
Data Wiping System with Fully Automated, Hidden and Remote Destruction

Capabilities

GEORGE PECHERLE, CORNELIA GYŐRÖDI, ROBERT GYŐRÖDI, BOGDAN ANDRONIC
Department of Computer Science

Faculty of Electrical Engineering and Information Technology, University of Oradea
Str. Universitatii 1, 410087, Oradea

ROMANIA
gpecherle@uoradea.ro, cgyorodi@uoradea.ro, rgyorodi@uoradea.ro, andronic_bogdan@yahoo.com

Abstract: - In this article, we will describe a method to securely erase sensitive data in fully automated and hidden
mode and with remote data destruction capabilities. Compared to other similar technologies, our method has two main
advantages. The first one is the ability to run in a fully automated mode, in other words the system is configured once
and the computer is protected without requiring any user intervention. The second advantage is the ability to run in a
so-called hidden mode, in which the system looks like a different software, for the main purpose of confusing other
users. Also, our system can be useful to prevent data loss in stolen laptops, by triggering remote wiping of sensitive
data. This is done by overwriting the encryption key of an encrypted volume, that makes the data completely
unrecoverable. Some tests and results that show data is not recoverable are also presented at the end of the paper. We
will describe the structure and functionality of our system, and some of the most important technologies and algorithms
that we have used.

Key-Words: - security, data wiping, data recovery, automation, scheduling, patterns, overwrite data

1 Introduction
Deleting a file using the operating system functions is
not a secure operation. When a file is deleted, the
operating system marks the disk areas previously
occupied by the file as available for new data. Therefore,
the old information is still on the hard drive, until new
files happen to be saved in exactly the same locations.
This information can be easily recovered by any basic
software recovery tool [3].
 Files can be deleted by:
 1. The Windows user: for example, when the user
deliberately removes one or more files that he no longer
needs;
 2. The Windows operating system or installed
applications: during their normal operation, most
applications create and remove temporary data, without
the user’s knowledge or approval.
 In addition to the free disk space that can store a lot
of previously deleted data, almost all applications save
information on the hard drive that is meant to improve
the user’s experience. For example, web browsers save
web pages, images and videos for quick access in the
future (the web browser’s cache). They also store a list
of previously visited websites to enable the user to locate
them faster (the web browser’s history). A side effect of
storing all this information is that it offers anyone a real
portrait of the user’s activity on the computer. And this
is not always desirable [20].

 To permanently wipe all traces left by Windows or
applications, two important steps must be followed:
 1. Finding out what information (files, registry keys,
etc.) contain activity traces.
 2. Securely erasing this information by using repeated
overwrite operations to make it completely
unrecoverable [3].
 Normal users do not know where to look and find this
information and even if they knew, securely erasing it in
a continuous way would be a difficult and time
consuming task. That’s why, it is necessary that a
software application (initially configured what to do)
will do this job automatically and permanently. Almost
all users have the experience and knowledge of running
an antivirus on their system. The main advantage of a
powerful antivirus is to let it do its job in the background
and automatically eliminate threats (viruses, spyware,
etc.). Our software acts on the same principles, the only
difference is that it won’t eliminate viruses or spyware,
but it will eliminate sensitive data from the computer,
such as traces left by other applications.

2 Advantages over similar technologies
There are a lot of data wiping software products that can
destroy the traces left behind by the operating system or
other applications. However, our research [1] indicates
they have two main problems:

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 939 Issue 9, Volume 9, September 2010

• Not completely automated: the user has to
configure and run the wiping process
periodically. Between these wiping processes,
private data is saved and in danger of being
discovered.

• Not completely hidden: even if some products
hide the application while wiping data, there are
still ways to determine that some hidden
processes are running. Also, such hidden
processes can be detected as possible threats by
anti-spyware software [2].

 The system we propose can address both of the
problems above. The purpose is to develop a wiping
system that ensures that at any moment, no sensitive data
is left behind (the system is always clean), without
requiring any user intervention. The model we propose
will lead to a new concept in data wiping: “just install
and let it do its job”. The main idea is to detect changes
at specific locations (files/folders/registry keys),
considered to be private locations, and erase new or
updated data immediately [21].
 Our idea of developing a fully automated wiping
system came from a similar solution for a different
problem, data backup. Genie Timeline from Genie-Soft
[6] makes backup copies of user’s data in an automated
way, following the same principle, “set up and forget
about it”. We thought that something like this would
apply very well for secure data wiping, not only data
backup.

