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Abstract: - In this work will be presented the design of an intelligent system destined for development process 
of demonstrating abilities for geometry theorems. This system will make available to user a proof assistant 
which will allow interactive vizualization of several demonstrations for the same theorem, demonstrations that 
have been generated by using three specific methods for automatic demonstration of theorems: area method, 
full-angle method and inferences accomplishment. For the implementation of the component used to represent 
knowledge and proof mechanisms will be used Prolog language and for the achievement of geometric 
construction associated to the theorem will be used Java language. 
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1   Introduction 
Dynamic geometry software and computer algebra 
software are the most widely used software for 
mathematics in education. Dynamic geometry 
software allow the user to create geometric 
constructions and to animate these constructions by 
dragging the free objects. All the depending objects 
are updated in real time. As the proving activity is 
central in mathematics, it is surprising that most 
software systems which are in widespread use to 
teach mathematics can not deal with this activity. 
Software which are specialized in proofs do exist, 
they are called proof assistants. Adapting proof 
assistants to be used in the classroom is an active 
research field [1]. 

The education community has studied the 
impact of the use of Dynamic Geometry Software on 
the proving activity [2,3]. Dynamic Geometry 
Software are mainly used for two activities:  

 to make the student create geometric 
constructions;  

 to make the student explore the figure, 
invent conjectures and check facts. 

We believe that these software systems should 
also be used to help the student in the proving 
activity itself. Work has been performed in this 
direction and several Dynamic Geometry Software 
with proof related features have been produced. 
 
 
1.1 Analysis of the existing dynamic 
geometry software 
There are quite many dynamic geometry software: 

Cabri Euclide, Cabri Geometer, Chypre, Cinderella, 
Dr. Geo, Euclid, Euklid DynaGeo, Eukleides, 
GeoLabo, Geometria, Geometrix, Geometry 
Explorer, Geometry Tutor. But few can deal with 
proofs: Cabri Euclide, Chypre, Cinderella, 
Geometrix, Geometry Explorer, Geometry Tutor. 

These systems can be roughly classified into two 
categories: 

 the systems which permit to build proofs;  
 the systems which permit to check facts 

using an automated theorem prover. 
The Geometry Tutor [4], Chypre [5], Cabri-

Euclide [6] and Geometrix [7] systems belongs to 
the first category. Using these systems the student 
can produce proofs interactively using a set of 
known theorems. In most of these systems the 
student can not invent a proof very different from 
what the program had pre-computed using 
automated theorem proving methods.  

Geometry Explorer [8] and Cinderella [9, 10] 
belongs to the second category. Geometry Explorer 
provides a diagrammatic visualization of proofs 
generated automatically by a Prolog implementation 
of Chou's full angle method [11]. Cinderella allows 
to export the description of the figure to computer 
algebra software systems to perform algebraic 
proofs. 
 
 
1.2 Approaches to proving geometry 
theorems 
There are two approaches to proving geometry 
theorems using computers: the artificial intelligence 
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approach and the algebraic computation approach. 
The earliest work in geometry theorem proving by 
computer programs was done by Gelernter and his 
collaborators [12].  

It was based on the human simulation approach 
and has been considered a landmark in the artificial 
intelligence area for its time. In the area of algebraic 
computation approach, the earliest work dates back 
to Hilbert. In his classic book [13], Hilbert outlined a 
decision method for a class of constructive geometry 
statements in affine geometry.  

A breakthrough in automated geometry theorem 
proving is made by Wu. Restricting himself to a 
class of geometry statements of equality type, Wu 
introduced a method in 1977 which can be used to 
prove quite difficult geometry theorems efficiently 
[14]. Ko and Hussain [15], Wang and Hu [16], Gao 
[17], Kapur and Wan [18] also succeeded in 
implementing theorem provers based on various 
modified version of Wu’s method.  

The success of Wu’s method has revived interest 
in proving geometry theorems by computers. In 
particular, the application of the Gröbner basis 
method [19] to the same class of geometry theorems 
that Wu’s method addresses has been investigated.  

More recently, the artificial intelligence 
approach has been revived to such an extent that it 
can solve hundreds of difficult geometry problems 
and produce multiple and shortest proofs for 
geometry theorems efficiently [20].  

The artificial intelligence approach is also used 
for automated generation of construction steps of 
geometric diagrams and successfully applied to 
many difficult geometric problems. Methods of 
automated reasoning in geometry have a wide range 
of applications, including kinetic analysis of 
robotics, linkage design, computer vision, etc. 

