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Abstract: - In this work, we investigate the effect of serialization on the implementation area of datapath 
circuits on FPGAs. With ever-increasing logic capacity, FPGAs are being increasingly used to implement large 
datapath circuits. Since datapath circuits are designed to process multiple-bit wide data, FPGA routing 
resources, which typically consist of a significant amount of FPGA area, are routinely being used to transport 
multiple-bit wide signals. Consequently, it is important to design efficient routing architectures for transporting 
multiple-bit wide signals on FPGAs. Serialization, where several bits of a signal are first time-multiplexed and 
then transported over a single wire, has been effectively used to increase the I/O bandwidth of FPGAs. Recent 
work has proposed to use serialization to increase the area efficiency of FPGA routing resources for 
transporting multiple-bit wide signals. Most of the work, however, has focused on circuit-level design issues. 
Little work has been done on the overall effect of serialization on the area efficiency of FPGAs. In this work, 
we investigate the overall effect of serialization on the area efficiency of FPGAs. We propose a detailed FPGA 
routing architecture, which contains a set of serialization routing resources, and its associated routing tool. 
Using the architecture and the tool, we measure the effect of serialization on active area and track count. We 
found that, for benchmarks that contain four-bit wide datapath circuits, serialization can achieve a maximum 
active area reduction of 6.4% and a routing track reduction of 29%. 
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1 Introduction 
Field-Programmable Gate Arrays (FPGAs) are 
reconfigurable devices that are designed to 
implement a wide variety of digital systems including 
video processing, biomedical imaging, digital 
communications and high performance computing 
applications. Most of these applications contain a 
large proportion of datapath circuits that are designed 
to process multiple-bit wide data. 
 Datapath circuits usually are constructed out of 
highly regular bit-sliced structures. During the 
technology mapping and placement phase of the 
design flow, these regular structures are often 
preserved in order to take advantage of the 
specialized FPGA structures such as carry chains, 
multi-bit memory blocks, and arithmetic units [1]-
[14]. The preserved regularity puts an increasing 
demand on FPGA routing resources to efficiently 
transport multiple-bit wide signals on FPGAs. 
 Serialization, where several bits of signals are 
time-multiplexed and transmitted over a single wire, 
potentially can be used to reduce the number of 
routing tracks that are required to route a datapath 

circuit. Since routing resources typically consist of 
over 50% of the total FPGA area [13], the reduction 
can be used to increase the area efficiency of FPGAs. 
 The area efficiency of FPGAs is particularly 
important since a significant density gap exists 
between FPGAs and Application Specific Integrated 
Circuits (ASICs). This gap manifests itself in terms of 
active area (the amount of area that the transistors 
occupy) and wiring density. In particular, FPGAs 
dedicate a significant amount of active area to 
memory for storing the configuration information and 
to programmable switches for configuring the logic 
and routing resources. At the same time, FPGAs also 
must provide sufficient routing tracks for the largest 
applications that they implement while the smaller 
applications often leave many tracks unused. 
 As the process technology shrinks, wiring area 
and wiring density have become an increasingly 
important aspect of integrated circuit design [15]. In 
this work, we measure the effect of serialization on 
both the active area and wiring density of FPGAs. In 
particular, we use the traditional standard of post-
place-and-route minimum-width-transistor area [16] 
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to measure the impact of serialization on routing area. 
To this end, we propose a detailed serial routing 
architecture and a modified version of the Negotiated 
Congestion (NC) router [16]-[18] to efficiently 
serialize and route signals on FPGAs. 
 The remainder of this paper is organized as 
follows: Section 2 provides a detailed discussion on 
the motivation and related work; Section 3 describes 
the conventional FPGA routing architecture that this 
work is based on; Section 4 describes the design of 
the serialized routing architecture; Section 5 
describes the modifications to the Computer-Aided 
Design (CAD) flow; Section 6 presents experimental 
results; and Section 7 concludes. 
 