3 Implementation of our system in a

software application
In order to show its advantages, we have implemented
our fully automated and hidden system in a software
application, that we have developed in Visual Studio
2008 using the .NET Framework and C# language. We
tried to design it as simple as possible, so that it does not
consume a lot of system resources and to be as fast as
possible when running in the background to avoid
slowing down the entire system [8].
 The erasing mechanism is based on a high level
erasing. This is done by opening the file that needs to be
erased, replacing everything with random data and then
saving it. This process is repeated for a number of times
before the file is finally deleted [9].
 We have chosen this method of high level wiping and
not the low level wiping method (hard drive sector
based) because of the nature of the file system: the
fragmentation problem. Thus, the problem is avoided
and the result is basically the same as low level wiping.

3.1 Secure data overwriting methods
 These methods are based on the fact that writing new
data in areas where previous data exists, will make old
data become inaccessible.
 Also, overwriting data is a cheap way to destroy
information, because it can be implemented very easy in
software applications, like we did with our current
solution.
 The easiest way to overwrite data is to use the same
pattern, usually zeroes. This method will at least prevent
reading the data using standard operating system
functions. However, to prevent data recovery using more
advanced methods, it is recommended that specific
patterns are used. For example, writing zero and one is
more efficient than writing just using zero.
 Subsequent studies have shown that there are
methods to overwrite data even after they have been
overwritten using the above methods. For example, Peter
Gutmann showed that a technology called “magnetic
force microscopy” can recover data and he developed
special overwriting patterns to stop this from happening.
These patterns have become known as the Gutmann
overwrite method [10].
 Governmental agencies also came with their own
solution: the United States Department of Defense (US
DoD) has developed a proprietary standard for the secure
deletion of sensitive information, called DoD 5220.22-M
[9]. Also, the same US DoD states, in November 2007,
that, securely overwriting data is not an accepted and
secure method and they recommend the physical
destruction of the storage media or passing it through a
demagnetization process, called degaussing. However,
this should be applied only if the data to be erased is
highly confidential. For data having a normal degree of
confidentiality, overwriting data is accepted.
 Peter Gutmann was a researcher at the University of
Auckland, New Zealand. He is especially known for his
studies and research work in the data security field. One
of his most important papers [10] has been published in
the Sixth USENIX Security symposium, from San Jose,
California. His work and results are applied at a very
large scale.
 Practically, his paper presents an algorithm to
securely erase data from a hard drive beyond forensic
recovery. For this purpose, 35 passes are used. Peter
Gutmann selected these passes for several hard drive
writing encoding mechanisms (MFM/RLL), being a
method that can be applied without knowing the
encoding mechanism of the hard drive that is erased.
However, a user who knows the type of encoding that is
used can select only the steps that are specific to that
mechanism.
 Why are such an algorithm and an overwrite method
of 35 passes needed to securely erase data beyond
recovery? Why isn’t a single overwrite enough? Peter

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 940 Issue 9, Volume 9, September 2010

Gutmann says that a single overwrite is not enough to
ensure data is unrecoverable. He claims that a standard
method to recover overwritten data is to capture the
analog signal obtained from the write head before
decoding. Although this signal will be very close to a
signal called “ideal digital signal”, the difference is the
one that matters. By calculating the ideal digital signal
and substracting it from the analog signal, it is possible
to ignore the last information that was written, to
amplify the remained signal and view the data that
existed before [10].
 Also, Peter Gutmann says that after overwriting with
random data, data recovery is still possible. The
permittivity of the medium changes at the same time
with the magnetic field frequency. This means that a
lower frequency field will be able to go deeper into the
magnetic parts of the hard drive, than one of a higher
frequency.
 The patterns used to overwrite data, as part of the
Gutmann’s algorithm, will apply alternative magnetic
fields with variable frequencies and phases. The first 4
passes are generated randomly, followed by passes 5-31
executed randomly and then the last 4 passes also
generated randomly. Passes 5-31 have been designed for
all encoding mechanisms (both RLL and MFM), so they
can be used in all cases. The final result will be that data
cannot be recovered, even by advanced data recovery
techniques [10].
 There have been some criticism brought to the
Gutmann theory by which forensic agencies could
recover data even after it has been overwritten using the
Gutmann method. It is known that the delete function in
Windows just marks the file as being deleted. However,
after data has been overwritten, it cannot be recovered
using software recovery tools, because the operating
system returns only the current content, not the old
content. However, Peter Gutmann says this is not true
and there are special recovery methods, such as MFM
(Magnetic Force Microscopes) that, combined with
image analysis tools, can detect the old values of the bits
from a magnetic storage (such as a hard drive).
 The truth is this issue hasn’t been proved and there is
no clear evidence of forensic agencies being able to
recover data after it has been overwritten. A
contradictory issue is that the US Government doesn’t
approve data overwriting as a recommended method for
highly confidential data and they recommend physical
destruction.
 Also, data recovery companies cannot recover data
that has been overwritten (or at least they don’t make
this public). These companies mainly do data recovery
from hard drives that are physically damaged and that
suffered several types of shocks (mechanical, caused by
water, fire, etc.).

