
Modelling using UML diagrams of an Intelligent System for the
Automatic Demonstration of Geometry Theorems

ANCA IORDAN, MANUELA PĂNOIU, IOAN BACIU, CORINA DANIELA CUNŢAN

Technical University of Timişoara, Engineering Faculty of Hunedoara,
Revoluţiei 5, 331128 Hunedoara

ROMANIA
anca.iordan@fih.upt.ro

Abstract: - In this work will be presented the design of an intelligent system destined for development process
of demonstrating abilities for geometry theorems. This system will make available to user a proof assistant
which will allow interactive vizualization of several demonstrations for the same theorem, demonstrations that
have been generated by using three specific methods for automatic demonstration of theorems: area method,
full-angle method and inferences accomplishment. For the implementation of the component used to represent
knowledge and proof mechanisms will be used Prolog language and for the achievement of geometric
construction associated to the theorem will be used Java language.

Key-Words: - Intelligent Software, Geometry, Java, Prolog, Automatic Demonstration Theorems.

1 Introduction
Dynamic geometry software and computer algebra
software are the most widely used software for
mathematics in education. Dynamic geometry
software allow the user to create geometric
constructions and to animate these constructions by
dragging the free objects. All the depending objects
are updated in real time. As the proving activity is
central in mathematics, it is surprising that most
software systems which are in widespread use to
teach mathematics can not deal with this activity.
Software which are specialized in proofs do exist,
they are called proof assistants. Adapting proof
assistants to be used in the classroom is an active
research field [1].

The education community has studied the
impact of the use of Dynamic Geometry Software on
the proving activity [2,3]. Dynamic Geometry
Software are mainly used for two activities:

 to make the student create geometric
constructions;

 to make the student explore the figure,
invent conjectures and check facts.

We believe that these software systems should
also be used to help the student in the proving
activity itself. Work has been performed in this
direction and several Dynamic Geometry Software
with proof related features have been produced.

1.1 Analysis of the existing dynamic
geometry software
There are quite many dynamic geometry software:

Cabri Euclide, Cabri Geometer, Chypre, Cinderella,
Dr. Geo, Euclid, Euklid DynaGeo, Eukleides,
GeoLabo, Geometria, Geometrix, Geometry
Explorer, Geometry Tutor. But few can deal with
proofs: Cabri Euclide, Chypre, Cinderella,
Geometrix, Geometry Explorer, Geometry Tutor.

These systems can be roughly classified into two
categories:

 the systems which permit to build proofs;
 the systems which permit to check facts

using an automated theorem prover.
The Geometry Tutor [4], Chypre [5], Cabri-

Euclide [6] and Geometrix [7] systems belongs to
the first category. Using these systems the student
can produce proofs interactively using a set of
known theorems. In most of these systems the
student can not invent a proof very different from
what the program had pre-computed using
automated theorem proving methods.

Geometry Explorer [8] and Cinderella [9, 10]
belongs to the second category. Geometry Explorer
provides a diagrammatic visualization of proofs
generated automatically by a Prolog implementation
of Chou's full angle method [11]. Cinderella allows
to export the description of the figure to computer
algebra software systems to perform algebraic
proofs.

1.2 Approaches to proving geometry
theorems
There are two approaches to proving geometry
theorems using computers: the artificial intelligence

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 949 Issue 9, Volume 9, September 2010

approach and the algebraic computation approach.
The earliest work in geometry theorem proving by
computer programs was done by Gelernter and his
collaborators [12].

It was based on the human simulation approach
and has been considered a landmark in the artificial
intelligence area for its time. In the area of algebraic
computation approach, the earliest work dates back
to Hilbert. In his classic book [13], Hilbert outlined a
decision method for a class of constructive geometry
statements in affine geometry.

