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Abstract: - Approximate query processing is often based on analytical methodologies able to provide fast 
responses to queries. As a counterpart, the approximate answers are affected with a small quantity of error. 
Nowadays, these techniques are being exploited in data warehousing environments, because the queries 
devoted to extract information involve high-cardinality relations and, therefore, require a high computational 
time. Approximate answers are profitably used in the decision making process, where the total precision is not 
needed. Thus, it is important to provide decision makers with accuracy estimates of the approximate answers; 
that is, a measure of how much reliable the approximate answer is. Here, a probabilistic model is presented for 
providing such an accuracy measure when the analytical methodology used for decisional analyses is based on 
polynomial approximation. This probabilistic model is a Bayesian network able to estimate the relative error of 
the approximate answers. 
 
Key-Words: Analytic query processing, Approximate query answer, Polynomial approximation, Accuracy 
estimation, Probabilistic model. 
 
1 Introduction 
In data warehousing (DW) environments, On-Line 
Analytical Processing (OLAP) is devoted to extract 
information to be used in decision making activities. 
DW databases commonly store high volumes of 
data and, therefore, even a simple scanning for data 
aggregation requires answer times that may range 
from minutes to hours [1, 2]. Moreover, in case of a 
distributed system, the access to remote data can be 
sometimes impracticable (due to the server and/or 
communication line crash, for example). 

The traditional query processing engines always 
provide decision makers with exact query answers. 
However, in many cases, the total precision is not 
always required by final users. Indeed, there are 
several scenarios in OLAP where it is not manda-
tory to obtain exact query answers. As an example, 
in the drill-down task, the preliminary queries are 
used only to determine the most important facets to 
consider in decision making. In fact, analytical 
processing has always an unpredictable and explora-
tory nature. As a further example, in numerical an-
swers that require the computation of the average of 
a large set of data, the total precision is not needed 
and an approximate value will suffice. At last, in 
Database Management Systems, the optimizers must 
define a plan for the physical data access on the 
basis of the selectivity estimates [3]. 

These issues have led to define methodologies 
able to provide approximate query answers [4], 
especially in data warehousing environments [5], 
such that the final users get fast responses, although 
affected with a small quantity of error. In fact, this 
research topic is based on the assumption that, if the 
query is very time-consuming and the error in the 
approximation is neglectable, then it is more suit-
able to have an approximate answer in a short time, 
rather than the exact answer after a long waiting 
time. 

What is an approximate answer? As concerns a 
query that involves data aggregation, the answer is a 
scalar value and the relative approximate answer is 
an estimation of this value. The most popular meth-
odologies that represent the theoretical bases for 
approximate query processing are based on sampl-
ing [6], histograms [7], wavelets [8, 9], probabilistic 
models [10, 11, 12], distributed processing [13], 
clustering [14], orthonormal series approximation 
[15], genetic programming [16], and graph-based 
models [17]. Most of them need to perform a reduc-
tion of the data stored in database relations. In fact, 
these methodologies provide approximate answers 
using small and pre-computed data synopses, ob-
tained by compressing the original data [18]. 

According to [19], the criteria for comparing the 
methodologies for approximate query processing 
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are: (a) coverage, or the kind of queries for which it 
is possible to provide approximate answers; (b) re-
sponse time, or the time needed for the computation 
of the approximate value; (c) accuracy, or the confi-
dence degree in the approximation; (d) update time, 
or the time to compute the data synopsis; and (e) 
footprint, or the space used to store data synopses. 

In this paper, we consider the well-known meth-
odology based on polynomial approximation [20], 
and we extend it in order to provide the accuracy 
along with the approximate answer. The accuracy is 
computed via a probabilistic inferential process 
based on a Bayesian network. This allows us to 
model the relationships among the main stochastic 
variables involved in the approximate query proc-
essing that determine the relative error. 