 An interesting study was made public by the National
Bureau of Economic Research (NBER) from the United
States [14]. They have responded to Gutmann’s theory
analyzing all his paper references.
 Peter Gutmann says that, when overwriting bits, “the
effect is closer to value 0.95 when a zero is overwritten
by one, and closer to value 1.05 when a one is
overwritten by a one” [10]. None of the references show
examples of data that has been recovered, they only
describe experiments where STM (scanning tunneling
microscopes) have been used to examine individual bits
of data, without any special meaning. NBER says that
MFM microscopy or STM is generally used to test and
improve the quality of read/write heads of hard drives.
 Another aspect is that no copy of the following paper
has been located: „Detection of Digital Information from
Erased Magnetic Disks”, written by Venugopal
Veeravalli [11]. On his Internet page, it is shown that the
paper has not been published and that it is only in
theoretical stage and that there are no experiments to
prove those theories.
 Also, NBER interrogated several data recovery
companies and they all claim they can’t recover data that
has been overwritten. Although we don’t know this for
sure, there is no clear evidence to prove that data cannot
be recovered. Therefore, it seems that physical
destruction remains the best choice for highly
confidential data. However, data overwriting remains the
most trusted method to securely erase confidential data,
also being the most accessible, that’s why we are also
using it in this paper.

3.2 Our application structure
 The following will describe the structure and the
main functionalities of our application.

Fig. 1. Our application structure

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 941 Issue 9, Volume 9, September 2010

 When the Main Application starts, the user will be
asked if he wants to configure the application or run
directly with pre-configured options. This way, we can
identify two main modules:

• The Configuration Module
• The Execution Module

 1. The Configuration Module: when we designed the
configuration module, we started from the idea that it
has to be as simple as possible. That’s why we divided it
in 3 steps:
 STEP 1 - The selection of the running mode: There
are two categories of running modes.
 The User Protection defines how the user is protected
against someone who wants to see what this program is
used for. This mode can have two values:
 a) Normal Mode: a mode in which the program
runs with an interface of a real data wiping system. This
mode is recommended if you don’t want to hide you are
erasing data.
 b) Secret Mode: a mode in which the program runs
with an interface of a fake data wiping system. One
example is to run it with an interface of an antivirus
application. Everyone would think you are removing
viruses and no one would suspect that you are actually
erasing your secret data. Therefore, this mode is
recommended if you want to hide you are erasing data.
 The Scan mode defines what domains are scanned for
sensitive data. This mode can have two values:
 a) Quick Scan: a mode in which the program scans
only pre-defined locations. These locations can be
altered in the next step (Select What To Erase). The data
is wiped immediately without user confirmation because
the locations are considered to contain only private data.
This mode is recommended for most users as it is a good
compromise between performance and security.
 b) Deep Scan: this will search globally (on selected
disk drives) and determine new/updated data. Because
not all data is sensitive, we can apply certain filters to
select only sensitive data. These filters can be: files that
contain specific keywords, files of a certain type (MS
Word, JPEG, etc.). The user can choose to trust these
filters or he can select the user confirmation mode. The
confirmation mode can also be optimized by choosing to
erase immediately those files that are located in the pre-
defined paths. Confirmation may seem like a non-
automated way, however this is only until the system
“learns” what data is sensitive or not. Little by little, the
system will be able to take its own decisions and erase
data without user confirmation. This is similar to the
way anti-spam enabled applications work, such as
Mozilla Thunderbird’s Junk Mail feature [4]. They will
ask for confirmation only until they “learn” what spam
(in user’s own opinion) is.