 
2 Motivation and Related Work 
Serialization has been effectively used to increase the 
I/O bandwidth of FPGAs. In particular, Xilinx and 
Altera both offer FPGAs with gigabit-per-second 
serial transceivers [19] [20] and the Virtual Wires 
project has demonstrated the effectiveness of 
serialization in overcoming I/O pin limitations of 
FPGAs for large multi-FPGA prototyping systems 
[21] [22]. 
 As the process dimension shrinks, the 
performance penalty of on-chip serial communication 
has been significantly reduced [23]-[25]. Several 
recent work [26]-[29] has proposed to incorporate 
serialization circuits into FPGA routing resources 
based on techniques such as wave-pipelining [30]-
[32] and surfing [33]-[35]. The work, however, has 
focused on circuit-level designs and no investigations 
have been performed at the architectural level. Time-
multiplexed routing architectures based on cycle-by-
cycle reconfiguration have also been proposed [36]-
[38]. Instead of serializing multi-bit signals, these 
architectures share routing resources by reconfiguring 
the routing resources every clock cycle. Only [38] has 
evaluated the area efficiency of these reconfigurable 
architectures and the evaluation is estimated based on 
global scheduling results instead of the actual post-
place-and-route results. 
 Architectural-level investigations based on post-
place-and-route results are important since, due to the 
reconfigurability of FPGAs, the area efficiency of 
FPGAs is strongly dependent on the utilization of its 
routing resources and, in particular, the effectiveness 
of FPGA CAD tools to utilize these resources. In this 
work, we propose a detailed serial routing 

architecture and its associated serialization-aware 
router. Based on the architecture and its supporting 
CAD tools, we evaluate the effect of serialization on 
the area efficiency of FPGAs. 
 
 
3 FPGA architectural Description 
We base our study on the island-style FPGA [39] 
shown in Figure 1. In the figure, a set of Configurable 
Logic Blocks (CLBs) are arranged in a grid. At the 
edges of the grid are IO blocks. Horizontal and 
vertical routing channels run between the rows and 
columns of the CLBs. Each channel contains a set of 
routing tracks and each track consists of a set of wire 
segments that span two CLBs. Switch blocks are used 
to connect the routing segments together at the 
intersections of the routing channels. The input and 
output pins of the CLBs are connected to the track 
segments through the input and output connection 
blocks, respectively. 

 
Fig. 1  FPGA Structure 

 As shown in Figure 2, each CLB contains four 
logic clusters. Each cluster contains a set of four 
tightly connected Basic Logic Elements (BLEs) [16]. 
Each BLE contains a four-input Look-Up Table 
(LUT) and can be used to implement either 
combinational or sequential logic. As shown in the 
Figure 2(a), each cluster contains ten logically 
equivalent input pins and four logically equivalent 
output pins. 
 As in [13] and [14], the four clusters are structured 
for implementing four neighboring bit-slices from a 
datapath circuit. Consequently, for each CLB, the 
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cluster-level inputs are grouped into ten four-bit wide 
input buses as shown in Figure 2(b). Similarly, the 
cluster-level outputs are grouped into four four-bit 
wide output buses. 

 
Fig. 2  CLB Structure 

 
Fig. 3  Output and Input Connection Block Structure 

 The connection blocks are used to connect the 
input and output pins of a CLB to the routing tracks. 
In this work, the same types of connection blocks 
from [16] are used. In particular, as shown in Figure 
3(a), an output connection block connects an output 
pin to its neighboring routing tracks. It consists of a 
shared output buffer along with a set of SRAM 
controlled pass transistor switches. An input 
connection block, on the other hand, connects an 

input pin to its neighboring routing tracks. It consists 
of a multiplexer and a set of shared isolation buffers 
as shown in Figure 3(b). 
 As in [16], the connection blocks are specified by 
two architectural parameters Fc_in and Fc_out. In 
particular, Fc_in specifies the percentage of routing 
tracks that a CLB input pin connects to and Fc_out 
specifies the percentage of routing tracks that a CLB 
output pin connects to. Finally, the disjoint topology 
[40] is used for each switch block. 
 Note that four-input LUTs, four BLEs per cluster, 
ten input pins per cluster, four output pins per cluster, 
and four clusters per CLB are shown to be efficient 
for implementing datapath-oriented FPGAs in [13]. 
The segment length of two has been shown to be 
efficient for both datapath-oriented [13] and 
conventional FPGAs [16]. All transistors in CLBs, 
connection blocks and switch blocks are sized based 
on the transistor sizing methodology from [13] and 
[16]. 
 