The paper is organized as follows. Section 2 
recalls the methodology for polynomial approxima-
tion. Section 3 introduces the Bayesian networks. 
Section 4 presents our novel probabilistic model 
able to estimate the relative error in the approximate 
query processing. Section 5 reports experimental 
results. Section 6 presents future work based on the 
experimental evidence. Finally, Section 7 contains 
our conclusions. 

2 Analytic Methodology 
The analytic methodology consists of using ortho-
normal polynomial series to approximate the uni-
variate data distribution function of an attribute X. 
The utilized approximation polynomial is the 
Legendre orthogonal polynomial series and its cal-
culated coefficients carry synthetic information 
about the univariate data distribution of the attribute 
X. A complete discussion of this approach and the 
extension to the multivariate data distribution can be 
found in [20]. 

2.1 Coefficients Computation 
Let R(Χ) be a relation of cardinality n on schema X, 
and let XאאX. We assume dom(X) = [a, b] be the 
numeric interval denoting the domain of the 
attribute X. Finally, let pdf (x) be the probability 
density function of R.X, where we use the dot 
notation to denote the attribute X of the relation 
R(X). We denote with g(x) its polynomial 
approximation up to degree d. Since the Legendre 
orthogonal polynomials are defined on the interval 
[−1, +1], each value xאdom(X) is suitably mapped to 
the corresponding value x′[1+ ,1−] א.  

Then, for each xאX, it results that 
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where, for i = 0, 1, …, d, 
 x → x′ is the opportune map from xאX to x′ א 

[−1, +1], 
 Pi(x′) is the Legendre polynomial up to degree i, 

and 
 ci = ∑x∈X Pi(x′) / n is the mean value of Pi(x′) on 

the n tuples of R.X. 

Therefore, g(x) is the orthogonal polynomial 
approximation to pdf (x) up to degree d and the coef-
ficients {ci | i = 0, …, d} carry information about the 
univariate data distribution of the attribute X. These 
coefficients are the so-called Canonical Coefficients 
of X and they can be used in order to perform mono-
dimensional analyses of X, by calculating aggregate 
functions, such as count, sum, and average (see, 
Subsection 2.2). 

Assuming that: 
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for i = 0, 1, …, d, where Q0(x′) ≡ x′, it is possible to 
compute the cumulative density function cdf (x) of X 
in the following way: 

cdf (x) ≈ G(x) ≡ G(x′)  
(4)
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where, for all xאX, G(x) is the polynomial approxi-
mation of the cdf of X. 

2.2 Monodimensional Analysis 
The analytical process based on the set of pre-
computed Canonical Coefficients provides an ap-
proximation of typical aggregate functions, such as 
sum, average, and count. Let I = [x, y] ك [a, b] be 
the generic query range used for the computation of 
the aggregate function and let I′ = [x′, y′] [1+ ,1−] ك 
be the corresponding interval on the domain of the 
Legendre function. Given such an interval I, the 
main aggregate function, namely percent (or selec-
tivity), is p(x ≤ X ≤ y) and it can be estimated by 
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where Qi(I′) = Qi(y′) – Qi(x′), for i = 0, 1, …, d. 
Then, the count aggregate function on the query 

range I can be estimated as 

count(I )  ≈  n × percent(I ), (6) 

where n is the cardinality of the relation R. 
Moreover, the average and the sum functions can 

be estimated as 

average(I ) = H(I ) / percent(I ), and  
  (7) 
 sum(I ) ≡ average(I ) × count(I )  ≈  n × H(I ),  

where H(I ) ≡ ∫I xg(x)dx .  

3 Overview of Probability Concepts 
Let {V1, V2, …, Vk} be a set of k stochastic variables 
and let vi denote the value taken on by the variable 
Vi, for i = 1, …, k. If the variable Vi indicates a prop-
osition, then its possible values are true and false. If 
Vi represents a measure or physical entity (such as 
age, weight, or speed), then its values are numbers 
that may range in discrete or continuous domains. If 
Vi represents a category, then its values are categori-
cal and the variable is defined multinomial. As an 
instance, the weather can be sunny, cloudy, snow-
fall, and rainy. 

