
Design using UML diagrams of an educational informatics system for
the study of computational geometry elements

ANCA IORDAN, MANUELA PANOIU

Technical University of Timişoara, Engineering Faculty of Hunedoara,
Revoluţiei 5, 331128 Hunedoara

ROMANIA
anca.iordan@fih.upt.ro

Abstract: - This paper presents the necessary stages in implementing an informatics system used for the study
of computational geometry elements, such as determining the parallel and perpendicular to a given line
through a point, to verify the property that a point lies within a triangle, verification of the convex or concave
property of a polygon, the determination of the convex hull of a set of points. The modeling of the system is
achieved through specific UML diagrams representing the stages of analysis, design and implementation, the
system thus being described in a clear and concise manner.

Key-Words: - Educational Software, Computational Geometry, Java, Distance Education.

1 Introduction
The multimedia technologies transformed the
computer into a valuable interlocutor and allowed
the students, without going out of the class, to
assist the lessons of different emeriti scientists and
professors, to communicate with persons located in
different countries, to have access to different
information [1,3]. By a single click of the mouse,
the student can visit an artistic gallery, read the
originals for writing a history paper or visualize
information for a narrow profile, which couldn’t be
found five-ten years ago.

One of the main aspects of using computer for
lessons is the development of the student’s creative
thinking. An optimal mean in this case is the
introduction in the computational training means of
the interactivity elements [2,4,5]. The „interactivity”
term means „to interact, to influence one-to-
another”. This property of the computational
technologies is absolutely unique compared with
television, lectures, books, instructive movies etc.

2 Development stages of the educa-
tional informatics system

2.1 System’s analysis
Using the UML modeling language, the analysis of
an informatics system consists in drawing the use
case and activity diagrams [6]. The software utility
ArgoUML [7] was used to construct the diagrams.

The informatics system will be described in a
clear and concise manner by representation of the

use-cases. Each case describes the interaction
between the user and the system. The use case
diagram is represented in figure 1.

The presented diagram defines the system’s
domain, allowing visualization of the size and scope
of the whole developing process. It contains:

 an actor - the user who represents the external
entity with which the system interacts;

 six use cases describing the functionality of
the system;

 relationships between the user and use cases
(association relationships) and the relationships
between use cases (generalization relationships).

For each use-case in the diagram presented
earlier an activity diagram is constructed. Each
diagram will specify the processes and algorithms
that are behind the use cases studied.

Activity diagrams [8] are represented by nodes
(with partitions and branches) or conditional blocks
(with decisions).

The activity diagrams are used to visualize,
specify, build and document dynamic issues related
to the informatics system processes. They focus on
flow control seeking the transition, in a certain
order, from one activity to another.

Figure 2 present the activity diagram
corresponsive to the use-case “Determination of a
perpendicular and a parallel to a line through a
point”.

Figure 3 present the activity diagram
corresponsive to the use-case “Check property if a
point is inside a triangle” and figure 4 present the
activity diagram corresponsive to the use-case
“Verifies if a polygon is convex”.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 960 Issue 9, Volume 9, September 2010

Fig.1 Use-cases diagram

Fig. 2 Activity diagram for the use-case

“Determination of a perpendicular and a parallel to a
line through a point”

Fig. 3 Activity diagram for the use-case “Check

property if a point is inside a triangle”

2.2 System’s designing

2.2.1 Class Diagrams
Conceptual modeling [9] allows the identification of
the most important concepts for the system.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 961 Issue 9, Volume 9, September 2010

Fig. 4 Activity diagram for the use-case

“Verifies if a polygon is convex”

 Since classes are concepts, the following two
diagrams present the classes that will be used in the
project.

Figure 5 presents the inheritance and
achievement relationships used. It may be noted that
all attributes and methods of the JPanel class will
apply to the derived class Desen, which implements
two interfaces, Runnable and MouseInputListener.

The composition and aggregation relationships
that exist between instances of the classes in the
architecture are shown in figure 5.

Aggregation relationship is a partnership where
the whole and the part are specified. By analyzing
figure 6, it is apparent that an object of type Dreapta
or type Graham is part of an object of type Proiect.

The difference of the composition relationship,
with respect to aggregation, is that the instance of
the whole could not exist without part objects.

Fig.5 Class diagram

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 962 Issue 9, Volume 9, September 2010

Fig.6 Class diagram

When looking at figure 6 one can see that a type

DesenTriunghi instance consists of five Punct2D
type items, one Triunghi2D object type and one
Graphics2D object type.