Fig. 2. Select Mode window

 STEP 2 - The selection of what to erase: At this step,
the user can select three types of sensitive areas. The
first two are available both in the Quick Scan and Deep
Scan modes. The third one is only available in the Deep
Scan mode:
 a) Traces Left By Applications: the user can select
which application(s) he wants to erase usage traces for
(Internet Explorer, Mozilla Firefox, Google Chrome,
Opera, Microsoft Office, Yahoo Messenger, Skype,
etc.). To define these options, we use a sensitive area
definition language, called XSAD (eXtended Sensitive
Area Definition), developed by us, as an extension to the
OSAD language that we proposed at [2]. This new
version of our language is based on XML and has a
cleaner structure and better support for web based
wiping systems. We use this language to define what
sensitive areas (files/folders/registry keys) should be
monitored for sensitive data. These sensitive areas can
be places where applications leave their traces (such as
the web browser’s cache, history, cookies) or user
defined sensitive areas.
 b) Specific Files and Folders: the user can define
individual files or folders to target. File masks, such as
*.txt, are allowed to be used. At the implementation
level, we use the same XSAD structure to save these
files/folders locations.
 c) File Filtering Rules (available only in the Deep
Scan mode): it is a tool described above at step 1 that
allows the definition of filtering rules based on file types
or file contents. Based on these criteria, a file can be
categorized as being sensitive or not. For example,
someone could define a rule that all Microsoft Word
files containing the term “financial plan” should be
considered private.

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 942 Issue 9, Volume 9, September 2010

Fig. 3. Select What To Erase window (Quick Scan)

 STEP 3 - The selection of options: At this step, the
user can select various options, such as the overwrite
method, whether he wants to confirm files before erasing
or let it run in automated mode (default), the scheduling
options (by default, the scanning process takes place
continuously in the background, however the user can
select a less frequent scanning, for performance reasons).

Fig. 4. Select Options window

 2. The Execution Module: after following the steps
above, the system is configured and ready to be run in an
automated way. The last window is the main interface of
the program that is displayed when the program is
running. From this window, the user can switch
protection ON or OFF, he can view the status of the
protection (what is being erased, when the last wiping
process was run, etc.), or he can go back to the
configuration module to change settings. A progress of
the wiping operation is also displayed.

 The execution module can also be accessed by double
clicking its system tray icon. This icon will change its
appearance based on the protection status (green –
protection ON, red – protection OFF).

Fig. 5. The Execution Module

 When the erasing process starts, the following code is
executed:

data = DateTime.Now.ToShortDateString ();

label4.Text = data;

int nrFiles = 0;

int nrFilesDeleted = 0;

for(int i=0;i<listBox1.Items.Count;i++)

{

System.IO.DirectoryInfo dir = new

System.IO.DirectoryInfo

(listBox1.Items[i].ToString());

foreach (System.IO.FileInfo f in

dir.GetFiles ("*.*"))

 {

 nrFiles++;

 }

 }

 progressBar1.Maximum = nrFiles;

for (int i = 0; i <

listBox1.Items.Count; i++)

 {

System.IO.DirectoryInfo dir = new

System.IO.DirectoryInfo (

listBox1.Items[i].ToString ());

foreach (System.IO.FileInfo f in

dir.GetFiles ("*.*"))

 {

nrFilesDeleted++;

progressBar1.Value =

nrFilesDeleted;

int sleep = nrFiles / 1000;

System.Threading.Thread.Sleep

(sleep);

overwriteFile(f.FullName);

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 943 Issue 9, Volume 9, September 2010

File.Delete (f.FullName);

}

}

Fig. 6. Scanning and erasing files

 First, we save and display the current date and time to
a label, as a start point for the erasing process. We then
take the list of files/folders that have to erased, from a
list box. We initialize the progress bar to take the
number of files as a maximum value and then we start
going through all files/folders. For folders, we get all
files inside them (*.*) and erase these files one by one,
by using the overwriteFile function to overwrite its
contents and then delete the file using File.Delete. After
erasing each file, we wait for a number of milliseconds
(number of files divided by 1000), otherwise the
progress would advance too fast.
 The code from above is executed in two distinct
situations:

• When the user manually launches the wiping
process, on demand, or

• When the protection is switched on (see Fig. 5);
in this case, a timer is being used to repeat this
process at a specified time frame, to ensure a
continuous protection.