Given the stochastic variable E, p(E) denotes the 
a priori probability of E. As an instance, if E is the 
weather multinomial variable above, then the prob-
ability function assigns reals in [0, 1] to all values of 
E: p(weather = sunny) = 0.7, p(weather = rainy) = 0.2, 
p(weather = cloudy) = 0.08, and p(weather = snowfall) 

= 0.02, for example. Therefore, weather = 〈sunny, 
rainy, cloudy, snowfall〉 and p(weather) denotes the 
vector 〈0.7, 0.2, 0.08, 0.02〉 of probabilities associ-
ated to the corresponding categories of the stochas-
tic variable. This vector defines the probability dis-
tribution of the variable weather. 

In general, a discrete probability function is such 
that: 
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where V is a multinomial variable that assumes r 
distinct values. 

There are several definitions to assign a priori 
probabilities to stochastic variables [21]. 

According to the classic definition, given an 
event E, p(E) is the ratio of the number of cases 

favourable to its occurrence to the total numbers of 
cases, all equally possible and mutually exclusive: 

cases possible ofnumber 
cases positive ofnumber )( =Ep . (9) 

As an example, in a coin launch, each face of the 
coin has probability 0.5 to be verified. 

According to the frequentist definition, when an 
experiment is repeated r times, if an event E hap-
pens sr times, then the ratio of sr to r provides the 
relative frequency of E in reference to the given 
repetitions of the experiment. Therefore, p(E) is the 
limit of the relative frequency, when the number of 
repetitions of the experiment increases indefinitely: 

r
s

Ep r

r ∞→
= lim)( . (10) 

At last, according to the subjective definition, 
given the event E, p(E) is the degree of confidence 
that a person assigns to the occurrence of E. 

The axioms of the probability theory are: 
 if E is a stochastic variable, then 0 ≤ p(E) ≤ 1, 
 necessarily true propositions have probability 

value 1, while the unsatisfiable ones have prob-
ability 0 (ie, p(true) = 1 and p(false) = 0), and 

 the probability of a disjunction is given by 

p(A ∨ B) = p(A) + p(B) – p(A ∧ B). (11) 

We denote the joint probability that v1, v2, …, vk 
be the respective values of V1, V2, …, Vk simply by 
p(V1= v1, V2= v2, …, Vk= vk) or p(v1, v2, …, vk). 

The function that assigns a number in [0, 1] to 
the set of stochastic variables is called joint prob-
ability function and its obvious properties are: 
 0 ≤ p(v1, v2, …, vk) ≤ 1, and 
 ∑V p(v1, v2, …, vk) = 1, where (v1, v2, …, vk) range 

over V = V1 × V2 ×…× Vk or the set of values of 
the stochastic variables. 

If the joint probabilities of all the values of a set 
of stochastic variables are known, then the so-called 
marginal probability of each variable can be calcu-
lated. As an instance, the marginal probability of V1 
at v1 is 

p(V1 = v1) = ∑V p(v1, V2, …, Vk),  (12) 

where p(V1, V2, …, Vk) is the vector of the joint prob-
abilities. 

Example 1. Let A and B be two propositional vari-
ables. For simplicity, we shall write p(A) instead of 
p(A = true) and p(¬A) for p(A = false).  

