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Abstract: The feasibility of the inverse maximum flow problems (denoted IMFG) is studied. The feasibility can be
tested in linear time. In the case of IMFG not being feasible, a new inverse combinatorial optimization problem is
introduced and solved. The problem is to modify as little as possible the flow so that the problem becomes feasible

for the modified flow. An example is presented.
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1 Introduction

An inverse combinatorial optimization problem con-
sists in modifying some parameters of a network such
as capacities or costs so that a given feasible solution
of the direct optimization problem becomes an opti-
mal solution and the distance between the initial vec-
tor and the modified vector of parameters is minimum.
Different norms such as /1, [, and even [y are consid-
ered to measure this distance. In the last years many
papers were published in the field of inverse combina-
torial optimization [15]. Almost every inverse prob-
lem was studied considering /; and [, norms, result-
ing in different problems with completely different so-
lution methods. Strongly polynomial time algorithms
to solve the inverse maximum flow problem when [
norm is considered (denoted IMF) were presented by
Yang, Zhang and Ma [27]. IMF is reduced to a min-
imum cut problem in an auxiliary network with finite
and infinite arc capacities. The algorithm for IMF has
an O(n-m-log(n®/m)) time complexity, where m is
the number of arcs and n is the nomber of nodes.

The more general case (denoted GIMF) under
[y norm is studied in [11], where the lower and up-
per bounds for the flow are changed. Strongly and
weakly polynomial algorithms to solve GIMF are
proposed. The strongly polynomial algorithms for
GIMF have the same time complexity as the algo-
rithms for IMF, but the minimum cut is searched in
a network with fewer arcs. The weakly polynomial
algorithms for GIMF have an O(min{n?/3, m!/?} -
m - log(n?/m) - log(maz{n, R})) time complexity,
where R = max{c(x,y) - f($7y) + f(yax) -
I(y,z)|z,y € N}.
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The inverse maximum flow under I, norm (de-
noted IMFoo) is considered in [10]. A very fast
O(m - log(n)) time algorithm to solve this problem
is presented. The more general case of this problem
(under weighted [, norm) is considered in [13].

The least number of modifications to the lower
or/fand upper bounds is considered in [12]. An
O(min{n?/3 m'/2} . m) time algorithm for solving
this problem is presented.

Four inverse maximum flow problems are also
studied by Liu and Zhang [21] under the sum-type
and bottleneck-type weighted Hamming distance.
Strongly polynomial algorithms to solve these prob-
lems are proposed.

In this paper, a theorem on the feasibility of the
inverse maximum flow problems is presented. This
theorem leads to an O(m) time algorithm for decid-
ing if an inverse maximum flow problem has solution
or not. If a problem is not feasible what do we do
in this situation? From the practical point of view it is
not acceptable to give up. The problem must be solved
somehow even if we have to make a compromise. The
compromise consists in modifying (as little as possi-
ble) some parameters of the problem. Of course, this
leads to new inverse combinatorial optimization prob-
lems.

In this paper a new inverse combinatorial opti-
mization problem is introduced. This problem con-
sists in modifying as little as possible the flow in or-
der to transform the inverse maximum problem into a
feasible problem.
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2 Thelnverse Maximum Flow Prob-
lems

Let G = (N, A,l, ¢, s,t) be an s-t network, where
N is the set of nodes, A is the set of directed arcs, |
and c are the lower and, respectively, the upper bound
vectors for the flow, s is the source and t is the sink
node.

If a network has more than a source or/and more
than a sink node, it can be transformed into an s-t
network (introducing a super-source and a super-sink
node) [1].