 
1.2.1 Bracket algebra methods 
One of the earliest effort to develop coordinate free 
methods of geometric reasoning is to use techniques 
from the bracket algebra such as Cayley 
factorization [21]. The bracket algebra is a non-
commutative algebra. There is still no decision 
method similar to that of the Gröbner basis. 
Therefore, bracket algebra can only be used to do 
“computer-aided geometric reasoning”.  
In [22] an algorithm based on bracket algebra for 
proving projective geometry theorems was given. 
The basic idea is to represent geometric hypotheses 
and conclusions as algebraic relations and use 
simple algebraic computation to deduce the 
conclusion from the hypotheses. The proofs thus 
generated are very short. Based on this technique, a 
program called Cinderella has been developed [23]. 

1.2.2 Area method 
The area method uses high-level geometric lemmas 
about geometry invariants such as the area and the 
Pythagorean difference as the basic tool of proving 
geometry theorems [24]. Zhang found many elegant 
ad hoc methods based on areas of triangles to solve 
geometric problems.  

These ad hoc methods have been developed into 
a complete method of AGTP, which are surprisingly 
powerful in than it has been used to proved 
hundreds of geometry theorems of constructive type 
and the proofs are generally short and elegant. This 
method seems to be the first to produce human-
readable proofs for hard geometry theorems 
efficiently. 

 
1.2.3 Full-Angle Method 
The full-angle method [11] has been demonstrated 
to prove hundreds of geometry theorems 
automatically whilst producing proofs which are 
both short and human-readable [24, 25].  

The full-angle method relies on a single high-
level geometric invariant called the full-angle to 
prove theorems.  

The full-angle method is a rule based method 
and is not a decision procedure. But this method 
also has its advantages: all the proofs produced by 
the method are very short and it has been used to 
prove several theorems that all the other methods 
fail to prove. 

 
1.2.4 Wu’s method 
Wu’s method is the most powerful method in terms 
of proving difficult geometry theorems. Wu’s 
method is a coordinate-based method [14]. It first 
transfers geometry conditions into polynomial 
equations then deals with the polynomial equations 
with the characteristic set method. This method has 
been used to prove more than 600 geometry 
theorems. 

Following Wu the mechanization problem of 
geometry theorem proving consists mainly of three 
steps: 

 The first is the algebraization of geometry, 
namely, reducing the problem of geometry theorem 
proving to purely algebraic problem. Then the 
hypothesis and conclusion of a theorem can be 
expressed as sets of algebraic relations. 

 The second step is to well order those 
algebraic relations which correspond to the 
hypothesis of the theorem and decide whether the 
algebraic relations corresponding to the conclusion 
can be deduced from the well-ordered algebraic 
relations according to a certain procedure. This is 
called the mechanization of geometry, while the 
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procedure for determining the inference relation is 
called a mechanization method. 

 The final step is to implement the method on 
computers in order to achieve the proof of each 
theorem. 

Algebraic methods, though powerful, generally 
can only tell whether a statement is true or not. After 
Wu’s method, several researchers tried to develop 
automated geometry theorem proving (AGTP) 
methods based on vector calculation in the mid-80s 
in order to find simpler proofs [26]. 
 
1.2.5 Automated diagram generating 
Most work on automated geometry reasoning 
focused on theorem proving and discovering. In [11] 
a global propagation method for automated 
generation of construction steps of diagrams was 
presented. This method uses a forward chaining to 
find the information needed in the construction and 
uses a backward chaining to find the construction 
sequence. For a diagram described declaratively 
with geometric constraints, the method may be used 
to find a sequence of constructing steps of drawing 
the diagrams with ruler and compass. 
 
 
2   Presentation of the proposed 
informatics systems 

The system combines these features: dynamic 
geometry, automatic theorem proving and 
interactive theorem proving. 

The advantages of this system are: 
 The use of a proof assistant provides a way 

to combine geometrical proofs with larger proofs. 
 There are facts than can not be visualized 

graphically and there are facts that are difficult to 
understand without being visualized. 

 We should have both the ability to make 
arbitrarily complex proofs and use a base of known 
lemmas. 

 The verification of the proofs by the proof 
assistant provides a very high level of confidence. 