Assuming the following joint probabilities: 

WSEAS TRANSACTIONS on COMPUTERS Carlo Dell'Aquila, Francesco Di Tria, Ezio Lefons, Filippo Tangorra

ISSN: 1109-2750 1077 Issue 10, Volume 9, October 2010



 

p(A, B) = 0.2, 
 p(A, ¬B) = 0.3, 
 p(¬A, B) = 0.4, and 
 p(¬A, ¬B) = 0.1, 

the marginalization of A is 

p(A) = p(A, B) + p(A, ¬B) = 0.5, and 
 p(¬A) = p(¬A, B) + p(¬A, ¬B) = 0.5. � 

The probability that Vi = vi when Vj = vj is called 
conditional probability of Vi given Vj and it is de-
fined as  

)(
),(

)|(
jj

jjii
jjii vVp

vVvVp
vVvVp

=

==
=== . (13) 

It is possible to define the joint probability in 
terms of conditional probability, using the following 
expression, known as product rule: 

p(Vi = vi, Vj = vj) = p(Vi = vi | Vj = vj) p(Vj = vj). (14) 

The generalization of the product rule allows 
expressing the joint probability of a set of stochastic 
variables in terms of conditional probabilities. Thus, 
the general form of the product rule is  

p(v1 , v2 , …, vk)  =  
k

i 1=
∏  p(vi | vi−1 ,…, v1) . (15) 

Let A and B be two stochastic variables. Then, 
with reference to the product rule, we obtain that 

p(A, B) = p(A | B) p(B), and p(B, A) = p(B | A) p(A). 

Since 

p(A, B) = p(B, A),  

then 

p(A | B) p(B) = p(B | A) p(A). 

Thus, 

)(
)()|()|(

Ap
BpBApABp = . (16) 

Equation (16) is known as Bayes’ rule and it 
allows to perform a probabilistic reasoning [22, 23]. 

3.1 Probabilistic Inference 
The general form of the probabilistic inference is 
based on a set V = {V1, V2, …, Vk} of k stochastic 
variables and the evidence e (ie, the 100% of truth-
ness) that the variables of a set E ك V assume 
defined values. In this way, it is possible to compute 
the conditional probability p(Vi = vi | E = e) of V 
when E is known. This process is called probabilis-
tic inference. As an example, if we know that the 
probability it rains is 80% when the weather is 

cloudy, that is, there exists the conditional probabil-
ity p(rainy = true | cloudy = true) = 0.8, and we have 
the evidence that today it is cloudy, then the prob-
ability that today it rains is 80%. 

To apply the probabilistic inference using joint 
probabilities requires the knowledge of the full joint 
distribution. Therefore, in case of k propositional 
variables (ie, stochastic variables whose values are 
true or false), we need the list of 2k values of the 
joint probability p(V1, V2, …, Vk). Indeed, for many 
problems of interest, we could never obtain such a 
distribution. Owing to this kind of intractability, a 
more efficient probabilistic reasoning is used, based 
on the conditional independence existing among 
stochastic variables. 

The variable A is conditionally independent from 
the variable B, given C, if it holds that 

p(A | B, C) = p(A | C). (17) 

Intuitively, the conditional independence of A 
from B, given C, states that B does not provide in-
formation about A, but all information is given by C. 

Conditional independences can be represented by 
graphs, or the so-called Bayesian Networks (or be-
lief networks). In detail, these graphs allow model-
ling the cause-effect relationships existing among 
stochastic variables and, thus, they are very useful in 
the probabilistic inference, for they allow computing 
the conditional probabilities in a very fast way. 

3.2 Bayesian Networks 
A Bayesian Network is a Machine Learning tech-
nique used to perform probabilistic reasoning [24]. 
The network is represented by an acyclic, oriented 
graph, whose nodes are labelled with the names of 
the stochastic variables and the edges represent the 
cause-effect relationships between variables. On the 
basis of the conditional independence, such a net-
work requires that each node is influenced only by 
its parents. In a Bayesian Network, the following 
properties hold: 
• a set of stochastic variables form the nodes of the 

graph, 
• a set of oriented edges connect couples (parent, 

descendant) of nodes, 
• each node has the associated table of the 

conditional probabilities that summarize the 
effects the parents have on the node itself, and 

• the graph has not cycles. 
Therefore, the existence of an edge from the 

node A to B states that A influences B directly. 
Let V1, V2, …,Vk be a set of k nodes of a Bayes-

ian Network. Under the assumption of conditional 
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independence, we can compute the joint probabili-
ties of each node of the network as: 

p(V1, V2, …, Vk)  =  
k

i 1=
∏  p(Vi | parents(Vi)) , (18) 

where parents(Vi) is the set of the parents of Vi . 
Notice that we must know the conditional prob-

abilities of each node with respect to its parents, in 
order to compute the joint probabilities. Nodes with-
out parents are not conditioned by any other node 
and their a priori probabilities must be provided. 