Let f be a given feasible flow in the network G. It
means that f has to satisfy the flow balance condition
and the capacity restrictions. The balance condition
for the flow f is:

YEN,(z,y)EA YEN,(y,x)EA
o(f), z=s
= { _v(f)a r=t ) (1)
0, z € N —{s,t}

where v(f) is the value of the flow f from sto t.
The capacity restrictions are:

Hz,y) < flz,y) <clz,y), V(z,y) €A, (2)

where c(z,y) > I(z,y) > 0, for every arc
(z,y) € A.
The maximum flow problem is:

s

We shall introduce now the definition of the min-
imum cut s-t in the network G. The set of arcs
[S,5] = (S,5) U (S,S) is called an s-t cut in G if
SNS=¢, SUS =N,s e Sandt € S, where
(S,8) = {(z,y) € Al]r € S and y € S} is the set
of direct arcs of the cut and (S, .S) = {(=,y) € Alz €
S and y € S} is the set of the inverse arcs. The ca-
pacity of the s-t cut [S,S]in G is c[S, S] = ¢(S, S) —
1(S,5) = Z(m,y)e_(s_,s*) c(z,y) _—Z(I_,y)_g(g,s) l(fJ_U,y)_-
An s-t cut is a minimum cut in G if its capacity is
minimal in the set of s-t cuts of the network G.

The residual network attached to the network G
for the flow f is G = (IV, Ay, 7, s, t), where for each

max v(f)
is a feasible flow in G °

3)
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pair of nodes (z,y) the value of r(z,y) is defined as
follows:

( C(ZE,y) - f(xay) +f( ,(L‘) —l(y,x),

if (z,y) € A and (y,z) € A
C(:E,y) - f(may)a

r(z,y) = if (z,y) €A and (y,z) ¢ A
f(yax) —l(y,x),

if (z,y) ¢ A and (y,z) € A
l 0, otherwise

(4)

The set Ay contains as arcs of the residual net-
work only the pairs of nodes (z,y) € N x N for which
the residual capacity is positive, i.e., r(z,y) > 0.

An inverse maximum flow problem is to change
as little as possible the lower and/or upper bound vec-
tors | and respectively c so that the given feasible flow
f becomes a maximum flow in G.

An inverse maximum flow problem (denoted
IMFG) can be formulated using the following math-
ematical model:

( min dist((l,c),(1,¢))

f is a maximum flow in
G ={N,A,l,¢c,s,t}

l(m,y) —’Y(«’L',y) < l(x,y) <
< min{c(z,y), l(z,y) + B(z,y)},
V(z,y) € A

C(Qj,y) - 5(I7y) < E(QS,
<c(z,y) + a(z,y), V

)

In the model (5) different formulas to measure
the distance between (I,¢) and (I, ¢) are considered,
such as (weighted) /; norm, (weighted) /., norm, the
(weighted) Hamming distance etc. So, (5) is a general
model for any inverse maximum flow problem, where
the lower and the upper bounds for the flow can be
modified.

The values a(z,y), B(z,y),y(z,y) and d(z,y)
are given non-negative integer numbers, where
v(z,y) < I(z,y) and é(z,y) < c(zx,y), for each arc
(z,y) € A. These values show how much the bounds
for the flow of the arcs can vary.

In the formula above by (I, ¢) is denoted the vec-
tor obtained by adding the components of the vector ¢
at the end of /. Similarly, (/, ) is the vector obtained
by putting together the components of the vectors [
and ¢.

In order to make the flow f a maximum flow in
the network G, the upper bounds of some arcs from A
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must be decreased and/or the lower bounds of some
arcs from A must be increased. So, the conditions
E(.’L‘,y) < C(lE,y) + CY(ZE,y) and l(,’L‘,y) > l(,’L‘,y) -
v(z,y), for each arc (x,y) € A have no effect and,
instead of (5), the following mathematical model is

considered:

min dist((l,c),(l,¢))

f 1s a maximum flow in

7@ = {N,A,Z_,E,S,t} (51)
l(z,y) < min{e(z,y),1(z,y) + Bz, y)},
V(z,y) € A

C(Qj,y) - 5(I7y) < E(I,y), v (Qf,y) €A

The inverse maximum flow problems where
I(z,y) = 0,Y(z,y) € A and only the upper bounds
for the flow can be modified are particular cases of
IMFG. Indeed, if the lower bounds for the flow can
not be modified in order transform the given flow f
into a maximum flow, then in (5') we can consider

B(z,y) =0,¥(z,y) € A.

3 TheFeasbility of IMFG

When solving IMFG, if the upper bound is changed on
anarc (z,y), then it will be decreased with the amount
of ¢(z,y) — f(z,y). If not so, then there still is an
augmenting path from s to t that contains the direct
arc (z,y) and the modification of the upper bound is
useless. This means that if ¢(z,y) > f(z,y)+d(x,y)
on anarc (z,y), then, when solving IMFG, there is no
need to change the upper bound on (z, y).