 
4 Serial Routing Architecture 
We augment the conventional routing architecture 
with serializers and deserializers. A serializer 
converts a four-bit wide signal into a one-bit wide, 
time-multiplexed, serial signal. The serial signal can 
be more efficiently routed through the FPGA routing 
resources since it requires considerably less routing 
tracks than the original four-bit wide signal. 
Deserializers are used to convert the serialized signals 
back into their original four-bit wide parallel form. 
 
 
4.1 Serializer and Deserializer Connectivity 
Figure 4 shows the connectivity of the serializers and 
deserializers. As shown in Figure 4(a), each serializer 
can be connected to a number of CLB output buses. 
Dedicated connections similar to the input connection 
blocks are used to connect the CLB outputs to the 
serializers. In particular, each serializer contains four 
input pins. Each pin corresponds to one of the four 
bits that are to be serialized by the serializer. The pin 
is connected to a corresponding bit of a CLB output 
bus through a multiplexer. The output of the serializer 
is then connected to the routing tracks by a dedicated 
output connection block. Note that, as shown in 
Figure 4(a), the CLB outputs also retain their direct 
connections to the routing tracks through their own 
output connection blocks. Consequently, the signals 
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can bypass the serializers and be directly connected 
to the tracks. (For clarity the pass transistor switches 
shown in Figure 3(a) are not shown in Figure 4(a)). 

 
Fig. 4  Serializer and Deserializer Connectivity 

 As shown in Figure 4(b), a deserializer contains a 
single input that receives the serialized signals. The 
input is connected to the routing tracks by a single 
input connection block. The output of a deserializer 
consists of four bits – each representing one bit of the 
original four-bit wide parallel signal. As shown in the 
figure, these bits are connected to the input 
connection blocks of the corresponding CLB input 
buses. As for the serializer, each output bit of the 

deserializer is connected to a corresponding bit from 
a CLB input bus. Note that, as shown in the figure, 
the CLB inputs also retain direct connections to the 
routing tracks through the input connection blocks. 
(For clarity the isolation buffers shown in Figure 3(b) 
are not shown in Figure 4(b)). 
 Note that when a deserializer is connected to only 
one CLB input bus, the deserializer, as shown in 
Figure 4(c), can share its input connection block with 
the input connection block of a CLB input pin from 
the bus. The sharing requires an additional 2:1 
multiplexer to connect the output of the shared input 
connection block to the corresponding CLB input pin. 
The sharing, however, also reduces the number of 
input connection blocks from five to four. Since the 
overall implementation area of the deserializer is 
reduced, the sharing is always assumed in this work. 
 As shown in Figure 4, the connectivity of the 
serializers and the deserializers can be quantified by 
six architectural parameters. In particular, Fc_ser is 
equal to the percentage of four-bit wide CLB output 
buses per CLB that can be connected to a serializer. 
Fc_des is equal to the percentage of four-bit wide 
CLB input buses per CLB that can be connected to 
each deserializer. Fc_out_ser is equal to the 
percentage of tracks that the output pin of a serializer 
can connect to and Fc_in_des is equal to the 
percentage of tracks that the input pin of a 
deserializer can connect to. Finally, Num_ser and 
Num_des are equal to the number of serializers and 
deserializers per CLB, respectively. 
 
 
4.2 Pipelined Routing Tracks and  

Synchronization 
In this work, as in [41]-[44], the routing tracks are 
pipelined to increase the throughput of the serial 
transmission. In particular, in each switch block, the 
buffers are replaced by latches. All the latches in the 
serializers, the deserializers and the switch blocks are 
clocked by a single clock, the global serial clock. 
 Due to the pipelined routing tracks, the number of 
clock cycles that it takes for a signal to travel from its 
serializer to its deserializer varies depending on the 
number of switch blocks that the signal must go 
through. Consequently, serialized signals can reach 
their deserializers at different times. For example, if 
one serialized signal must travel through three switch 
blocks to reach its deserializer, the deserializer should 
start the deserialization process three cycles after the 
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first bit of the signal is transmitted by the serializer. 
Another signal, however, might travel through ten 
switch blocks to reach its deserializer. This 
deserializer must start its deserialization process ten 
cycles after the first bit of the signal is transmitted by 
the serializer. Consequently, each deserializer must 
be individually synchronized with respect to its 
serializer. 