Example 2. Let us consider the network shown in 
Figure 1. The nodes B, S, I and M are propositional 
variables that recall a well-known case [22]: a block 
can be moved (M) whether the battery is charged 
(B) or whether the item itself can be elevated (S); 
moreover, an indicator (I) states whether the battery 
is charged or not. There are given the a priori prob-
abilities of B and S, and the conditional probabilities 
of I and M with respect to their own parents. The 
joint probability p(B, S, I, M) is better computed as 

p(B, S, I, M) = p(B) p(S) p(I | B) p(M | B, S), 

rather than using the complex expression 

p(B, S, I, M) = p(B) p(S | B) p(I | B, S) p(M | B, S, I) 

obtained by the product rule.  

Notice that only 8 probabilities are essential—eg, 
the ones on the left column—as the probabilities on 
the right column are easily derived. As an instance, 

p(B) = 0.9 ֜ p(¬B) = 1 − p(B) = 0.1. 

On the other hand, the product rule expression 
would require the specification of all the 24 = 16 
joint probabilities.          � 

In a Bayesian Network, we distinguish three 
types of categories that allow different probabilistic 
reasonings, depending on how the evidence is 
propagated in the network: causal inference (from 
causes to effects) or top-down, intercausal inference 
(among causes of a shared effect) or explaining 
away, and diagnostic inference (from effects to 
causes) or bottom-up. Further, the types can be 
merged in order to produce mixed inference. 

The types of probabilistic inference among nodes 
A, B and C are represented as graphs in Figure 2.  

The activity of assigning probabilities to nodes 
of a Bayesian Network is called learning process 
and the effectiveness of the network depends on 
both its ability to represent the knowledge of the 
domain (ie, all and only the relationships among the 
variables), and the goodness of the dataset used for 
the learning process (ie, the training set). 

 
Fig. 2.  Types of probabilistic inference.  

3.3 Graphical Modelling 
Bayesian Network tools in Java (BNJ) [25] is a 
graphical tools suite for developing Bayesian Net-
works. In this subsection, we show a complete ex-
ample of probabilistic inference executed with BNJ. 
The example regards the well-known case study de-
scribing the relationships among the sky (that can be 
cloudy or not), the weather (that can be rainy or 
not), the sprinkler (that can be turned on or off), and 
the grass (that can be wet or not). The network is 
devoted to model the knowledge that the state of the 
sky influences the state of the weather and the one 

 causal intercausal diagnostic 

B

C

A

C

A

B

A

C 

B 

   
  node B      
  p(B) = 0.9 p(¬B) = 0.1  
    
  node S      
  p(S ) = 0.6 p(¬S ) = 0.4  
    
  node I      
  p(I | B) = 0.8 p(¬I | B) = 0.2  
  p(I | ¬B) = 0.3 p(¬I | ¬B) = 0.7  
    
  node M      
  p(M | B, S ) = 0.8 p(¬M | B, S ) = 0.2  
  p(M | B, ¬S ) = 0.05 p(¬M | B, ¬S ) = 0.95  
  p(M | ¬B, S ) = 0.4 p(¬M | ¬B, S ) = 0.6  
  p(M | ¬B, ¬S ) = 0 p(¬M | ¬B, ¬S ) = 1  
     
     
     
     
     
     
     
     
  Fig. 1.  Bayesian network.   
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of the sprinkler, that on turn determine the state of 
the grass. Once defined the network topology, the 
probabilities must be provided for each node on the 
basis of the experts’ knowledge of the domain and/ 

or empirical studies.  
Figure 3 reports such Bayesian Network in BNJ. 