Similarly, when solving IMFG, if the lower bound
is changed on an arc (z,y), then it will be increased
with the amount of f(z,y) — I(z,y). If not so, then
there still is an augmenting path from s to t that con-
tains the arc (x, y) in inverse direction and the modifi-
cation of the lower bound is useless. This means that
if f(z,y) > U(z,y) + B(z,y) on an arc (z,y), then,
when solving IMFG, there is no need to change the
lower bound on (z,y).

Let’s determine the arcs in the network G on
which the capacity will not be changed.

First, as it has been seen, changing the upper
bound have no effect on an arc (z,y) with ¢(z,y) >
f(z,y) +d(z,y). So, there is no need to try changing
the upper bounds of the arcs from the following set:

Ay ={(z,y) € Alf(w,y) + §(z,y) < C(x,y)}-(G)
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Similarly, as it has been seen, changing the lower
bound have no effect on an arc (z,y) with f(x,y) >
I(x,y) + B(z,y). So, there is no need to try changing
the lower bounds of the arcs from the following set:

112 = {(I,y) €A |Z(I7y) + ,6(517,'!/) < f(xay) }(7)

It is easy to see that if there is a path from s to t
in the network G that contains only direct arcs (i, y)
sothat ¢(x,y) > f(x,y)+ 0(x,y) and/or inverse arcs
(y,z) with f(y,z) > l(y,z) + B(y,x), then IMFG
has no solution. B B

A graph denoted G = (N, A) can be constructed
to verify the feasibility of IMFG, where:

A=A U{(z,y) € Nx N|(y,z) € A and
fly,z) > Uy, z) + By, z)}. (8)

We have the following theorem:

Theorem 1 In the network G, IMFG has optimal so-
lution for the given flow f, if and only if there is no
directed path in the graph G from the node s to the
node t.

Proof: Let G = (N,Al',d) be a net-
work for which the last conditions from (5) hold:
l(z,y) < U'(z,y) < min{d(z,y),l(z,y) + B(z,y)}
and c(z,y) — d(z,y) < d(z,y),¥(z,y) € A. Let
G = (N, A%, r") be the residual network attached
to the network G’ for the flow f. It is easy to see
that v'(z,y) > 0,VY(z,y) € A due to the restric-
tion on the upper bound vector for the arc (z,y) of G
(c(z,y) > fz,y) +0(z,y) = (z,y) > f(z,y))or
because (y,z) € Aand f(y,z) > I(y, z)+6(y,z) =
f(y,z) > I'(y, ). This means that A C A’,.

If IMFG is a feasible problem, then it means
that there is a vector (I,¢) with I(z,y) <
min{e(z,y), (2, y)+B(z,y)} and c(z, y) —d(z, y) <
¢(z,y),¥Y(z,y) € A and for which the flow f is a
maximum flow in the network G = (N, A, 1, ¢). Since
A C Ay, if it exists a directed path in G from s to t,
it corresponds to a directed path in G, which leads to
an augmentation to the flow f in G' (contradiction).

Now, for the inverse implication we construct the
following upper and lower bound vectors for the arcs
of the network G-
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" _ [ dzy), clz,y) > f(z,y) +0(z,y)
@ y) = { f(z,y), otherwise
9)

" _ | Uzy), f(z,y) > Uz, y) + B(z,y)
P,y) = { f(z,y), otherwise
(10)

It is easy to see that I" (z,y) < l(z,y) + B(z,y)
and ¢(z,y) — d(z,y) < "'(z,y), V(z,y) € A. Inthe
residual network Gt = (N, A%, r") attached to G" =
(N, A,1"”, ") and to the flow f we have »"'(z,y) = 0,
for all (z,y) € (N x N) — A. Since A C Al it
means that A = A’ (see (4)). Therefore, because
there is no path from s to ¢ in the graph G, it results
that there is no directed path from s to ¢ in G’;. This
implies that the flow f is a maximum flow in the net-
work G" = (N, A,1"”,"). It means that (I”,c") is a
feasible solution for IMFG.