In such a relationship it is possible for an object
to belong to several instances of a whole. For
example object type Punct2D belongs to
DesenTriunghi, DesenDreapta, Desen, Desen1 and
Desen2 type instances.

Both class diagrams shown contain specific
classes to the application as well as existing classes
and interfaces from Java.

2.2.2 Sequence Diagrams
Sequence diagrams [10] describe the behavior of a
set of objects in a certain context, emphasizing the
temporal aspect.

The diagram shown in figure 7 reflects the
interactions between objects, the purpose of which is
drawing a triangle with specified points.

Note that there are interactions between 11

objects, from which the object type Triunghi is
already created and object types DesenTriunghi,
TextArea, Graphics2D, Punct2D, String and
Triunghi will be instantiated during interactions.

These objects are represented on the Ox axis and
the messages sorted ascending by time are
represented on the Oy axis. At first, execution
control is acquired by the object type Triunghi
which creates instances of classes DesenTriunghi,
TextArea and Graphics2D.

Now control is acquired by the newly created
instance DesenTriunghi which will allow the
creation of the triangle endpoints through
interactions with Punct2D, String, Graphics2D and
TextArea object types.

Thereafter control is passed to the object of type
DesenTriunghi which that will instantiate the object
type Triunghi2D. The last post will lead to the
redesign of the geometrical construction which will
now include the previously created triangle.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 963 Issue 9, Volume 9, September 2010

Fig.7 Sequence diagram

2.2.3 State chart diagrams
The objects corresponding to the classes presented
posses both behavior and internal state, in other
words, they fulfill certain actions and posses
information.

State chart diagrams can be developed in order
to understand them. UML state chart diagrams [11]
describe the different states an object can be found
in and the transitions between these states.

Figure 8 illustrates, the state chart diagram
corresponding to an instance of the class Desen,
class which implements the Runnable interface
corresponding to threads.

2.2.4. Collaboration diagrams
Collaboration diagrams describe [12], same as
sequence diagrams, the conduct of a set of objects in
a certain context, focusing on organizing objects
participating in an interaction.

These diagrams are graphs, their peaks are
objects participating in the interaction and the arcs
represent the links between instances.The diagram
shown in figure 9 reflects the interactions between
objects aimed at drawing a triangle. Note that the
following interactions between objects types exist:
Triunghi, DesenTriunghi, Punct2D, Triunghi2D,
TextArea, String and Graphics2D.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 964 Issue 9, Volume 9, September 2010

Fig.8 State chart diagram

Fig. 9 Collaboration diagram

2.3 System’s implementation
The component diagram [13] allows the
visualization of the module in which the system is
broken into and the dependencies between modules.
The component diagram emphasis on physical
software components (files, libraries, executables)
and not on logic components, such as packages.

The diagram in figure 10 describes the collection

of components that all together provide functionality
for the educational informatics system that allows
geometric constructions in the plan.

The central component of the diagram
Proiect.class is obtained by transforming the
component Proiect.java into executable code by the
Java compiler. It can be noted that this component
interacts directly only with components
Dreapta.class, Triunghi.class, Graham.class,
Poligon_convex..class and Jarvis.class.

3 User interface
The application "Computational Geometry
Elements” is accomplished using the Java
programming language [14, 15]. The main page of
the application contains buttons for selecting the
following options: perpendicular and parallel to a
line through a point inside a triangle, the verification
of the convexity of a polygon, the determination of
the convex hull using Graham and Jarvis methods.

By selecting "Parallel and perpendicular to a
line through a point”, a new window is opened
containing the drawing area, an image containing
formulas used to calculate the parallel and
perpendicular to a line, a text component containing
the equations of the lines and two radio buttons to
select the type of line (perpendicular or parallel).

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 965 Issue 9, Volume 9, September 2010

Fig.10 Component diagram

The second option of the main window opens

another window (Fig. 11) to check if a point is
inside a triangle drawn by the user. This window
contains a drawing area, an image that contains the
formula for calculating area of a triangle, a text
component containing the coordinates of peak
triangles and their areas, and result verification.