Running the network with no evidence (cf, Figure 
4), we discover that 

p(rainy = true) =  
p(rainy = true | cloudy = true) × p(cloudy = true) + 
p(rainy = true | cloudy = false) × p(cloudy = false) 
= 0.8 × 0.3 + 0.2 × 0.7 = 0.38. 

In the same way, we discover that the probability 
the grass is wet is 60.8%. Putting the evidence on a 
node, the probabilities are updated. As an example, 
if we are certain that it is cloudy, then it is possible 
to infer that the probability the grass is wet is equal 
to 74.5% (cf, Figure 5). 

Fig. 3.  Bayesian network in BNJ. 
 
 

 
Fig. 4.  Marginalization. 

 
Fig. 5.  Probabilistic inference. 

4 Probabilistic Modelling 
In this subsection, we introduce the main variables 
affecting the relative error in the polynomial ap-
proximation. Then, we use the relative error as a 
measure of the accuracy of the approximate answer. 

The main factors that influence the relative error 
are (1) the degree of polynomial approximation, (2) 
the cardinality of relations, and (3) the query range 
(ie, the width of the interval of the queries). 

The first factor does not need explanation, since 
it is well-known that the higher the polynomial de-
gree the better the approximation to the probability 
density function of data attributes. However, for 
opportunity, we fixed the min, medium, and max 
degrees equal to 7, 17, and 27, respectively. Indeed, 
the polynomial degree we used for computing the 
canonical coefficients is the max degree only and, 
therefore, we assume that the computed coefficients 
are not affected by approximation errors. On the 
contrary, when computing aggregate functions in 
approximate analyses, we allow choosing the ap-
proximation function with the min, medium, or max 
degrees. 

The cardinality of relations has influence on the 
relative error for it determines the quality of the co-
efficients used to compute the aggregate functions. 
In fact, every coefficient is the mean of n quantities, 
where n is the cardinality of the data. The error in 
computing the coefficients is related to the finite 
arithmetic and machine precision. So, when the car-
dinality of the relation is very high (eg, of the order 
of 107 tuples), the mean value is affected by a trun-
cation error. Figure 6 shows how the truncation 
error increases with the cardinality of relations. 

Figure 7 reports the trend of the relative error of 
approximate answers in reference to the approxima-
tion degree and width of the query range. The chart 
shows that the smaller the query range, the higher 
the relative error. Moreover, as the query range 
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approaches 10%, good results are obtained only by 
using the maximum degree. 

Figure 8 shows the probabilistic model that we 
have defined for the measure of the accuracy, after 
the learning process of the network. To assign the a 
priori probabilities to the influence factors, we have 
adopted the subjective definition. 

This model shows that there is a high probability 
the approximate answers yields a medium relative 
error (that is, a relative error in the range [0.001, 
0.01[ ) and a very low probability to have a high 
relative error (that is, greater than or equal to 0.01). 

For each query answer, the network can be used 
at run time to estimate its relative error. For exam-
ple, if we run the network with the evidence that the 
cardinality of the relation is about 105 records, the 
width of the query range is about 90% of the do-
main, and the degree is the maximum one, then the 
model infers that the probability to have a low rela-
tive error (that is, an error less than 0.001) is 50%. 

5 Experimental Set-up 
An accuracy measure is composed of (a) error 
bounds, that is, the interval I which the real value is 
assumed to belong to, and (b) the confidence degree 
p(I ), that is, the probability that the real value falls 
in that interval [26]. 