 Here is a basic version of the ovewriteFile function,
used to overwrite file contents:

private void overwriteFile (string

fileName)

{

FileInfo f = new FileInfo (

fileName);

long bytes = f.Length;

StreamWriter write = new

StreamWriter (f.FullName);

for (long i = 0; i < bytes; i++)

{

if(trecere==0)

write.Write (0);

if (trecere==1)

{

 //generate random data

 write.Write (randData);

}

}

write.Close ();

}

Fig. 7. Overwriting file contents

 If the value of variable “trecere” (according to user’s
selection) is 0, it means that zero has to be written over
the entire file contents. If the value of “trecere” is 1,
random data will be used for the overwriting process.
 We haven’t included the random generation process
here, as it can be any algorithm. However, for increased

security, we recommend an algorithm such as ISAAC
CSPRNG (cryptographically secure pseudo random
number generator). We have shown the efficiency of this
method, compared to other methods, in a previous
research paper [15].
 At that time, we applied the ISAAC CSPRNG using
Borland Delphi, however this can be easily transformed
into other programming languages, such as Visual C#.
The code below is just a usage example, it actually
writes the random values to a Memo (text box) in the
main form:

var

 i: integer;

 x: TIsaac;

begin

 x.Create;

 for i:=1 to 20 do

Memo1.Lines.Add(IntToHex(x.val, 8));

 x.reSeed;

// reseed exactly as in Create()

 for i:=1 to 20 do

Memo1.Lines.Add(IntToHex(x.val, 8));

 // get the same values

end;

Fig. 8. ISAAC random number generation (Borland
Delphi code sample) [15]

3.3 Integration of unused disk areas wiping as

real time deletion
 A very useful option to integrate is wiping the free
unused areas of the hard drive, as a continuous process.
The only disadvantage of this feature is that it consumes
system resources, that’s why it is indicated to be
scheduled to be run only when the computer is not used
or when it is determined to be idle (no mouse move, no
keyboard activity, etc.).
 Wiping the free (unused) disk areas is needed because
there can also be data that has not been erased using our
solution (has not been securely wiped) and that data is
located in areas marked as deleted information on the
hard drive.
 The easiest and most convenient way of wiping free
space is to create large temporary files, with random
data, until there is no free space left on the drive. This
process actually overwrites the entire free space with
random information, making the previously stored data
unrecoverable. After we fill in all available disk space,
we finally remove the big temporary files, to free up disk
space. This process (to create temporary files and then
remove them), can be repeated several times, depending
on the number of passes the user has chosen.

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 944 Issue 9, Volume 9, September 2010

4 Hidden System Design
Our second purpose was to prevent other users from
discovering there is a data wiping system installed on a
computer. For this, we designed our wiping system to
look like an anti-virus software. An anti-virus software is
something that everyone has, so it is not suspicious at
all.
 Here is how some data wiping tasks are
“transformed” into anti-virus tasks:

• Graphical user interface: all texts and images are
updated to be related to an antivirus

• Scan process: when the system is searching for
sensitive data, we rename this to something
related to anti-virus scanning

• Wiping process: when the system is wiping
sensitive data, we rename this to something
related to virus removal. We will not show the
names of all files that are removed, because
there are usually thousands of files that are
wiped, and it is usually more difficult to have so
many infected files.

• Update process: when XSAD files are updated,
we inform the user that virus definition files are
updated

• Virus names: we can use a public virus list [5]
and assign virus names randomly to files that we
wipe

 An option to switch to the normal (unhidden) mode,
where everything looks like in the reality, is also offered
to the user. This can be done from the Configuration
module, in the Select Mode window (see Fig. 2).

5 Sensitive Areas Configuration Files.

The XSAD File
The configuration module has a panel where the user can
select the applications he wants to erase sensitive traces
from. Each of these applications (Internet Explorer,
Mozilla Firefox, etc.) store their history traces in
different places. In order to prevent hard coding these
locations in our product, we developed a file structure
that uses a definition language which we called XSAD
(eXtended Sensitive Area Definition) [3]. This is
actually pure XML language, customized for our own
needs [7]. We tried to make it as simple as possible.
 Here is an example of an XSAD file for Internet
Explorer that shows the most important elements that
can be used:

<?xml version=”1.0” encoding="utf-8"?>

<SensitiveAreas>
<SensitiveArea name="Internet Explorer">

<Location name="Cache">
<Item detection="dynamic" type="folder">
<Detection>
<RegistryKey>
HKEY_CURRENT_USER\Software\Microsoft
\Windows\CurrentVersion\Explorer\Shell Folders
</RegistryKey>
<RegistryValue>
Cache
</RegistryValue>
</Detection>
</Item>
</Location>