After designing the system functional 
architecture, that should allow the support of the 
didactic activity, is proposed a model for the graphic 
interface that should satisfy the specific needs of a 
didactic environment from the teachers, students and 
pupils viewpoint. Designing of the user graphic 
interfaces represents the most important phase of the 
process for implementing an intelligent training 
system. The user interface should provide all the 
necessary facilities to a student or pupil, in order to 
navigate intuitively within the application and as 
transparent possible.  

The user-oriented designing process imposes 
the interface the characteristics that allow the user to 
control the training process. A usable interface must 
be studied, achieved and repeatedly tested in order 
to maximize the efficiency and minimize the time 
necessary for the teaching and training processes. 
 
 
2.1 System’s analysis 
The informatics system will be described in a clear 
and concise manner by presenting the use-cases, 
using the UML unified modelling language [27].  

Representation of the use-cases diagram is 
shown in figure 1. Each case describes interactions 
between the user and the system. 

For each use case presented in the previous 
diagram we’ll build activity diagram. Each diagram 
will specify the processes or algorithms which are 
behind the analysed use-case.  

 

 
Fig.1 Use-cases diagram 

 
The implementation activity for the goal 

„Interactive drawing of geometric construction” was 
finalized by the following personal contributions 
[28, 29, 30, 31, 32]: 
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 efficient implementation of the classes 
corresponding to the 2D and 3D geometric elements 
by achieving of inheritance, aggregation and 
composition relationships;  

 implementation of some instantiation 
algorithms of the elements, of intersection or 
tangency, using special programming methods, 
algorithms which contribute to the rapid and 
accuracy of the desired geometric elements graphic 
representation; 

 description of the interactions between 
objects in different contexts, as well as visualizing 
the mode in which is divided the system and the 
dependencies between modules; 

 introduction of options non-existent in case 
of other such systems for achieving accurate 2D 
geometric constructions; 

 possibility to achieve 3D geometric 
constructions; 

 visualization of the 3D geometric elements 
as two-dimensional images in the projection plan, 
using the desired orthogonal projection. 

The use-case “Introduction of hypothesises and 
the conclusion of the theorem” will allow the 
reception of data about the problem that is to be 
resolved and the translation of this data obtaining 
this way the facts base. This use-case will interact 
with the use-case that allows the drawing of 
geometric figures.  

Starting with the facts base, the intelligent system 
will offer the option of drawing automatically the 
geometric figure corresponding to the theorem but 
there will exist also the variant of accomplishing the 
geometric figure interactively. 

The achievement of the use-case “Theorem 
demonstration” will be made by traversing the next 
stages: 

 Accomplishment of the representation of 
geometric knowledge component; 

 Implementation of demonstrating mecha-
nism; 

 Accomplishment of design assistant. 
Representation of geometric knowledge 

component will consist from a number of declaring 
modules, each of them adding to the knowledge base 
new geometry concepts and theorems.  

Geometric objects will be represented as facts in 
the facts base and for definitions and theorems will 
be used rules. The programming language used to 
represent knowledge will be Prolog. 

For implementing the demonstration mechanism 
in Prolog language will be used three methods that 
are specific to geometry theorems demonstration: 

 area method;  
 full-angle method; 
 combining the forward and backward 

chaining techniques.  
The activities deployed for implementing the 

component for interfaces accomplishment are: 
 Representing solution by AND/OR trees; 
 Combining the forward and backward 

chaining techniques; 
 

 Optimizing these techniques by choosing the 
optimal heuristic information for obtainig the 
solution; 

 Determination of the efficiency for this 
method by comparing it with the demonstrations 
generated through utilising the area method and the 
full-angle method.  

For the accomplishment of demonstrating 
assistant the next steps are going to be followed: 

 Fruition of the graphical window with it’s 
corresponding menu and instruments; 

 Obtaining corresponding stages of the 
algorithm used for the demonstration of the theorem 
and the accomplishment of the corresponding 
diagram; 

 Graphical representation of the transited 
steps in demonstration through using the prius 
created diagram. 

The intelligent system will offer the possibility 
of comparing the demonstrations of the same 
theorem using the three methods, thus developping 
the users abbilities to demonstrate theorems. 
 
 
2.2 System’s designing 
Designing of data structures is crucial for the 
stability and performance of the entire intelligent 
system. If we think to hierarchies of classes for an 
object-oriented system for dynamic geometry, we’ll 
end by representing the inheritance as in the trees 
from [33,34].  