Let r and rα be the real query answer and its 
computed approximate value, respectively, and let δ 
be the relative error of rα w.r.t. r. We define 

  ⎧
 ⎨
 ⎩

is low if  δ < 0.001, 
δ  :؝ is medium if  0.001 ≤ δ < 0.01, 

 is high otherwise (δ ≥ 0.01). 

The probabilistic model provides an accuracy 
measure, giving an estimation of the relative error 
according to the confidence degree. This can be 
used to estimate the real query answer. 

As an example, suppose that rα = 100 and we do 
not know the real query answer r, but we know the 
conditions under which the query was executed: 
cardinality 104, width 50%, and degree minimum. 
These conditions are the factors affecting rα. There-
fore, the probabilistic model infers that p(δ is low) = 
10%, p(δ is medium) = 85%, and p(δ is high) = 5%. 
Thus, the user understands that 99.9 < r < 100.1 
with 10% of probability, 99.01 < r ≤ 99.9 or 100.1 ≤ 
r < 101.01 with 85% of probability, and r ≤ 99.01 or 
r ≥ 101.01 with 5% of probability. 

For the present experimentation, we executed 10 
launches while varying the influence factors, name-
ly, the cardinality of the relation, the query width, 
and the approximation degree. For each launch, we 
computed the aggregate functions sum, count and 
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Fig. 6.  Truncation error of approximation coefficients. 
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Fig. 8.  Accuracy probabilistic model. 
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avg in both approximate and non-approximate way 
and, then, the relative error of the approximate 
answer to the real one. Finally, we compared the 
relative error with the estimation of the relative error 
given by the probabilistic model. The results of the 
experimentation are summarized in Table 1. 

As to the first launch in detail, we have obtained 
a medium relative error in computing both the sum 
and count functions, whereas the avg function pro-
duced a low relative error. The Bayesian network 
infers that the probability to observe a medium 
relative error is 79%, while the probability to obtain 
a low relative error is only 21%. So, we point out 
that the probabilistic model provides a good esti-
mate of the relative error in the case of the sum and 
count functions. On the contrary, this estimate does 
not agree with the relative error obtained when com-
puting the avg function. 

Evidently, this probabilistic model is not quite 
powerful, as the relative error depends also on the 
kind of function. 

The non-reliability of the estimation in the case 

of the avg function is due to the training set we have 
utilized, which does not take into account this kind 
of function. (Indeed, in the training set, the function 
used for the computation was always the sum 
function.) 

Now, we analyse more deeply the experimental 
data in order to highlight the trend of the probabilis-
tic model in reference to the three aggregate func-
tions. 

As concerns the sum function, we notice that the 
probabilistic model has always provided a good esti-
mate of the relative error. In fact, in every launch, 
the highest estimated confidence degree exactly cor-
responds to the value of the relative error obtained 
in computing that function. Therefore, we have 
obtained the 100% of good estimates for the sum 
function (cf, Figure 9a). 

As concerns the count function, the value of the 
relative error is low in the 10th launch whereas there 
is the highest confidence degree (viz, 75%) on the 
medium value in the estimate provided by the 
Bayesian network. Since we expected to have a 

Table 1.  Experimental set-up of probabilistic accuracy measure. 

launch 
# 

data 
cardinality 

query range 
width 

approx. 
degree 

 relative error per function  error probabilistic estimation

 sum count avg  low medium high 

1 104 50 % 27   medium   medium   low   21 %  79 %  0 %  
2 103 90 % 7   medium   medium   medium   40 %  60 %  0 %  
3 104 10 % 7   high   high   medium   0 % 30 %   70 %  
4 104 50 % 7   medium   medium   low   10 %  85 %  5 %  
5 103 10 % 27   high   high   medium   5 % 40 %   55 %  
6 106 50 % 17   medium   medium   low   0 %  100 %  0 %  
7 105 10 % 7   medium   medium   low   5 %  55 %  40 %  
8 106 50 % 27   medium   medium   low   0 %  100 %  0 %  
9 105 50 % 17   medium   medium   low   25 %  75 %  0 %  

10 103 50 % 7   medium   low   medium   10 %  75 %  15 %  

Good estimation   Bad estimation 

a)                b)             c)  

Fig. 9.  Analysis of probabilistic accuracy estimation of  a) sum, b) count, and c) avg aggregate functions. 
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medium relative error (with 75% of probability) 
according to the probabilistic model, but we 
observed a low relative error in the computation of 
the count function, we derive that the model fails 
about one prediction on ten for this function (cf, 
Figure 9b). 