A breakthrough in automated geometry theorem
proving is made by Wu. Restricting himself to a
class of geometry statements of equality type, Wu
introduced a method in 1977 which can be used to
prove quite difficult geometry theorems efficiently
[14]. Ko and Hussain [15], Wang and Hu [16], Gao
[17], Kapur and Wan [18] also succeeded in
implementing theorem provers based on various
modified version of Wu’s method.

The success of Wu’s method has revived interest
in proving geometry theorems by computers. In
particular, the application of the Gröbner basis
method [19] to the same class of geometry theorems
that Wu’s method addresses has been investigated.

More recently, the artificial intelligence
approach has been revived to such an extent that it
can solve hundreds of difficult geometry problems
and produce multiple and shortest proofs for
geometry theorems efficiently [20].

The artificial intelligence approach is also used
for automated generation of construction steps of
geometric diagrams and successfully applied to
many difficult geometric problems. Methods of
automated reasoning in geometry have a wide range
of applications, including kinetic analysis of
robotics, linkage design, computer vision, etc.

1.2.1 Bracket algebra methods
One of the earliest effort to develop coordinate free
methods of geometric reasoning is to use techniques
from the bracket algebra such as Cayley
factorization [21]. The bracket algebra is a non-
commutative algebra. There is still no decision
method similar to that of the Gröbner basis.
Therefore, bracket algebra can only be used to do
“computer-aided geometric reasoning”.
In [22] an algorithm based on bracket algebra for
proving projective geometry theorems was given.
The basic idea is to represent geometric hypotheses
and conclusions as algebraic relations and use
simple algebraic computation to deduce the
conclusion from the hypotheses. The proofs thus
generated are very short. Based on this technique, a
program called Cinderella has been developed [23].

1.2.2 Area method
The area method uses high-level geometric lemmas
about geometry invariants such as the area and the
Pythagorean difference as the basic tool of proving
geometry theorems [24]. Zhang found many elegant
ad hoc methods based on areas of triangles to solve
geometric problems.

These ad hoc methods have been developed into
a complete method of AGTP, which are surprisingly
powerful in than it has been used to proved
hundreds of geometry theorems of constructive type
and the proofs are generally short and elegant. This
method seems to be the first to produce human-
readable proofs for hard geometry theorems
efficiently.

1.2.3 Full-Angle Method
The full-angle method [11] has been demonstrated
to prove hundreds of geometry theorems
automatically whilst producing proofs which are
both short and human-readable [24, 25].

The full-angle method relies on a single high-
level geometric invariant called the full-angle to
prove theorems.

The full-angle method is a rule based method
and is not a decision procedure. But this method
also has its advantages: all the proofs produced by
the method are very short and it has been used to
prove several theorems that all the other methods
fail to prove.

1.2.4 Wu’s method
Wu’s method is the most powerful method in terms
of proving difficult geometry theorems. Wu’s
method is a coordinate-based method [14]. It first
transfers geometry conditions into polynomial
equations then deals with the polynomial equations
with the characteristic set method. This method has
been used to prove more than 600 geometry
theorems.

Following Wu the mechanization problem of
geometry theorem proving consists mainly of three
steps:

 The first is the algebraization of geometry,
namely, reducing the problem of geometry theorem
proving to purely algebraic problem. Then the
hypothesis and conclusion of a theorem can be
expressed as sets of algebraic relations.

 The second step is to well order those
algebraic relations which correspond to the
hypothesis of the theorem and decide whether the
algebraic relations corresponding to the conclusion
can be deduced from the well-ordered algebraic
relations according to a certain procedure. This is
called the mechanization of geometry, while the

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 950 Issue 9, Volume 9, September 2010

procedure for determining the inference relation is
called a mechanization method.

 The final step is to implement the method on
computers in order to achieve the proof of each
theorem.

Algebraic methods, though powerful, generally
can only tell whether a statement is true or not. After
Wu’s method, several researchers tried to develop
automated geometry theorem proving (AGTP)
methods based on vector calculation in the mid-80s
in order to find simpler proofs [26].