<Location name="Most Recently Used">
<Item detection="static" type="regkey">
HKCU\Software\Microsoft\Windows\CurrentVersion
\Explorer\ComDlg32\LastVisitedMRU
</Item>
<Item detection="static" type="regkey">
HKCU\Software\Microsoft\Windows\CurrentVersion
\Explorer\ComDlg32\OpenSaveMRU
</Item>
</Location>
</SensitiveArea>

<FilesFolders>
<Item type="folder">
C:\Documents and Settings\Administrator
\My Documents\Private Data
</Item>
<Item type="files">
C:\Documents and Settings\Administrator
\My Documents\Company Plans*.doc
</Item>
<Item type="file">
C:\Documents and Settings\Administrator
\My Documents\Company Plans\SecretEmail.eml
</Item>
</FilesFolders>

</SensitiveAreas>

Fig. 9. An XSAD file for Internet Explorer

 The XSAD file has two types of elements inside the
root element <SensitiveAreas>. These two elements can
be included in a single XSAD file (like in Fig. 9 above)
or split in two distinct files for a cleaner structure:

• one or more <SensitiveArea> elements which
contain what needs to be erased for a specific
application. For example, a <SensitiveArea>
element can be for Internet Explorer.

• one <FilesFolders> element that contains the
files and/or folders defined by the user.

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 945 Issue 9, Volume 9, September 2010

 The <SensitiveArea> element has a name attribute
containing the name of the application as it appears in
the list. One or more nested elements, called <Location>,
each with a separate name attribute, represent the various
types of locations that can be erased from an application.
For example, Internet Explorer has Cookies, Cache and
History that have to be erased.
 For each <Location>, we can have one or more
<Item> elements which can be detected in two ways
(this is specified in the detection attribute):

• static detection, in which the location is
specified as it is (for example C:\My Secret
Data\December.txt).

• dynamic detection, in which the location is
determined following some rules (for example,
the location of the Cookies folder for Internet
Explorer is the value of a specific registry key).

 If the detection is dynamic, there is a nested element
called <Detection> containing other sub-elements that
specify how the detection is done. In the example above,
the Cache location is determined from a registry value. If
the detection is static, the path can be specified directly
as the value of the <Item> element.
 Also, each <Item> can be of several types, and this is
specified in the type attribute, which can be file, folder,
regkey or regvalue.
 The <FilesFolders> element can have several <Item>
nested elements that describe what should be erased. In
the type attribute, we specify what type of <Item> we
refer to, and then in the value of the element, the path to
the <Item> is provided, as in Fig. 9 above.
 For increased security, we are using the following
protection methods for XSAD files:

• the name of the XSAD file is not a descriptive
one. It can be a random name and with a random
or confusing extension (for example
A5FB2U3C.DAT).

• the contents of the XSAD file are encrypted
using an encryption method that can be specified
by the user.

6 Proposed Updates System
Almost all applications change the way the store their
activity traces, when new versions come out. For
example, the might change the location (folders, registry
keys) where they store this information. Also, new
features can be developed in these applications and this
involves new sensitive areas to be targeted.
 This means that XSAD files also have to be updated,
so that the wiping software can keep track of these
changes and erase sensitive data correctly and
completely. We have thought of two possible sources
XSAD files may come from:

1. From the developers of the software. This
usually involves having a dedicated team, who is
constantly analyzing 3rd party applications and
their changes. Their main task is to download
these software, install them on as multiple
machine configurations as possible and detect
what sensitive data they store on the computer
and where. For this task, they can use
specialized software that detect changes in their
computer, when the analyzed software is being
run. This software will monitor changes to files
and registry on the local system. It is
recommended that one person is doing the task
of detecting sensitive areas, and another person
(preferably, a developer) is implementing the
analysis results into XSAD files.

2. From the users community. This might be one of
the most valuable sources of XSAD files
updates, because developers might develop
XSAD files for software which are not so
popular among users. For this purpose, we
propose a Web 2.0 website, like a wiki, in which
users can write detailed pages on what software
they recommend adding and which are the
sensitive areas they propose. We can have one
wiki page for each software. The great thing
about this wiki is that any user can contribute
even for software pages that have been opened
by other users. This is something like free
collaboration. The information from this wiki
site can then be used by developers to develop or
update the existing XSAD files and deploy them.