Finally, as concerns the avg function, we notice 
that the model is not a good estimator. In fact, only 
in the second and the tenth launch we obtained an 
estimate coherent with the observed relative error 
and, then, we conclude that the model fails about 
eight predictions on ten for this function (cf, Figure 
9c). 

6 Future Work 
Future work is mainly devoted to extend the prob-
abilistic model to take into account multidimen-
sional distributions. 

In particular, we need to include in the network 
the influence that the kind of aggregate function 
performs on the relative error. In fact, in multidi-
mensional cases, we have experienced that the trend 
of the count function is quite different from that of 
the sum function while the sum function is very 
close to the average function. 

Moreover, we need to introduce also query range 
stochastic variables, as we have more than one 
attribute (or dimension) and, for each attribute, the 
query range width can be 10%, 50%, or 90% inde-
pendently of each other. 

As an example, let us consider the relation R(X1, 
X2, X3, X4) and an aggregate query that involves the 
10% of (the active domains of) attributes X1 and X2, 
and the 50% of attributes X3 and X4. So, the query 
range of the aggregate query is determined by the 
number of dimensions (ie, four) and the width of the 
query interval involved for each attribute. Now, a 
question arises. Where can we put the evidence on 
the width node: in the 10% node value, the 50% 
node value, or in the 90% node value? The correct 
answer is none of these. In fact, traditional Bayesian 
networks are based on the Boolean logic, where the 
evidence can be either true or false. (According to 
this, we can only state that today is cloudy or not, 
for example.) Consequently, the evidence true can 
be put only on one node per time. On the other 
hand, Fuzzy Bayesian networks [27] are based on 
the fuzzy logic [28]. According to the fuzzy logic, 
the evidence ranges from 0 to 1. Thus, it is possible 
to state that today is 50% cloudy, for example. To 
conclude the example, we need to put the 50% of 
evidence on the 10% node value of the width 
stochastic variable (as the query involves the width 
10% for attributes X1 and X2), and the 50% of 

evidence on the 50% node value of the width 
stochastic variable (for the query involves the width 
50% for attributes X3 and X4). The probabilistic 
model of the next (Fuzzy) Bayesian Network is 
shown in Figure 10. 

 
Fig. 10.  Bayesian network for multidimensional 

analyses. 

Another important issue is to consider stochastic 
variables varying on continuous domains, instead of 
using multinomial variables. For example, the 
relative error is currently classified according to 
three possible values (viz, low, medium, and high) 
whereas it may be useful to have relative errors 
ranging in the [0, 1] interval. 

7 Conclusions 
A Bayesian network is able to model the cause-
effect relationships existing among the main random 
variables occurring in approximate query process-
ing. 

The presented probabilistic model provides an 
estimation of the relative error that the approximate 
query process yields, furnishing both the error 
bounds and confidence degree useful to estimate the 
real query answers.  

Encouraging experimental results have con-
firmed that the probabilistic model is a good estima-
tor of the relative error. 

However, the experimentation has also high-
lighted the importance of how the training set to be 
used in the probabilistic model is constructed. For 
this reason, future work will address the extension 
of the current Bayesian network to consider further 
variables affecting the relative error. 
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These variables should include the kind of 
aggregate functions in constructing the training set, 
and the number of dimensions of the relations. In 
fact, for a multidimensional query, it has to be 
investigated how to specify the query range width 
relative to each dimension. 
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