentgf iiii

0

)()(maxmax

Where f i(t) is the fitness value of solution i, g i(t)

is the objective function with penalty cost and
ifmax is the largest objeve function value in the

current solution.

4.1.3 Selection strategy
The selection of individuals to produce

successive generations plays an extremely
important role in a genetic algorithm. There are
many methods for selecting the population and

each has its own advantages and disadvantages.

In this study, we use the roulette wheel and elitist
as selection strategies, the two most popular

methods in cell formation (CF).

4.1.4 Genetic operators: crossover and

mutation
Reproduction is carried out on the selected
parents by using genetic operators. Crossover

and mutation are the two major types of

operators.
Here, the one column cross-over (Dellaert and

Jeunet [5]) the matrixes of the two parents are cut

in two at some random point and are recombined
into one new solution. The crossover operator is

given in Fig.1

 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

P1 0 0 0 0 0 0 1 0 0 1 0 0

P2 0 1 0 0 1 0 1 2 2 1 0 0

P3 2 1 2 3 1 3 1 2 2 1 0 0

P4 2 1 2 3 1 3 1 2 2 1 3 3

 M1 M2 M3 M4 M5 M6

P1 0 0 0 0 0 0

P2 0 1 0 0 0 0

P3 2 1 2 0 0 0

P4 2 1 2 3 3 3

 Figure 1. Crossover operator

6 Machines

4 Periods

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1114 Issue 10, Volume 9, October 2010

The mutation operator changes the value of a cell
randomly, for example Fig.2 shows the mutation
operator.

 M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6

P1 0 0 0 0 0 0 0 0 0 0 0 0

P2 0 1 0 0 0 0 0 1 0 0 0 0

P3 2 1 2 3 0 0 2 1 2 0 0 0

P4 2 1 2 3 3 3 2 1 2 3 3 3

Figure 2. Mutation operator

5 Some experiments and

comparisons

In this section a number of numerical examples are solved

using the multi-stage programming and genetic algorithm.

Results along with the computational times and quality
solutions are compared with branch and bound algorithm.

The results are shown in Fig. 3. Our programs were

written in Delphi 7 and tested on a PC (core2duo 2 GHz)

running Windows XP Home Edition. Branch and bound
(B and B) and Global solvers are applied for using Lingo
9. The results are shown in Fig. 3.The relatively few

research papers that deal with the incremental cell
formation problem, the experimental data are produced

randomly in small, medium and large scales. The costs

considered are the same as the ones specified in the

previous example in section 6.

Example
Number

of Parts

Number

of

Machines

Number

of

Periods

Cmax

B&B or Global solver (LINGO)

Multistage

Programming

Genetic Algorithm

Best

solution

Optimal

solution

Computati

onal time

Best

solution

Computat

ional time

Best

solution

Computation

al time

1 4 4 2 2 3050 3050 0:0:1 3050 0:0:10 3050 0:0:0

2 6 6 3 2 19560 19560 0:0:8 19560 0:0:50 19560 0:0:1

3 6 8 3 2 30284 ___ 0:0:20 30284 0:1:00 30284 0:0:5

4 6 10 3 2 43452 ___ 0:2:00 43452 0:5:00 43452 0:1:0

5 6 10 3 3 35641 ___ 0:3:00 35641 0:8:00 35641 0:0:48

6 6 10 3 4 28377 ___ 0:2:00 28377 0:7:00 28377 0:0:59

7 8 10 4 3 78743 ___ 0:4:00 78743 0:9:00 78743 0:1:30

8 8 10 4 4 66858 ___ 0:4:10 66858 0:10:20 66858 0:1:57

9 10 10 4 4 85070 ___ 0:10:00 85070 0:6:30 87624 0:2:08

10 10 12 4 3 129144 ___ 0:3:00 129144 0:7:25 129177 0:2:18

11 10 12 4 4 110646 ___ 0:3:20 110646
0:30:56

110646 0:2:25

12 10 12 5 3 156921 ___ 0:5:50 156921
0:45:35

156921 0:2:35

13 10 15 5 3 232758 ___ 0:6:20 232758
1:0:34

229798 0:2:22

14 10 15 5 4 367189 ___ 0:8:20 367189
1:35:25

367189 0:2:59

15 10 20 5 4 252894 ___ 0:9:0 252894
2:5:45

274937 0:3:00

15 10 20 8 4 528386 ___ 0:27:0 528386
2:35:33

542615 0:2:31

17 15 20 8 4 907905 ___ 1:45:0 ___ ___ 949276 0:4:45

18 20 20 8 4 1383520 ___ 2:0:0 ___ ___ 1129510 0:5:56

19 20 20 10 4 ___ ___ 2:0:0 ___ ___ 1921456 0:7:12

20 20 30 10 4 ___ ___ 2:0:0 ___ ___ 2134862 0:8:0

Figure 3. Comparative analysis (Computational time (hour : minute : second))

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1115 Issue 10, Volume 9, October 2010

For clarity, the data of Fig. 3 is clustered into two

performance measures as solution quality and

computational time and demonstrated graphically

in Fig 4 and 5.

From Fig. 4, it can be easily found that proposed

genetic algorithm performs on solution quality as

well as exact branch and bound algorithm, but

branch and bound algorithm cannot find any

feasible solution in a reasonable time. Hence the

consumed computational time for solving test

problems is an important performance measure.

This performance measure is analyzed according

Fig. 5.

It is clear that the proposed genetic algorithm is

faster than exact algorithms such as branch and

bound, multi-stage programming.