 After XSAD files have been developed or updated,
the next step is to deploy them. We can use a web server
in which we upload all these files and manage them
using a database (a MySQL database would be enough
for this purpose). Each XSAD file should have a
signature used to determine whether the user already has
the latest version of the XSAD file. If the signature is
different and newer than what the user has on his
computer, the XSAD file will be updated. Otherwise, it
will not be updated.

7 Remote Wiping
Another interesting feature we propose for the wiping
system is to remotely wipe data. This is especially useful
for mobile computers, such as laptops, that can be easily
stolen [18].
 In case a laptop is stolen, the owner may not want
sensitive data from it to fall into the wrong hands. When
this happens (the laptop has been stolen), the owner can
issue a remote wiping over the Internet.

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 946 Issue 9, Volume 9, September 2010

 There are some preliminary steps the user has to
perform (when he still has the laptop), to prepare the
system for remote wiping:

1. Download and install an encryption software,
that can create encrypted volumes, like
TrueCrypt [16].

2. Create an encrypted volume and store all private
data inside that volume [19].

3. Install our wiping software with the remote
wiping feature activated.

 The owner of the laptop will have access to a secure
Internet location where, by default, an option to trigger
the remote wiping, will be disabled. Our wiping software
will constantly monitor (considering that Internet access
is available), the value of the option. If it is disabled,
nothing will be done.
 Considering the laptop is stolen, the following should
happen:

1. The owner must login to the secure Internet
location and activate the option to trigger the
remote wiping, as soon as possible.

2. When the laptop is turned on by the thief
(considering that Internet location is also
available), our wiping software will connect to
the web server, detect that the remote wiping
option is activated and instantly wipe the
encryption key of the encrypted volume. Wiping
the encryption key of an encrypted volume will
make that volume’s data completely
unrecoverable.

3. Our wiping software will report back to the web
server that the wiping of the encryption key has
been performed successfully, or give an error
code if it didn’t succeed.

 The disadvantage of this remote wipe system is that
the computer has to be connected to the Internet after it
has been stolen. However, we are looking for other ways
to solve this problem and propose a solution that does
not depend on an Internet connection.

9 Tests and results
We have performed a simple experiment to test the
recovery of data before and after using our wiping
solution.
 The experiment was performed on a random PC (the
configuration is not essential in this case, however for
accuracy, we have used a system with Intel Core2 Duo -
2 GHz, 160 GB HDD, 2 GB RAM, Windows Vista
Business 32-bit operating system). The steps performed
are mentioned below:

1. We created a text file on an NTFS partition (E:),
called confidential.txt.

2. We deleted the file using the Shift-Delete key
combination, so that it does not end in the
Recycle Bin.

3. We scanned partition E using a data recovery
software tool. Any such tool can be used, we
have used EASEUS Data Recovery Wizard [17].

4. The scanning results were that the
confidential.txt file was recovered with its
contents intact, as shown in Figure 10 from
below.

Fig. 10. File being recovered before using our solution

5. The next step was that we ran an unused disk
space wiping. This process created large
temporary files that overwrote all previously
deleted data, including the data from the
confidential.txt file.

6. We scanned partition E again using EASEUS
Data Recovery Wizard and this time, the
confidential.txt file was not recoverable.

 The only problem was that wiping unused disk space
usually takes a lot of time (in our case, it took about 4-5
hours, as we had over 60 GB free space), because the
entire free space has to be overwritten.
 A much quicker method would have been to directly
erase the file using our wiping solution (a method that
usually takes a few seconds). However, this would have
worked if the file hadn’t been deleted first, using
Windows functions. If the file was deleted using
Windows, we do not know where the contents of file are
now, so we have to wipe the entire free space, to make
sure that all previously deleted data (including this file)
is erased beyond forensic recovery.

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 947 Issue 9, Volume 9, September 2010

10 Conclusions and Future Work
There are a lot of data wiping solutions in the market and
we wanted to bring out something unique, because we
have determined that users find these solutions difficult
to use and not providing continuous and complete
protection. Our solution is mainly designed for home
users however it can be integrated very well in a
business environment, in small or large companies who
want continuous data protection and to keep competitors
away from their private information.
 Also, many companies (the United States of America
have such confidential data laws) have to get rid of old
confidential documents after some time. In order to
comply with these laws, they have to use secure data
wiping software.
 As future work, we want to bring more options to the
user and to improve our user interface. Also, we want to
think of a way to make our product work in a local
network environment (not just on a local computer). In
addition, we want to wipe other sensitive areas of the
computer, such as the Windows Shadow Copies (also
called “Previous Versions” of files), feature that is
present in the newer versions of the Microsoft operating
system (Windows Vista and Windows 7). This feature
keeps old versions of files for backup purposes. Normal
wiping just erases the original file, but not its shadow
copies. This requires a special wiping technique that will
be researched and proposed in a future work.