In IMFG, the feasible region for the vector (I, c)
canbereducedto! <[ <[+ pBandc—-—d<c<c
(from (5') and because when solving IMFG there is
no need to increase the upper bounds for the flow and
there is no need to decrease the lower bounds for the
flow), which is a compact region. So, because IMFG
has a feasible solution, it results that IMFG has opti-
mal solution.

The verification of IMFG being feasible can be
done in O(m) time complexity, using a graph search
algorithm in 5, where m is the number of arcs in the
set A with m < 2m. So, this test of feasibility can be

applied to any inverse maximum flow problem.

4 The Modification of Flow

In this section for a non-feasible IMFG problem in
the network G for the given flow f we shall modify
the flow f so that the inverse maximum flow problem
in G for the modified flow becomes feasible and the
distance between the value of the initial flow and the
value of the modified flow is minimum.

The following inverse optimization problem (de-
noted TFIMF) is obtained:
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min|v(f’) —v(f)]
f' is a feasible flow in G
The inverse maximum flow

problem is feasible in G for f’
(11)

So, the problem is to find a feasible flow f in the
network G so that the inverse maximum flow problem
in G for the flow f' is feasible and |v(f") — v(f)] is
minimum. For a feasible flow f’ the test of feasibility
of IMFG can be done in O(m) time (as we have seen
in section three, theorem 1). The first thing we have to
do is to construct all the feasible flows in G with the
value equal to v(f). If there is such a flow then any of
these flows is solution of problem (10).

The problem of maximum flow and, conse-
quently, the inverse minimum flow problem is with
integer values (for the lower bounds, upper bounds,
flow, value of the flow and the restrictions to variation
of the bounds). That is why we can think to a strategy
of solving the problem (10) as follows:

If there is no feasible feasible flow f; in G so that
IMFG is feasible for fy in G and v(fy) = v(f) then
we look for any feasible flow f; in G so that IMFG
is feasible for f; in G and |v(f1) — v(f)| = 1 and so
on. Finally, after k iterations, k < |V —o(f)|+1 =
V —wo(f)+1(V is the value of any maximum flow in
G) we shall find a feasible flow f; in G so that IMFG
is feasible for fi in G and |v(fx) — v(f)| = k — 1.
This flow is the solution of problem (10).

In order to solve the problem (10) in the manner
described above we have to find a method to gener-
ate all the feasible flows in the network G for a given
integer value v.

In paper [23] a method for finding all the maxi-
mum flows in a given network G is presented.

We are interested in finding all the feasible flows
in the network G for a given integer value ». In order
to do that we transform the network G as follows:

We introduce in G a new node denoted ¢ and the
arc (s', s) with the upper bound equal to v, the lower
bound equal to 0 and restrictions to the variation of
bounds also equal to 0, i.e., ¢(¢, s) = vand (s, s) =
a(s’,s) = d(s', s) = 0. The node s’ becomes the only
source node in the modified network denoted G,,. Itis
easy to see that any feasible flow in G with the value
equal to v is a feasible flow in G, and any feasible
flow in G, with the value equal to v is a feasible in
flow in G. Moreover, a feasible flow with the value
equal to v in G, is a maximum flow in G,, because the
total flow that exits the source node < can not exceed
v = ¢(s', s). Consequently, for a given value v we can
find all the maximum flows in G,, using the algorithm

Issue 10, Volume 9, October 2010



WSEAS TRANSACTIONS on COMPUTERS

from (9) and these flows are all the feasible flows with
value v in G if we ignore the arc (¢, s).

We are able now to present the algorithm for solv-
ing the problem (10):

PROGRAM SolvingTFIMF;
BEGIN
v:=v(f);
v = v(f);
Find the maximum flow F in G;
V :=u(F);
WHILE » <V DO
BEGIN
Construct the network G,;
Find all max. flows f; (i = 1..p) in G,;
FORi:=1 TOp DO
IF IMFG is feasible in G for f; THEN
= fi
STOP;
END IF;
END FOR;
IFv" > 0THEN
Find all max. flows f; (z = 1..p) in G;
FORi:=1 TOp DO
IF IMFG is feasible in G for f; THEN
= fi
STOP;
END IF;
END FOR,;
END IF;
v:i=v+1;
v =0 —1;
END WHILE;
END.