1.2.5 Automated diagram generating
Most work on automated geometry reasoning
focused on theorem proving and discovering. In [11]
a global propagation method for automated
generation of construction steps of diagrams was
presented. This method uses a forward chaining to
find the information needed in the construction and
uses a backward chaining to find the construction
sequence. For a diagram described declaratively
with geometric constraints, the method may be used
to find a sequence of constructing steps of drawing
the diagrams with ruler and compass.

2 Presentation of the proposed
informatics systems

The system combines these features: dynamic
geometry, automatic theorem proving and
interactive theorem proving.

The advantages of this system are:
 The use of a proof assistant provides a way

to combine geometrical proofs with larger proofs.
 There are facts than can not be visualized

graphically and there are facts that are difficult to
understand without being visualized.

 We should have both the ability to make
arbitrarily complex proofs and use a base of known
lemmas.

 The verification of the proofs by the proof
assistant provides a very high level of confidence.

After designing the system functional
architecture, that should allow the support of the
didactic activity, is proposed a model for the graphic
interface that should satisfy the specific needs of a
didactic environment from the teachers, students and
pupils viewpoint. Designing of the user graphic
interfaces represents the most important phase of the
process for implementing an intelligent training
system. The user interface should provide all the
necessary facilities to a student or pupil, in order to
navigate intuitively within the application and as
transparent possible.

The user-oriented designing process imposes
the interface the characteristics that allow the user to
control the training process. A usable interface must
be studied, achieved and repeatedly tested in order
to maximize the efficiency and minimize the time
necessary for the teaching and training processes.

2.1 System’s analysis
The informatics system will be described in a clear
and concise manner by presenting the use-cases,
using the UML unified modelling language [27].

Representation of the use-cases diagram is
shown in figure 1. Each case describes interactions
between the user and the system.

For each use case presented in the previous
diagram we’ll build activity diagram. Each diagram
will specify the processes or algorithms which are
behind the analysed use-case.

Fig.1 Use-cases diagram

The implementation activity for the goal

„Interactive drawing of geometric construction” was
finalized by the following personal contributions
[28, 29, 30, 31, 32]:

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 951 Issue 9, Volume 9, September 2010

 efficient implementation of the classes
corresponding to the 2D and 3D geometric elements
by achieving of inheritance, aggregation and
composition relationships;

 implementation of some instantiation
algorithms of the elements, of intersection or
tangency, using special programming methods,
algorithms which contribute to the rapid and
accuracy of the desired geometric elements graphic
representation;

 description of the interactions between
objects in different contexts, as well as visualizing
the mode in which is divided the system and the
dependencies between modules;

 introduction of options non-existent in case
of other such systems for achieving accurate 2D
geometric constructions;

 possibility to achieve 3D geometric
constructions;

 visualization of the 3D geometric elements
as two-dimensional images in the projection plan,
using the desired orthogonal projection.

The use-case “Introduction of hypothesises and
the conclusion of the theorem” will allow the
reception of data about the problem that is to be
resolved and the translation of this data obtaining
this way the facts base. This use-case will interact
with the use-case that allows the drawing of
geometric figures.

Starting with the facts base, the intelligent system
will offer the option of drawing automatically the
geometric figure corresponding to the theorem but
there will exist also the variant of accomplishing the
geometric figure interactively.

The achievement of the use-case “Theorem
demonstration” will be made by traversing the next
stages:

 Accomplishment of the representation of
geometric knowledge component;

 Implementation of demonstrating mecha-
nism;

 Accomplishment of design assistant.
Representation of geometric knowledge

component will consist from a number of declaring
modules, each of them adding to the knowledge base
new geometry concepts and theorems.

Geometric objects will be represented as facts in
the facts base and for definitions and theorems will
be used rules. The programming language used to
represent knowledge will be Prolog.