The basic class for all 2D geometric objects is 
Element2D. This class contain all the methods and 
attributes which are used for all geometric elements, 
such as, for example, the colour and drawing style 
of a geometric element, and its drawing methods. 
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Fig.2 Part from structure of an instance of the Desen2D class 

  
Subclasses of the Element2D class, such as: 

Point2D, Line2D, Segment2D, Vector2D, 
Patrulater2D, Triunghi2D, Elipsa2D, Hiperbola2D, 
Parabola2D contain additional data which are 
necessary for the respective geometric element, such 
as: coordinates of a point, extremities of a segment, 
origin and extremity of a vector, coefficients from 
the equation of a line. 

Beside these classes corresponding to the 
geometric concepts, there are classes that contain 
algorithms for representation both of the 
independent geometric elements, and the dependent 
ones, such as: intersection of two unparallel lines, 
circle circumscribed to a triangle, tangent and 
normal to a conical in a point.  

The class Desen2D contains algorithms for 
representation of 2D geometric constructions.  

In figure 2 is presented a part of the structure for 
the Desen2D class that contains a list with all the 
geometric elements that have been created and 
which are instances of the Element2D class. 
Algorithms operate with data that is stored through 
attributes of instances.  

The first presented algorithm receives as input 
data two Punct2D elements and returns an instance 
of the Dreapta2D class determined through the 
input data. The intersection algorithm receives also 
two input data: one instance of the Dreapta2D class, 
previously created, and one instance of Cerc2D 
class. If the line is secant to the circle then the 
algorithm will return, as output data, two instances 
of the Punct2D class that represents the intersection 
points.  

Figure 3 presents the inheritance and 
achievement relationships used. It may be noted that 
all attributes and methods of the JPanel class will 
apply to the derived class Desen2D, which 
implements  MouseInputListener interface.  

 
 
2.3 Sequence diagrams 
The sequence diagram [35] is used primarily to show 
the interactions between objects in the sequential 
order that those interactions occur. Much like the 
class diagram, developers typically think sequence 
diagrams were meant exclusively for them. 

The sequence diagrams for this software are 
made with ArgoUML-0.28. The diagram illustrate in 
figure 4 shows the interactions between objects, 
which have as purpose the drawing the triangle 
determined by three points. One can notice that there 
are interactions between twelve objects, out of which 
the objects of Desen2D, Vector<Punct2D>, 
Vector<Element2D> and Graphics2D type are 
already created, and the objects of Nume, Punct2D, 
Triunghi2D and MouseEvent type will instantiate 
during the interactions. 

These objects are represented on Ox axis and on 
Oy axis are represented the mesages ordered 
increasingly in time. At the beginning, the 
execution’s control is undertaken by the object of 
Desen2D type which creates an instance of the 
Vector<Punct2D> class. Giving back the control to 
the object of Desen2D type, further will be 
instantiated the object of Nume type.
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Fig. 3 Class Diagram  

 
Now, the control is undertaken by this newly 

created instance, that will allow the display of a 
window where will be introduced name for the new 
point. 

Further, the execution’s control is transmitted to 
the object of MouseEvent type which will lead to 
instantiate an object of Punct2D type. The 
execution’s control is transmitted to the object of 
Vector<Punct2D> type, in order to add the point 
previously created in the list of triangle vertices and 
then will be destroyed the instances of the Nume 
class and of the Punct2D class.  

Further, will be instantiated the object of 
Triunghi2D type, representing the triangle, and then 
will be destroyed the object of MouseEvent type. 
The execution’s control is transmitted to the object 

of Vector<Element2D> type, in order to add the 
triangle previously created in the list of 2D 
elements of the geometric construction, and then 
will be destroyed the instance of the Triunghi2D 
class. Finally, will be redrawn the geometric 
construction, which will include now also the 
triangle, by using the object of Graphics2D type. 

The diagram illustrate in figure 5 shows the 
interactions between objects, which have as purpose 
the drawing the triangle’s centroid and the medial 
triangle. One can notice that there are interactions 
between five objects, out of which the objects of 
DesenTriunghi, Vector<Element2D> and 
Graphics2D type are already created, and the objects 
of Element2D and Triunghi2D type will instantiate 
during the interactions. 
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Fig. 4 Sequence diagram for drawing the triangle determined by three points 

 
At the beginning, the execution’s control is 

undertaken by the object of DesenTriunghi type 
which appeals an instance of the 
Vector<Element2D> class in order to obtained the 
triangle’s centroid. 