6 Conclusion
This paper addresses a nonlinear programming

model for designing a cellular manufacturing

system incrementally. The proposed algorithms

based on multi-stage programming approach and

genetic algorithm are applied to 20 experimental

data and the results are compared with branch

and bound and global solver techniques.
The branch and bound technique doesn’t yield

any feasible solution in a reasonable time, but the

global solver finds local optimum solutions.

Compared with these methods,the multi-stage

method provides the optimal solutions in lesser

number of iterations and number of levels for

small size problems and hence the computational

time is the least. For large size problems genetic

algorithm is applied which produce good

solutions in a reasonable time. Thus the proposed

methods have the advantage of fast and accurate

computations and have the ability to handle

large-scale industrial problems. The present work

also leads to several interesting areas of further

research. Comparison of incremental and non-

incremental cell formation problems and

application of other metaheuristics such as

simulated annealing, tabu search and etc. are the

area for more work.

3000

103000

203000

303000

403000

503000

1 3 5 7 9 11 13 15

Branch &

Bound

Muli-stage

programming

Genetic

Algorithm

0

2000

4000

6000

8000

10000

1 3 5 7 9 11 13 15

Branch &

Bound

Multi-stage

prodramming

Genetic

algorithm

Figure 4. Comparison of solutions quality

Figure 5. Comparison of computational time

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1116 Issue 10, Volume 9, October 2010

References:

[1] Adam, G.C. and Mihai, G.I., Mathematical

methods used in engineering. Proceedings of 12
th

WSEAS International Conference on
Mathematical Methods, Computational

Techniques and Intelligent Systems., Kantaoui,
Sousse, Tunisia, May, 3-6, 2010.
[2] Adil, G.K. and Ghosh, J.B., Forming GT cells

incrementally using GRASP. Int. J. Adv. Manuf.

Technol., 26, 2005, 1402-1408.

[3] Balakrishnan, J. and Cheng, C.H., Multi-
period planning and uncertainty issues in cellular
manufacturing: A review and future directions,

Eur. J. Oper. Res., 177, 2007, 281–309.
[4] Cruz-Suarez, H. and Ilhuicatzi-Roldan, R.,

Stochastic Optimal Control for Small Noise

Intensities: The Discrete-Time Case. WSEAS
Transactions on Mathematics., Issue 2, Volume
٩, February 2010, pp. 120-129.

[5] Dellaert, N. and Jeunet, J., Solving large

unconstrained multilevel lot-sizing problems
using a hybrid genetic algorithm. Int. J. Prod.

Res., 38, 2000, 1083-1099.

[6] Dellaert, N., Jeunet, J. and Jonard, N., A
genetic algorithm to solve the general multi-level

lot-sizing problem with time varying costs. Int. J.

Production Economics, 68, 2000, 241-257.

[7] Djassemi, M., A simulation analysis of
factors influencing the flexibility of cellular

manufacturing. Int. J. Prod. Res., 43, 2005, 2101-
2111.
[8] Jans, R. and Degraeve, Z., Meta-heuristics for

dynamic lot sizing: A review and comparison of

solution approaches. Eur. J. Oper. Res., 177,
2007, 1855-1857.

[9] Javadian, N. Rezaeian, J. and Maali.Y.,
Multi-objective cellular manufacturing system

under machines with different life-cycle using
genetic algorithm. Int. J. Appl. Sci. Eng.

Technol., 4, 2007, 223-227.

[10] Mahesh, O. and Srinivasan, G., Incremental
cell formation considering alternative machines.
Int. J. Prod. Res., 40, 2002, 3291–3310.

[11] Manzini, R., Gambei, M., Regattieri, A. and

Persona, A., Framework for designing a flexible

cellular assembly system. Int. J. Prod. Res., 42,
2004, 3505-3528.
[12] Mastorakis, N.E., Genetic algorithm with

Nelder-Mead optimization in the variational
methods of boundary value problems. WSEAS

Transactions on Mathematics., Issue 3, Volume

8, March 2009, pp. 107-116.
[13] Mastorakis, N.E., Solving Non-linear
Equations via Genetic Algorithm. WSEAS

Transactions on Information Science and

Applications., Issue 5, Volume 2, 2005, pp. 455-
459.

[14] Nopiah, Z.M., Khairir, M.I. and Abdullah.

S., Time complexity estimation optimization of
the genetic algorithm clustering method. WSEAS
Transactions on Mathematics., Issue ٥, Volume

٩, May 2010, pp. 334-344
[15] Rezaeian, J. Norouzi, A. and Eizadi, H.

Designing an incremental cellular manufacturing

system based on heuristic methods. Proceedings
of 14th WSEAS International Conference on
Computers, Corfu Island, Greece, July, 23-25,

2010.

[16] Venkumar, P. and Noural Hag, A.,
Fractional cell formation in group technology

using modified ART1 neural networks. Int. J.

Adv. Manuf. Technol., 28, 2006, 761-765.
[17] Wemmerlov, U. and Johnson, D.J.,
Empirical findings on manufacturing cell design.

Int. J. Prod. Res., 38, 2000, 481–507.

[18] Won, Y. and Lee, K.C., Modified p-median
approach for efficient GT cell formation.

Computer and IE., 46, 2004,495-510.

WSEAS TRANSACTIONS on COMPUTERS J. Rezaeian, N. Javadian, R. Tavakkoli-Moghaddam

ISSN: 1109-2750 1117 Issue 10, Volume 9, October 2010