For implementing the demonstration mechanism
in Prolog language will be used three methods that
are specific to geometry theorems demonstration:

 area method;
 full-angle method;
 combining the forward and backward

chaining techniques.
The activities deployed for implementing the

component for interfaces accomplishment are:
 Representing solution by AND/OR trees;
 Combining the forward and backward

chaining techniques;

 Optimizing these techniques by choosing the
optimal heuristic information for obtainig the
solution;

 Determination of the efficiency for this
method by comparing it with the demonstrations
generated through utilising the area method and the
full-angle method.

For the accomplishment of demonstrating
assistant the next steps are going to be followed:

 Fruition of the graphical window with it’s
corresponding menu and instruments;

 Obtaining corresponding stages of the
algorithm used for the demonstration of the theorem
and the accomplishment of the corresponding
diagram;

 Graphical representation of the transited
steps in demonstration through using the prius
created diagram.

The intelligent system will offer the possibility
of comparing the demonstrations of the same
theorem using the three methods, thus developping
the users abbilities to demonstrate theorems.

2.2 System’s designing
Designing of data structures is crucial for the
stability and performance of the entire intelligent
system. If we think to hierarchies of classes for an
object-oriented system for dynamic geometry, we’ll
end by representing the inheritance as in the trees
from [33,34].

The basic class for all 2D geometric objects is
Element2D. This class contain all the methods and
attributes which are used for all geometric elements,
such as, for example, the colour and drawing style
of a geometric element, and its drawing methods.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 952 Issue 9, Volume 9, September 2010

Fig.2 Part from structure of an instance of the Desen2D class

Subclasses of the Element2D class, such as:

Point2D, Line2D, Segment2D, Vector2D,
Patrulater2D, Triunghi2D, Elipsa2D, Hiperbola2D,
Parabola2D contain additional data which are
necessary for the respective geometric element, such
as: coordinates of a point, extremities of a segment,
origin and extremity of a vector, coefficients from
the equation of a line.

Beside these classes corresponding to the
geometric concepts, there are classes that contain
algorithms for representation both of the
independent geometric elements, and the dependent
ones, such as: intersection of two unparallel lines,
circle circumscribed to a triangle, tangent and
normal to a conical in a point.

The class Desen2D contains algorithms for
representation of 2D geometric constructions.

In figure 2 is presented a part of the structure for
the Desen2D class that contains a list with all the
geometric elements that have been created and
which are instances of the Element2D class.
Algorithms operate with data that is stored through
attributes of instances.

The first presented algorithm receives as input
data two Punct2D elements and returns an instance
of the Dreapta2D class determined through the
input data. The intersection algorithm receives also
two input data: one instance of the Dreapta2D class,
previously created, and one instance of Cerc2D
class. If the line is secant to the circle then the
algorithm will return, as output data, two instances
of the Punct2D class that represents the intersection
points.

Figure 3 presents the inheritance and
achievement relationships used. It may be noted that
all attributes and methods of the JPanel class will
apply to the derived class Desen2D, which
implements MouseInputListener interface.

2.3 Sequence diagrams
The sequence diagram [35] is used primarily to show
the interactions between objects in the sequential
order that those interactions occur. Much like the
class diagram, developers typically think sequence
diagrams were meant exclusively for them.

The sequence diagrams for this software are
made with ArgoUML-0.28. The diagram illustrate in
figure 4 shows the interactions between objects,
which have as purpose the drawing the triangle
determined by three points. One can notice that there
are interactions between twelve objects, out of which
the objects of Desen2D, Vector<Punct2D>,
Vector<Element2D> and Graphics2D type are
already created, and the objects of Nume, Punct2D,
Triunghi2D and MouseEvent type will instantiate
during the interactions.

These objects are represented on Ox axis and on
Oy axis are represented the mesages ordered
increasingly in time. At the beginning, the
execution’s control is undertaken by the object of
Desen2D type which creates an instance of the
Vector<Punct2D> class. Giving back the control to
the object of Desen2D type, further will be
instantiated the object of Nume type.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 953 Issue 9, Volume 9, September 2010

Fig. 3 Class Diagram

Now, the control is undertaken by this newly

created instance, that will allow the display of a
window where will be introduced name for the new
point.