The triangles are drawing by the following
method of the class DesenTriunghi:
public void paint(Graphics g1) {
 g=(Graphics2D) g1;
 g.clearRect(0,0,this.getWidth(),this.getHeight());
 g.setColor(Color.yellow);
 g.fillRect(0,0,this.getWidth(),this.getHeight());
 String s;
 A.setCuloare(Color.red);
 A.desenare(g,this.getWidth(),this.getHeight());
 B.setCuloare(Color.red);
 B.desenare(g,this.getWidth(),this.getHeight());
 C.setCuloare(Color.red);
 C.desenare(g,this.getWidth(),this.getHeight());
 M.setCuloare(Color.blue);
 M.desenare(g,this.getWidth(),this.getHeight());
 f.stergRezultat(); s=new String("Punct A(";
 s+=String.format("%.1f",A.getX())+",";

s+=String.format("%.1f",A.getY())+")");
f.setRezultat(s); s=new String("\nPunct B(";
s+=String.format("%.1f",B.getX())+",";
s+=String.format("%.1f",B.getY())+")");
f.setRezultat(s);
s=new String("\nPunct C(";
s+=String.format("%.1f",C.getX())+",";
s+=String.format("%.1f",C.getY())+")");
f.setRezultat(s); s=new String("\nPunct M(";
s+=String.format("%.1f",M.getX())+",";
s+=String.format("%.1f",M.getY())+")");
f.setRezultat(s); g.setColor(Color.red);
t.desenare(g,this.getWidth(),this.getHeight());
t1.desenare1(g,this.getWidth(),this.getHeight(),new
Color(155,65,30,100));
t2.desenare1(g,this.getWidth(),this.getHeight(),new
Color(0,255,0,80));
t3.desenare1(g,this.getWidth(),this.getHeight(),new
Color(155,55,150,120));
s=new String("\nAria triunghiului ABC este ";
s+=String.format("%.2f",a));
f.setRezultat(s);
s=new String("\nAria triunghiului MAB este ";
s+=String.format("%.2f",a1));
f.setRezultat(s);

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 966 Issue 9, Volume 9, September 2010

Fig.11 Point inside of a triangle

s=new String("\nAria triunghiului MAC este ";
s+=String.format("%.2f",a2));

 f.setRezultat(s);
 s=new String("\nAria triunghiului MBC este ";
 s+=String.format("%.2f",a3));
 f.setRezultat(s);

 if (cod)
 s=new String("\nPunctul M este in interiorul
triunghiului ABC");
 else s=new String("\nPunctul M nu apartine
interiorului triunghiului ABC");
 f.setRezultat(s);
 }}

The next option allows the user to open a window
(Fig. 12) where it can be verified whether or not a
polygon is convex. This window contains a drawing
surface on which the points that will form the
polygon are selected, an image containing the
algorithm used to verify the property, three buttons,
a label that displays the number of points and a text
component that will display the coordinates of the
polygon endpoints.

The method of the class Poligon2D which draw
the polygon is presented forwards:
public void desenare(Graphics2D g) {
 figura=new GeneralPath();
 int xe,ye,a,b;
 a=(int)(latime/2);
 b=(int)(inaltime/2);
 xe=Desen.xecran(latime,a,V[0].getX());
 ye=Desen.yecran(inaltime,b,V[0].getY());
 figura.moveTo(xe,ye);
 for (int i=1;i<nr;i++) {
 xe=Desen.xecran(latime,a,V[i].getX());
 ye=Desen.yecran(inaltime,b,V[i].getY());
 figura.lineTo(xe,ye);}
 xe=Desen.xecran(latime,a,V[0].getX());
 ye=Desen.yecran(inaltime,b,V[0].getY());
 figura.lineTo(xe,ye);
 g.setColor(new Color(255,0,0,110));
 g.fill(figura);
 g.setColor(culoare);
 g.setStroke(stil);
 g.draw(figura);}

Fig.12 Concave Polygon

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 967 Issue 9, Volume 9, September 2010

Selecting "Graham Method" opens a window
(Fig. 13) with a program that determines the convex
hull of a set of points.

This window contains a drawing surface, an
image that contains the algorithm used, three
buttons, two labels and two text components
containing the initial points and those points which
are in the list determined by the hull.

After selecting the points on the drawing area by
clicking the button Animaţie a thread, that will allow
the simulation of the algorithm for determining the
convex hull, is instantiated. At first the nearest point
to the origin is determined.

The points’ vector is then scanned and sorted
according to the polar angle. After the points’ vector
was sorted the points’ list will appear sorted by the
polar angles to the minimum point determined
during the algorithm’s first stage.

Further, the first three points are added to the
chosen list. They will be displayed in the appropriate
text component and on the drawing surface they will
be colored in red so they can stand out. Further, for
every three points, a check is performed to
determine whether the angle formed by these points
cancels the polygon’s convexity.