 
Fig. 5  Preamble of 0-1 Transition in Serial 

Transmission 

 
Fig. 6  Serializer 

 
Fig. 7  Serializer Operation 

 To synchronize the operation of the serializers and 
the deserializers, all latches in the switch blocks are 
first initialized to 0. As shown in Figure 5, each 
serializer then transmits a preamble of 0-to-1 
transition before transmitting its first serialized 
signal. When the preamble reaches the deserializer, it 
is used by the deserializer to trigger the 
deserialization process. 
 
 
4.3 Serializer Design 
The detailed design of the serializer is shown in 
Figure 6. It consists of three latches and four 2:1 
multiplexers. The serializer is controlled by three 

global clock signals – the global synch, the global 
load and the global serial clock. The operation of the 
serializer is shown in Figure 7. First, the global synch 
signal is asserted to create a preamble of 0-to-1 
transition at the serializer output. The global load 
signal is asserted at the same time to load the first set 
of CLB output values into the serializer. These values 
are then shifted out of the serializer output one bit at a 
time in four clock cycles. After four cycles, the global 
load signal is asserted again to load the next set of 
CLB output values into the serializer. 

 
Fig. 8  Deserializer 

 
Fig. 9  Deserializer Operation 
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4.4 Deserializer Design 
The design of the deserializer is shown in Figure 8. It 
consists of a seven-latch shift register as shown in 
Figure 8(a) and a load signal generator as shown in 
Figure 8(b). The operations of the shift register and 
the load signal generator are shown in Figure 9. As 
shown the latches are arranged in two banks. The 
three latches in the lower bank are controlled by the 
global serial clock. The input of the first latch is 
directly connected to the input of the deserializer. 
 The inputs of the four latches in the upper bank 
are connected to the corresponding outputs from the 
lower bank and the deserializer input as shown in 
Figure 8(a). The latches in the upper bank are 
controlled by the local serial clock (which is equal to 
the output of the load signal generator, local load, 
ORed with the global serial clock). The outputs of the 
upper bank, labeled o0-o3, are directly connected to a 
CLB input bus. Note that the lower bank of latches 
are used to de-serialize the input signal from the 
deserializer input and the top bank of latches are used 
to isolated any signal changes during the 
deserialization process from the CLB input bus. 
 The load signal generator is designed to 
synchronize the operation of the serializers and the 
deserializers. In particular, the same global synch 
signal that creates the preamble of 0-to-1 transition at 
the serializer also initializes the load signal generator 
(as shown in Figure 8(b)) of the deserializer by 
loading a set of initialization values (i0 to i3) into the 
latches. A combinational circuit is then used to detect 
the 0-to-1 transition at the input of the deserializer. 
Consequently, as shown in Figure 9, the output of the 
load signal generator (local load) remains 1 until a 0-
to-1 transition is detected by the combinational 
circuit. The load signal generator then pulses the local 
load signal every four clock cycles in order to load a 
new set of deserialized data into the upper bank of the 
seven-latch shift register. 
 
 
4.5 Transistor Sizing 
Note that the latches and the multiplexers are sized 
according to [13] and [16]. The combinational circuit 
is constructed out of CMOS gates with minimum 
drive strength and equalized rise and fall times. Each 
serializer consumes 32.9 minimum-width-transistor 
area and each deserializer consumes 126.5 minimum-
width-transistor area. In comparison, a CLB 
consumes 6712 minimum-width-transistor area [13]. 

Since a maximum of ten deserializers and four 
serializers can be attached to a CLB, in combination, 
the serializers and deserializers consume a maximum 
of 1395 minimum-width-transistor area. For the 
switch blocks, each latch requires 3.87 additional 
minimum-width-transistor area than the buffer that it 
replaces. Finally, the clock network design from [45] 
is used for the three clock networks required to drive 
the additional global clock signals (global synch, 
global load, and global clock). Overall, these three 
clock networks consume an additional 169.0 
minimum-width-transistor area per CLB tile. 
 
 
5 CAD Flow 
To efficiently utilize the serial routing resources, we 
modify the Versatile Place and Route (VPR) CAD 
flow [16] to model the serial routing architecture. In 
particular, circuits are mapped onto the CLB structure 
as shown in Figure 2 using the Synopsys synthesis 
and the datapath-oriented T-VPACK packing tools as 
in [13] [14]. This mapping process preserves as much 
datapath regularity as possible in order to maximize 
the number of inter-CLB signals that can be grouped 
into four-bit wide groups and be serialized by the 
serializers. The VPR placer is then used to place the 
packed CLBs onto the serial FPGA. 