Further, the execution’s control is transmitted to
the object of MouseEvent type which will lead to
instantiate an object of Punct2D type. The
execution’s control is transmitted to the object of
Vector<Punct2D> type, in order to add the point
previously created in the list of triangle vertices and
then will be destroyed the instances of the Nume
class and of the Punct2D class.

Further, will be instantiated the object of
Triunghi2D type, representing the triangle, and then
will be destroyed the object of MouseEvent type.
The execution’s control is transmitted to the object

of Vector<Element2D> type, in order to add the
triangle previously created in the list of 2D
elements of the geometric construction, and then
will be destroyed the instance of the Triunghi2D
class. Finally, will be redrawn the geometric
construction, which will include now also the
triangle, by using the object of Graphics2D type.

The diagram illustrate in figure 5 shows the
interactions between objects, which have as purpose
the drawing the triangle’s centroid and the medial
triangle. One can notice that there are interactions
between five objects, out of which the objects of
DesenTriunghi, Vector<Element2D> and
Graphics2D type are already created, and the objects
of Element2D and Triunghi2D type will instantiate
during the interactions.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 954 Issue 9, Volume 9, September 2010

Fig. 4 Sequence diagram for drawing the triangle determined by three points

At the beginning, the execution’s control is

undertaken by the object of DesenTriunghi type
which appeals an instance of the
Vector<Element2D> class in order to obtained the
triangle’s centroid.

The execution’s control is transmitted to the
object of DesenTriunghi type and will be redrawn
the geometric construction, which will include now
also the triangle’s centroid by using the object of
Graphics2D type.

Giving back the control to the object of
DesenTriunghi type, will be instantiated the object

of Triunghi2D type, which represents the medial
triangle.

Further, the execution’s control is transmitted
to the object of Vector<Element2D> type, in order
to add the triangle previously created in the list of
2D elements of the geometric construction, and
then will be destroyed the instance of the
Triunghi2D class.

Finally, will be redrawn the geometric
construction, which will include now also the medial
triangle by using the object of Graphics2D type.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 955 Issue 9, Volume 9, September 2010

Fig. 5 Sequence diagram for drawing the triangle centroid and the medial triangle

 The diagram illustrate in figure 6 shows the

interactions between objects, which have as
purpose the drawing the quadrilateral’s bimedians.
One can notice that there are interactions between
six objects, out of which the objects of
DesenPatrulater, Vector<Element2D> and
Graphics2D type are already created, and the
objects of Element2D, Segment2D and
Patrulater2D type will instantiate during the
interactions.

At the beginning, the execution’s control is
undertaken by the object of DesenPatrulater type
which give the execution’s control to the object of
Vector<Element2D> type.

Now is created an instance of Patrulater2D type
which permits the creation of three instances of
Segment2D class corresponsive to the three
bimedians. Finally, will be redrawn the geometric
construction, which will include now also the
quadrilateral’s bimedians by using the object of
Graphics2D type.

The diagram illustrate in figure 7 shows the
interactions between objects, which have as purpose
the drawing the triangle’s circumcircle and the
triangle’s circumcenter.

One can notice that there are interactions between
five objects, out of which the objects of

DesenTriunghi, Vector<Element2D> and
Graphics2D type are already created, and the objects
of Element2D and Triunghi2D type will instantiate
during the interactions.

At the beginning, the execution’s control is
undertaken by the object of DesenTriunghi type
which appeals an instance of the
Vector<Element2D> class in order to obtained the
triangle’s circumcenter.

The execution’s control is transmitted to the
object of DesenTriunghi type and will be redrawn
the geometric construction, which will include now
also the triangle’s circumcenter by using the object
of Graphics2D type.

Giving back the control to the object of
DesenTriunghi type, will be instantiated the object
of Element2D type, which represents the triangle’s
circumcircle.