If so, the second point is then removed from the
stack and will be colored black. If the angle formed
by the three points does not cancel the polygon’s
convexity, then the three points are inserted into the
stack and will be colored red.

The method of the class Desen1 which presents
step-by-step the Graham algorithm is presented
forwards:
public void run() {
 repaint(); pauza(500); sortare(); pas=2;

 f.stergereLista(); f.setLista(P0,1);
 for (int poz=1;poz<puncte.size();poz++) {
 Q=new Punct2D((Punct2D)puncte.get(poz));
 f.setLista(Q,1); repaint(); pauza(500); }
 pas=3; infasuratoare=new Vector();
 infasuratoare.add(P0); f.setLista(P0,2);
 infasuratoare.add((Punct2D)puncte.get(1));
 f.setLista((Punct2D)puncte.get(1),2);
 infasuratoare.add((Punct2D)puncte.get(2));
 f.setLista((Punct2D)puncte.get(2),2);
 parcurse=new Vector();
 repaint(); pauza(500); pas=4;
 for (int i=3;i<puncte.size();i++) {
 cod=false;
 while (!cod && infasuratoare.size()>=2) {
 P=new Punct2D((Punct2D)infasuratoare.
get(infasuratoare.size()-2));
 Q=new Punct2D((Punct2D)infasuratoare.
get(infasuratoare.size()-1));
 R=new Punct2D((Punct2D)puncte.get(i));
 triunghi=true; repaint();
 pauza(1000); triunghi=false;
 if (P.determinant(Q,R)>=0) {
 infasuratoare.add(R); f.setLista(R,2);
 repaint(); pauza(1000); cod=true;
 }
 else {
 f.stergLista();
 parcurse.add((Punct2D)infasuratoare.
get(infasuratoare.size()-1));
 infasuratoare.remove(infasuratoare.size()-1);
 repaint(); pauza(1000); }
 } while (!cod && infasuratoare.size()>=2); }
 repaint(); pauza(1000); }

Fig. 13 Graham Algorithm

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 968 Issue 9, Volume 9, September 2010

 The last option of the application allows the user
to open another window where the convex hull of a
set of points using Jarvis’s match algorithm (Fig.
14). This window has the same elements as the
Graham Scan.

The application was created to facilitate the
understanding of some basic concepts in
computational geometry. With the help of the
"Graphics2D" class, offered by the Java language, it
was possible to achieve an application which
simulates very realistically the necessary algorithms’
steps needed to determine the requirements of each
option.

The method of the class Desen2 which presents
step-by-step the Jarvis algorithm is presented
forwards:
public void run() {
 infasuratoare=new Vector();
 infasuratoare.add(P0);
 f.setLista(P0,2);
 repaint();
 pauza(1000);
 crt=new Punct2D(P0);
 pozCrt=0;

 pas=2;
 do {
 crt=new Punct2D((Punct2D)sortare(pozCrt+1));
 infasuratoare.add(crt);
 f.setLista(crt,2);
 pozCrt=pozitie(crt);
 repaint();
 pauza(1000);
 }while(!(crt.getX()==Q.getX()&&
crt.getY()==Q.getY()));
 pas=3;
 do {
 crt=new Punct2D((Punct2D)sortare1(pozCrt-1));
 infasuratoare.add(crt);
 f.setLista(crt,2);
 pozCrt=pozitie(crt);
 repaint();
 pauza(1000);
 } while(!(crt.getX()==P0.getX()&&
crt.getY()==P0.getY()));
 pas=4;
 repaint();
 pauza(1000);
 }

Fig. 14 Jarvis Algorithm

The convex hull of a set of points obtains with

Jarvis algorithm is draw by the following method of
class Desen2:
public void paint(Graphics g1) {
 g=(Graphics2D) g1;
 g.clearRect(0,0,this.getWidth(),this.getHeight());
 g.setColor(Color.yellow);
 g.fillRect(0,0,this.getWidth(),this.getHeight());
 Punct2D x;

 for (int i=0;i<puncte.size();i++)
 { x=(Punct2D)puncte.get(i);
 x.setCuloare(Color.blue);
 x.desenare(g,this.getWidth(),this.getHeight());
 }
 if (pas>=1) {
 for (int i=0;i<infasuratoare.size();i++){
 x=(Punct2D)infasuratoare.get(i);
 x.setCuloare(Color.red);