Theorem 2 The program ’SolvingTFIMF”* finds an
optimum solution f’ of the problem (10).

Proof: It is easy to see that any maximum flow F’
in G is a feasible solution for (10). That is because for
F the lower bound vector [ and the upper bound vector
c forms the optimal solution for IMFG in the network
G (we have to make no modification to / or/and ¢ so
that £ becomes a maximum flow in G).

The algorithm constructs sequentially all the
flows in G with the value equal to v(f), then all the
flows in G equal to v(f) + 1, then all the flows in G
equal to v(f) — 1, then all the flows in G equal to
v(f) + 2, all the flows in G equal to v(f) — 2 and so
on.

The algorithm stops (after at most |V — v(f)| +
1 =V —u(f) + 1iterations of the "WHILE .... DO”
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loop) when a flow f’ is found for which the problem
IMFG is feasible in the network G. Of course, f' is a
feasible solution of problem (10).

We suppose that f’ (found by the algorithm) is not
an optimum solution for (10). This means that there
exists a flow f” for which IMFG is feasible in G and
[o(£") — v (D) < (") = o(f)].

We denote by %' the iteration of the algorithm
when £’ is found (and the algorithm stops). It is easy
to see that &' = |v(f') — v(f)| + 1.

We also denote £’ = |v(f") —v(f)| + 1.

Since k" < K/, it results that the flow f” was one
of the feasible flows in G constructed by the algorithm
in the iteration £”, previous to iteration &' and, since
f" is a feasible solution for the problem (10), the al-
gorithm had to stop in iteration &’ not in iteration &’
(contradiction).

So, f’ (found by the algorithm) is an optimum
solution of the problem (10).

[ |

5 Example

We shall take an example that illustrates how the al-
gorithm above works. In figure ?? a network G is pre-
sented.

On each arc we have the following values (from
left to right): the first one is the restriction 3 to the
variation of the lower bound, the second one is the
lower bound (1), the third one is the value of the given
initial flow f, it is followed by the upper bound for
the flow (c) and, finally, we have the restriction ¢ to
the variation of the upper bound.

As we can see, in the graph G from figure ?? there
is a directed path from s to ¢. This means that IMFG
is not feasible (see theorem 1).

We apply the algorithm from the previous section
in order to transform the problem into a feasible one.

The figures ?? - ?? present the feasible flows con-
structed by the algorithm till the solution is found.
Each of these figures present the feasible flow (to the
left) and the graph G (to the right). On each arc of the
network to the left of each figures ?? - ?? the value of
the flow is presented.

The first iteration of the algorithm constructs all
12 possible feasible flows (see figures ?? and ?? - ?7?)
with the value equal to v=2 (the value of the initial
flow f). None of these flows is solution of our prob-
lem.

In the second iteration, the algorithm constructs
the feasible flows with the value equal to v = 3. There
are 17 feasible flows with the value equal to v = 3.
Two of these flows are solutions for our problem (see
figures ?? and ??).
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So, the algorithm stops in the second iteration af-
ter finding two solutions with the value equal to 3.

Actually, there are exactly two solutions. There
are 5 different flows with the value +/ = 1 and none
of these flows is solution.

The distance between the value of the initial flow
f and the value of any flow from figures ?? or ??
which is solution of our problem is |v — v(f)|

v—uo(f)=1L1

Figure 1: Initial given flow f in the network G

6 Conclusion

In this paper we have studied the feasibility of the
inverse maximum flow problem. The feasibility of
IMFG can be tested in linear time. If the problem is
not feasible, the flow can be modified as little as possi-
ble so that the problem becomes feasible (the distance
between the value of the initial flow and the value of
the modified flow is minimum). A suggestive exam-
ple that shows the execution of the algorithm was pre-
sented.
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Figure 2: The initial graph G, IMFG is not feasible
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Figure 15: Iteration 2, v=3
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Figure 13: Iteration 1, v=2 Figure 16: Iteration 2, v=3
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Figure 17: Iteration 2, v=3, first solution

Figure 18: Iteration 2, v=3, second solution
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