Further, the execution’s control is transmitted to
the object of Vector<Element2D> type, in order to
add the circle previously created in the list of 2D
elements of the geometric construction.

Finally, will be redrawn the geometric
construction, which will include now also the
triangle’s circumcircle by using the object of
Graphics2D type.

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 956 Issue 9, Volume 9, September 2010

Fig. 6 Sequence diagram for drawing the quadrilateral bimedians

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 957 Issue 9, Volume 9, September 2010

Fig. 7 Sequence diagram for the triangle circumcircle and the triangle circumcenter

2.4 The degree of originality of the
intelligent system
The originality of this intelligent informatic system
consists of:

 Automatic or interactive achievement of the
geometric figure specific to the theorem that is going
to be demonstrated.

 Using several methods to demonstrate
theorems: with this methods for the same theorem it
is going to obtain demonstrations in different styles.
This aspect is important for using the intelligent
system in the process of computer assisted training
at geometry because different methods allow pupils
and students to explore different demonstrations.
Secondly, for a certain class of geometry theorems, a
particular method can produce shorter
demonstrations than other methods.

 Using of a demonstrating assistant: it will
allow the combination of automatic theorem
demonstration with the interactive one, offering a
high level of trust in generating demonstrations.

3 Conclusion
Using the intelligent informatic system in studying
geometry will contribute to forming and
developping informatic culture of the pupils.
Computer assisted training in the study process of
geometry elements is also an efficient increasing

method for the motivation of learning this discipline
and the quality of it’s assimilation.

The theme treated in this paper is of great
actuality, geometry being an important component
in forming young mathematicians, engineers or
architects. The informatics application is
aggregating in this great actuality and major issue
that it approaches in a new multidisciplinary manner
through the prism of modern educational
technologies.

References:
[1] G. Mayrhofer, S. Saminger, W. Windsteiger,

CreaComp: Experimental Formal Mathematics
for the Classroom, Proceedings of ICTMT8, 2007

[2] O. Yevdokimov, About a constructivist
approach for stimulating students' thinking to
produce conjectures and their proving in active
learning of geometry, Fourth Congress of the
European Society for Research in Mathematics
Education, 2004

[3] F. Furinghetti, P. Domingo, To produce
conjectures and to prove them within a dynamic
geometry environment: a case study, Proceeding
of Psychology of Mathematics 27th international
Conference, 2003

[4] J. Anderson, C. Boyle, G. Yost, The Geometry
Tutor, IJCAI Proceedings, 1985

[5] P. Bernat, Chypre: Un logiciel d'aide au
raisonnement, Technical Report 10, IREM, 1993

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 958 Issue 9, Volume 9, September 2010

[6] V. Luengo, Cabri-Euclide: Un micromonde de
Preuve intégrant la réfutation, PhD thesis,
Université Joseph Fourier, 1997

[7] J. Gressier, Geometrix, 1988-1998
[8] S. Wilson, J. Fleuriot, Combining dynamic

geometry, automated geometry theorem proving
and diagrammatic proofs, ETAPS Satellite
Workshop on User Interfaces for Theorem
Provers, Edinburgh, 2005

[9] U. Kortenkamp, Foundations of Dynamic
Geometry, PhD thesis, ETH Zürich, 1999

[10] J. Schwartz, Probabilistic algorithms for
verification of polynomial identities, Symbolic
and algebraic computation, Lecture Notes in
Computer Science, vol. 72, 1979, Springer-
Verlag

[11] S. Chou, X. Gao, J. Zhang, Automated
generation of readable proofs with geometric
invariants, theorem proving with full angle,
Journal of Automated Reasoning, 1996

[12] H. Gelernter, Realization of a geometry
theorem machine, Proceedings of International
Conference in Info Procces, Paris, 1959

[13] D. Hilbert, Foundations of Geometry, Open
Court Publishing Company, Illinois, 1971