 
Fig. 10  Serializer and Deserializer Representation in 

Routing Resource Graph 

 Routing is performed using a modified version of 
the VPR router. Based on the Negotiated Congestion 
algorithm [18], the router selectively serializes multi-
bit signals based on the congestion of the serializers 
and the deserializers. As shown in Figure 10, 
additional nodes are added to the routing resource 
graph to model the connectivity of the serializers and 
the deserializers. In particular, in the figure, a 
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serializer node is connected to a CLB output bus. 
Signals from the bus can be serialized into a bit of 
time-multiplexed signal by the serializer and be 
routed through one of the four routing tracks 
connected to the serializer. Similarly, the deserializer 
node is connected to four tracks and its outputs are 
connected to a CLB input bus. 
 To route a four-bit wide signal, we first route bit 0 
of the signal (the test bit) through the routing 
resources. From its CLB output pin, the test bit has 
the option of either expanding through a serializer or 
be directly connected to a routing track. If the bit 
expands through a serializer, it represents the 
serialized version of the entire multi-bit signal and 
must enter a deserializer before reaching its target 
CLB. If the bit bypasses the serializers, it remains un-
serialized and must bypass all deserializers. Both the 
serialized and un-serialized versions of the signal are 
expanded simultaneously. During the expansion, the 
version with the least accumulated congestion cost 
reaches the destination first and is selected as the 
route for the entire signal. If the serialized version is 
selected, the remaining bits in the four-bit wide signal 
are marked as routed. If the un-serialized version is 
selected, the remaining bits in the four-bit wide signal 
are routed individually as single-bit signals. 
 Note that the serialized version and the un-
serialized version of a signal can expand onto the 
same routing track. Conventional routing algorithms 
only use a single wave-front. When two parts of the 
same wave-front are expanded onto the same routing 
resource, the part with the higher congestion cost is 
eliminated [46]. The serialized and un-serialized 
versions of the test bit, however, represent two 
electrically distinct signals. Replacing one with the 
other eliminates future expansion opportunities. For 
example, Figure 11(a) shows a wave-front consisting 
of three nodes – two gray nodes representing the un-
serialized version of the expansion and one black 
node representing the serialized version. As shown, 
the un-serialized version has expanded onto the two 
routing tracks on the left while the serialized version 
is at the serializer. 
 During the next expansion, the serialized version 
expands onto the same tracks occupied by the un-
serialized version. Assuming the serialized 
expansions have lower costs, they replace the un-
serialized expansions and become part of the new 
wave-front as shown in Figure 11(b). Eliminating the 
un-serialized version, however, also eliminates future 

expansion opportunities. For example, in the figure, 
the deserializer node is already occupied. 
Consequently, none of nodes on the wave-front 
shown in Figure 11(b) can expand into the 
deserializer without causing congestion. As a result, 
the router cannot find an uncongested routing 
solution. 
 

 
Fig. 11  Single Wave-Front Solution 

 In this work, we keep two distinct wave-fronts – 
one for the serialized version and another for the un-
serialized version. The two wave-fronts do not 
interfere with each other and the wave-front that 
reaches the destination first determines the route of 
an entire signal. An example of the dual wave-front 
expansion is shown in Figure 12. In this example, 
when the serialized wave-front expands onto the two 
nodes that are already occupied by the un-serialized 
wave-front, both wave-fronts are kept. Consequently, 
the congested deserializer can be bypassed by the un-
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serialized wave-front, which directly expands onto 
the target CLB input pin. 

 
Fig. 12  Dual Wave-Front Solution 

 
 
6 Experimental Results 
To evaluate the effect of serialization on FPGA area 
and track utilization, a set of 15 benchmark circuits 
from the Pico-Java processor [47] were mapped onto 
the serial routing architecture using the CAD flow 
from Section 5. These benchmarks were used in 
several previous studies on datapath-oriented FPGAs 
[13] [14]. The area and track count are then measured 
and compared to the conventional routing 
architecture. 
 