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 969 Issue 9, Volume 9, September 2010

 x.desenare(g,this.getWidth(),this.getHeight());
 }
 if (pas==2||pas==3) {
 int xe1,ye1,xe2,ye2;
 Punct2D B;
 g.setColor(Color.red);
 g.setStroke(new BasicStroke(2.2f));
 for (int i=1;i<infasuratoare.size();i++) {
 B=new Punct2D((Punct2D)infasuratoare.get(i-1));
 xe1=Desen.xecran(this.getWidth(),(int)(this.
getWidth()/2),B.getX());
 ye1=Desen.yecran(this.getHeight(),(int)(this.
getHeight()/2),B.getY());
 B=new Punct2D((Punct2D)infasuratoare.get(i));
 xe2=Desen.xecran(this.getWidth(),(int)(this.
getWidth()/2),B.getX());
 ye2=Desen.yecran(this.getHeight(),(int)(this.
getHeight()/2),B.getY());
 g.drawLine(xe1,ye1,xe2,ye2);
 }
 }
 if (pas==4){
 Punct2D[] V=new Punct2D[infasuratoare.size()];
 for (int i=0;i<infasuratoare.size();i++)
V[i]=new Punct2D((Punct2D)(infasuratoare.get(i)));
 Poligon2D poligon;
 poligon=new Poligon2D(infasuratoare.size(),V);
 poligon.setCuloare(Color.red);
 poligon.desenare(g,this.getWidth(),
this.getHeight());
 }
 }}

4 Conclusion
Through the diagram representation all three phases:
analysis, design and implementation, the educational
informatics system has been described in a clear and
concise manner. The use of the UML modeling
language for the creation of the diagrams is
characterized by rigorous syntactic, rich semantic
and visual modeling support.

The diagrams were made using a new approach,
multidisciplinary of the informatics application,
encompassing both modern pedagogy methods and
discipline-specific components. The link between
teaching activities and scientific goals and
objectives was established through the development
of the new methods and the assimilation of new
ways, capable of enhancing school performance,
enabling students to acquire the knowledge and
techniques required and apply them in optimum
conditions.

References:
[1] C. Cucos, “Pedagogy”, Polirom Press, Iasi,

2002
[2] D. Glusac, D. Radosav, D. Karuovic, D. Ivin,

“Pedagogical and Didactic-Methodical Aspects
of E-learning”, 6th WSEAS International
Conference on E-ACTIVITIES, Tenerife, Spain,
December 14-16, 2007, pp. 67-75

[3] L.Y. Por, A.B. Zaitun, An Adaptive User
Assessment Model for e-Learning, WSEAS
TRANSACTIONS on ADVANCES in
ENGINEERING EDUCATION, Issue 3, Vol. 5,
March 2008, pp. 158-167

[4] C.E. Iglesias, A.G. Carbajo, M.A. Sastre Rosa,
Interactive tools for Discrete Mathematics e-
learning, WSEAS TRANSACTIONS on
ADVANCES in ENGINEERING EDUCATION,
Issue 2, Vol. 5, February 2008, pp. 97-103

[5] A. Ahmad, S.S. Salim, R. Zainuddin, A
Cognitive Tool to Support Mathematical
Communication in Fraction Word Problem
Solving, WSEAS TRANSACTIONS on
COMPUTERS, Issue 4, Vol. 7, April 2008, pp.
228-236

[6] M. Fowler, K. Scott, “UML Distilled: A Brief
Guide to the Standard Object Modeling
Language”, Addison Wesley, Readings MA,
USA, 2000

[7] http://argouml.tigris.org
[8] J. Odell, “Advanced Object Oriented Analysis&

Design using UML”, Cambrige University Press,
1998

[9] J. Rumbaugh, I. Jacobson, G. Booch, “The
Unified Modeling Language Reference Manual”,
Addison Wesley, 1999

[10] S. Bennet, S. McRobb, R. Farmer, “Object
Oriented Systems Analysis and Design”,
McGraw Hill, 1999

[11] G. Booch, J. Rumbaugh, I. Jacobson, “The
Unified Modeling Language User Guide”,
Addison Wesley, 1999

[12] D. Bocu, Modelare orientata obiect cu UML,
Editura Albastra, Cluj-Napoca, 2006

[13] D. Bocu, Initiere in modelarea obiect orientata a
sistemelor soft utilizand UML, Editura Albastra,
Cluj-Napoca, 2002

[14] C. Mark, W. Steven, A. Griffith, “Java”, Teora
Press, Bucureşti, 2002

[15] S. Tănasă, C. Olaru, S. Andrei, Java de la 0 la
expert, Polirom Press, Iasi, 2007

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu

ISSN: 1109-2750 970 Issue 9, Volume 9, September 2010