[14] W. Wu, Basic Principles of Mechanical
Theorem Proving in Geometries, Science Press,
Beijing, 1984, English version, Springer Verlag,
1993

[15] H. Ko, M. Hussain, Geometry theorem proving
by decomposition of quasi-algebraic sets,
Artificial Intelligence, 1988

[16] D. Wang, S. Hu, Mechanical proving system
for constructible theorems in elementary
geometry, 1987

[17] X. Gao, Transcendental functions and
mechanical theorem proving in elementary
geometries, Journal of Automated Reasoning,
1990

[18] D. Kapur, H. Wan, Refutational proofs of
geometry theorems via characteristic set
computation, Proceedings of ISSAC, Tokyo,
1990

[19] J. Ritt, Differential Algebra, AMS Colloquium
Publications, New York, 1980

[20] S. Chou, X. Gao, J. Zhang, A deductive
database approach to automated geometry
theorem proving and discovering, Journal of
Automated Reasoning, 1996

[21] N. White, T. McMillan, Cayley factorization,
Proceedings of ISSAC, ACM Press, New York,
1988

[22] J. Richter-Gebert, Mechanical theorem proving
in projective geometry, Annals of Mathematical
and Artificial Intelligence, 1999

[23] J. Richter-Gebert, U. Kortenkamp, Cinderella,
Springer-Verlag, Berlin, 1999

[24] S. Chou, X. Gao, J. Zhang, Machine Proofs in
Geometry, World Scientific, Singapore, 1994

[25] S. Chou, X. Gao, J. Zhang, A collection of 110
geometry theorems and their machine proofs
based on full-angles, Technical Report,
Department of Computer Science, The Wichita
State University, 1994

[26] T. Havel, Some examples of the use of
distances as coordinates for Euclidean geometry’,
Journal of Symbolic Computation, 1991

[27] M. Fowler, K. Scott, UML Distilled: A Brief
Guide to the Standard Object Modeling
Language, Addison Wesley, Readings MA, USA,
2000

[28] A. Iordan, M. Panoiu, C. Panoiu, Development
New Dynamical Methods for the Study of the
Euclidian Geometry, WSEAS International
Conference on Education and Educational
Technology, Italy, 2007

[29] A. Iordan, G. Savii, M. Panoiu, C. Panoiu,
Development of a Dynamical Software for
Teaching Plane Analytical Geometry, WSEAS
International Conference on Engineering
Education, Heraklion, Crete Island, Greece, 2008

[30] A. Iordan, G. Savii, M. Panoiu, C. Panoiu,
Multimedia Interactive Environment for Study
the Plane Analytical Geometry, WSEAS
Transactions on Computers, Vol. 7, 2008

[31] A. Iordan, M. Panoiu, I. Muscalagiu, R. Rob,
Realization of an interactive informatical system
for the quadric surfaces study, WSEAS
International Conference on Computers, Rhodes
Island, Greece, 2009

[32] A. Iordan, Development of Interactive Software
for Teaching Three-Dimensional Analytic
Geometry, WSEAS International Conference on
Distance Learning and Web Engineering,
Hungary, Budapest, 2009

[33] A. Iordan, G. Savii, M. Panoiu, C. Panoiu,
Development of a dynamical software for doing
geometrical constructions, WSEAS International
Conference on Applied Informatics and
Communications, Rhodes Island, Greece, 2008

[34] A. Iordan, G. Savii, M. Panoiu, C. Panoiu,
Visual interactive environment for doing
geometrical constructions, WSEAS Transactions
on Computers, Vol. 8, 2009

[35] J. Odell, Advanced Object Oriented Analysis&
Design using UML, Cambrige University Press,
1998

WSEAS TRANSACTIONS on COMPUTERS Anca Iordan, Manuela Panoiu, Ioan Baciu, Corina Daniela Cuntan

ISSN: 1109-2750 959 Issue 9, Volume 9, September 2010