 
6.1 Architectural Parameters 
The conventional architectural parameters are set to 
the values as shown in Table 1. As shown, each CLB 
input is connected to 50% of the routing tracks in its 
neighboring routing channel (Fc_in = 50%) and each 
CLB output is connected to 25% of the routing tracks 
(Fc_out = 25%) in its neighboring routing channel. 
These values were shown to be efficient in [13] and 
[16]. Similarly, as in Section 3, the track segment 
length is set to two and the disjoint switch block 
topology is used. The LUT size is set to four. Each 
logic cluster contains four BLEs, and each CLB 
contains four logic clusters. Finally, as shown in 
Figure 2, there are four four-bit wide output buses 
and ten four-bit wide input buses per CLB. 
 Table 2 shows the additional architectural 
parameter settings for the serial routing architecture. 

In particular, each serializer/deserializer is mapped to 
a dedicated CLB output/input bus by setting Fc_ser to 
0.25 and Fc_des to 0.1. Note that, despite this one-to-
one mapping of serializers/deserializers to 
output/input buses, serialized signals still can 
exit/enter a CLB through any of the 
serializers/deserializers due to the logic equivalency 
of logic cluster output/input pins. In particular, a four-
bit wide output from a CLB can be routed to any of 
the CLB output buses by the fully connected local 
routing network shown in Figure 2(a) [16]. The 
output can then be serialized by the serializer 
connected to the bus. Similarly, a serialized signal 
can enter a CLB through any of the deserializers. 
Once deserialized, each bit of the signal can then be 
routed from the corresponding logic cluster input to 
any of the LUT inputs through the fully connected 
local routing network. 

Table 1.  Conventional Routing Architecture 
Parameters 

Architectural Parameter Value 
Fc_out 0.25 
Fc_in 0.5 

Segment Length 2 
Switch Block Topology Disjoint 

LUT Size 4 
Number of BLEs per Cluster 4 
Number of Clusters per CLB 4 

Number of Output Buses 4 
Number of Input Buses 10 

Table 2.  Serial Routing Architecture Parameters 
Architectural Parameter Value 

Fc_ser 0.25 
Fc_des 0.1 

Fc_out_ser 0.25 
Fc_in_des 0.5 
Num_ser 4 
Num_des From 10 to 4 

 As shown in Table 2, Fc_out_ser is set to 0.25 and 
Fc_in_des is set to 0.5. These values are selected to 
be the same as the Fc_out and Fc_in values of the 
conventional routing architecture, respectively. By 
equating Fc_out_ser/Fc_in_des to Fc_out/Fc_in, a 
serialized signal has the same level of connectivity 
to/from routing tracks as an un-serialized signal. 
Consequently, serialization decisions are based 
entirely on the effect of serialization and are not 
influenced by connectivity differences to/from the 
routing tracks. 
 As shown in Table 3 when mapped onto 
architectures with four serializers and ten 
deserializers, the benchmark circuits on average 
utilizes 48.9% of the serializers and 30.0% of the 
deserializers. Since only a maximum of four 

Sources 

CLB Outputs 

Tracks 

Serializer

CLB Inputs 

Sinks (Target)

Deserializer
(Occupied) 

Un-Serialized Wave-Front
Serialized Wave-Front 
Occupied Node 

Dual Wave-Front
Un-occupied node 
to be expanded 
into next 

Test Bit 
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serializers are required per CLB, each serializer 
represents a significant proportion (25%) of the total 
number of serializers. Each deserializer, on the other 
hand, represents a much smaller proportion (10%) of 
the total number of deserializers. In addition, as 
shown in Section 4, each deserializer contains a load 
signal generator for synchronizing its operations with 
the serializers. A deserializer thus consumes 
significantly more area than a serializer (126.5 vs. 
32.9 minimum-width-transistor area). As a result, 
reducing the number of serializers significantly 
reduces the percentage of signals that can be 
serialized while only achieving a minimum reduction 
in the total area consumed by the 
serializers/deserializers per CLB. Reducing the 
number of deserializers, on the other hand, can 
substantially reduce the total serializer/deserializer 
area while still maintaining a high rate of serialization 
[48]. As a result, in this work, as shown in Table 2, 
the number of deserializers is varied from ten to four 
and the number of serializers is fixed at four. 