The execution’s control is transmitted to the 
object of DesenTriunghi type and will be redrawn 
the geometric construction, which will include now 
also the triangle’s centroid by using the object of 
Graphics2D type.  

Giving back the control to the object of 
DesenTriunghi type, will be instantiated the object 

of Triunghi2D type, which represents the medial 
triangle.  

Further, the execution’s control is transmitted 
to the object of Vector<Element2D> type, in order 
to add the triangle previously created in the list of 
2D elements of the geometric construction, and 
then will be destroyed the instance of the 
Triunghi2D class.  

Finally, will be redrawn the geometric 
construction, which will include now also the medial 
triangle by using the object of Graphics2D type. 
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Fig. 5 Sequence diagram for drawing the triangle centroid and the medial triangle 

 
 The diagram illustrate in figure 6 shows the 

interactions between objects, which have as 
purpose the drawing the quadrilateral’s bimedians. 
One can notice that there are interactions between 
six objects, out of which the objects of 
DesenPatrulater, Vector<Element2D> and 
Graphics2D type are already created, and the 
objects of Element2D, Segment2D and 
Patrulater2D type will instantiate during the 
interactions.  

At the beginning, the execution’s control is 
undertaken by the object of DesenPatrulater type 
which give the execution’s control to the object of 
Vector<Element2D> type. 

Now is created an instance of Patrulater2D type 
which permits the creation of three instances of 
Segment2D class corresponsive to the three 
bimedians. Finally, will be redrawn the geometric 
construction, which will include now also the 
quadrilateral’s bimedians by using the object of 
Graphics2D type. 

The diagram illustrate in figure 7 shows the 
interactions between objects, which have as purpose 
the drawing the triangle’s circumcircle and the 
triangle’s circumcenter.  

One can notice that there are interactions between 
five objects, out of which the objects of 

DesenTriunghi, Vector<Element2D> and 
Graphics2D type are already created, and the objects 
of Element2D and Triunghi2D type will instantiate 
during the interactions.  

At the beginning, the execution’s control is 
undertaken by the object of DesenTriunghi type 
which appeals an instance of the 
Vector<Element2D> class in order to obtained the 
triangle’s circumcenter.  

The execution’s control is transmitted to the 
object of DesenTriunghi type and will be redrawn 
the geometric construction, which will include now 
also the triangle’s circumcenter by using the object 
of Graphics2D type. 

Giving back the control to the object of 
DesenTriunghi type, will be instantiated the object 
of Element2D type, which represents the triangle’s 
circumcircle.  

Further, the execution’s control is transmitted to 
the object of Vector<Element2D> type, in order to 
add the circle previously created in the list of 2D 
elements of the geometric construction.  

Finally, will be redrawn the geometric 
construction, which will include now also the 
triangle’s circumcircle by using the object of 
Graphics2D type.  
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Fig. 6 Sequence diagram for drawing the quadrilateral bimedians 
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Fig. 7  Sequence diagram for the triangle circumcircle and the triangle circumcenter 

 
2.4 The degree of originality of the 
intelligent system 
The originality of this intelligent informatic system 
consists of: 

 Automatic or interactive achievement of the 
geometric figure specific to the theorem that is going 
to be demonstrated. 

 Using several methods to demonstrate 
theorems: with this methods for the same theorem it 
is going to obtain demonstrations in different styles. 
This aspect is important for using the intelligent 
system in the process of computer assisted training 
at geometry because different methods allow pupils 
and students to explore different demonstrations. 
Secondly, for a certain class of geometry theorems, a 
particular method can produce shorter 
demonstrations than other methods. 

 Using of a demonstrating assistant: it will 
allow the combination of automatic theorem 
demonstration with the interactive one, offering a 
high level of trust in generating demonstrations. 
 
 
3   Conclusion 
Using the intelligent informatic system in studying 
geometry will contribute to forming and 
developping informatic culture of the pupils. 
Computer assisted training in the study process of 
geometry elements is also an efficient increasing 

method for the motivation of learning this discipline 
and the quality of it’s assimilation. 

The theme treated in this paper is of great 
actuality, geometry being an important component 
in forming young mathematicians, engineers or 
architects. The informatics application is 
aggregating in this great actuality and major issue 
that it approaches in a new multidisciplinary manner 
through the prism of modern educational 
technologies. 
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