References:

[1] „Privacy Software Review 2009 –
TopTenREVIEWS” -

[2] Spyware Removers, by CNET Download.com
[3] „Detection of Confidential Data Using the Open

Sensitive Area Definition (OSAD) Language” –
George Pecherle, Cornelia Gyorodi, Robert Gyorodi
– IEEE ICCP 2009 – Cluj Napoca, Romania

[4] Mozilla Thunderbird Junk Mail -
http://www.mozilla-europe.org/

[5] VirusList.com – http://www.viruslist.com
[6] Genie Timeline by Genie-Soft –
http://www.genie-soft.com/products/genie_timeline/
default.html
[7] XML Path Language (XPath) Version 1.0 -

http://www.w3.org/TR/xpath
[8] MSDN - http://msdn.microsoft.com/
[9] National Industrial Security Program Operating

Manual, reissued February 28, 2006
[10] "Secure Deletion of Data from Magnetic and Solid-

State Memory", Peter Gutmann, Department of
Computer Science, University of Auckland.
Published in the Sixth USENIX Security Symposium
Proceedings, San Jose, California, July 22-25, 1996

[11] The IEEE Computer Society – ”Remembrance of
Data Passed: A Study of Disk Sanitization Practices”
- SIMSON L.GARFINKE, ABHI SHELAT
(Massachusetts Institute of Technology) –
January/February 2003

[12] “How to Forget a Secret”, G. Di Crescenzo et al.,
Symposium Theoretical Aspects in Computer
Science (STACS 99), Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 1999, pp. 500–509

[13] NIST Special Publication 800-88: "Guidelines for
Media Sanitization", Recommendations of the
National Institute of Standards and Technology,
Richard Kissel, Matthew Scholl, Steven
Skolochenko, Xing Li, September 2006

[14] Can Intelligence Agencies Read Overwritten Data?,
a refutation of Gutmann's claims -
http://www.nber.org/sys-admin/
overwritten-data-guttman.html

[15] Robert Győrödi, Cornelia Győrödi, George
Pecherle, Livia Bandici, “Secure Data Wiping Using
the ISAAC CSPRNG” 13th IGTE Symposium 2008,
September 21-24, 2008, Graz, University of
Technology, Austria, pag. 278-281, ISBN 3-902465-
07.

[16] TrueCrypt – free open-source, on-the-fly encryption
[17] Data Recovery Wizard - http://www.easeus.com/
[18] "A Study on Information Security Management

System Model for Small and Medium Enterprises" -
Wan-Soo Lee, Sang-Soo Jang - 8th WSEAS
International Conference on Information Security and
Privacy (ISP '09), pp. 84-88, ISBN 978-960-474-
143-4, ISSN 1790-5117

[19] "Guide for Designing Cyber Security Exercises" -
VICTOR-VALERIU PATRICIU, ADRIAN
CONSTANTIN FURTUNA - 8th WSEAS
International Conference on Information Security and
Privacy (ISP '09), pp. 84-88, ISBN 978-960-474-
143-4, ISSN 1790-5117

[20] "Controlling Your Personal Information
Disclosure" - NORJIHAN ABDUL GHANI,
ZAILANI MOHAMED SIDEK - Proceedings of the
7th WSEAS International Conference on
INFORMATION SECURITY and PRIVACY (ISP
'08), pp. 23-28, ISBN 978-960-474-048-2, ISSN
1790-5117

[21] "A New Cryptographic Algorithm for the Real
Time Applications" - AHMED H. OMARI AND
BASIL M. AL-KASASBEH, RAFA E. AL-
QUTAISH AND MOHAMMAD I. MUHAIRAT -
Proceedings of the 7th WSEAS International
Conference on INFORMATION SECURITY and
PRIVACY (ISP '08), pp. 33-39, ISBN 978-960-474-
048-2, ISSN 1790-5117

WSEAS TRANSACTIONS on COMPUTERS George Pecherle, Cornelia Gyorodi, Robert Gyorodi, Bogdan Andronic

ISSN: 1109-2750 948 Issue 9, Volume 9, September 2010