Table 3.  Percentage of Serialization, Serializer 
Utilization and Deserializer Utilization for 

the 4 Serializer 10 Deserializer Configuration 

Benchmark 

# of Two-
Terminal 
Multi-Bit 

Connections 

% of 
Serialized 
Multi-Bit 

Connections 

% of Used 
Serializers 

% of Used 
Deserializers

icu_dpath 3972 99.2% 57.1% 42.6% 
ex_dpath 3456 99.9% 59.2% 44.1% 
ucode_dat 1608 100.0% 54.5% 41.7% 
imdr_dpath 1304 100.0% 61.1% 38.3% 
dcu_dpath 1220 100.0% 58.3% 40.5% 

mantissa_dp 1156 99.3% 54.3% 36.1% 
incmod 808 100.0% 44.9% 31.5% 

multmod_dp 684 100.0% 26.7% 15.4% 
smu_dpath 472 99.2% 40.3% 23.9% 
pipe_dpath 436 100.0% 56.7% 21.3% 

exponent_dp 428 100.0% 43.1% 24.2% 
rsadd_dp 384 100.0% 52.2% 38.3% 
prils_dp 280 95.7% 32.4% 21.9% 

code_seq_dp 252 100.0% 42.7% 9.6% 
ucode_reg 128 100.0% 50.0% 20.0% 

Overall 16588 99.6% 48.9% 30.0% 
 
 
6.2 Serialization Penalty 
To encourage serialization, the NC router, as 
described in Section 5, penalizes un-serialized multi-
bit signals. In particular, if a test bit is expanded from 
a CLB output pin directly onto a track without being 
serialized, the expansion cost of the track is first 
multiplied by a penalty factor and then accumulated 
into the total expansion cost of the bit. In this work, 
we vary the penalty factor from 1000 to 2x108. The 

smaller values were shown to be ineffective, as many 
multi-bit signals were left un-serialized [48]. The 
higher values from 2x107 to 2x108, on the other hand, 
produce good serialization results since they force 
test bits to go through serializers unless the associated 
routing resources are highly congested. 
 As shown in Table 4, in this work, a set of penalty 
factors are selected for each benchmark circuit based 
on the criterion of minimizing track count. Table 3 
shows that, with these values, nearly all multi-bit 
signals are serialized for each benchmark circuit for 
the architecture containing four serializers and ten 
deserializers per CLB. 

Table 4.  Penalty Factor Results 
Benchmark Penalty Factor (x106) 

10 Des 9 Des 8 Des 7 Des 6 Des 5 Des 4 Des
code_seq_

dp 80 80 20 100 100 20 80 

dcu_dpath 60 60 100 120 60 100 80 
ex_dpath 60 20 20 100 60 60 60 

exponent_d
p 100 60 120 200 120 40 60 

imdr_dpath 20 60 200 120 60 20 200 
incmod 60 200 100 80 20 60 100 

mantissa_d
p 60 80 80 80 100 120 80 

icu_dpath 60 100 60 80 20 60 40 
multmod_d

p 40 80 80 200 120 40 60 

pipe_dpath 60 40 80 60 60 20 20 
prils_dp 200 20 80 80 60 60 40 

rsadd_dp 120 120 80 100 80 40 80 
ucode_dat 60 40 80 80 100 20 80 
ucode_reg 80 60 80 60 60 60 80 
smu_dpath 60 60 80 200 60 60 80 
 
 
6.3 Serialization Results – Track Count 
As in [49]-[51], a binary search is performed to 
determine the minimum channel width required to 
successfully route each circuit. Figure 13 shows the 
average number of tracks reduced per channel over 
the conventional routing architecture. As shown, the 
architecture with four serializers and ten deserializers 
per CLB requires the least number of tracks. As the 
number of deserializers per CLB decreases from ten 
to seven, the track reduction per channel decreases 
slightly from 14.9 tracks to 13.9 tracks. From six to 
four deserializers per CLB, tracks reduced per 
channel decreases significantly, where the 
architecture containing four serializers and four 
deserializers per CLB uses only 8.07 less tracks per 
channel than the conventional routing architecture. 
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Fig. 13  Channel Width Reduction 

15.0%

20.0%

25.0%

30.0%

10 9 8 7 6 5 4

%
 R
o
u
ti
n
g 
Tr
ac
k 
R
e
d
u
ct
io
n

Number of Deserializers

 
Fig. 14  Routing Track Reduction 

Table 5.  Per Circuit Routing Track Reduction 
Benchmark % of Routing Track Reduction 

10 Des 9 Des 8 Des 7 Des 6 Des 5 Des 4 Des
code_seq_

dp 23.7% 23.7% 23.7% 23.7% 23.7% 23.7% 23.7%

dcu_dpath 45.3% 45.3% 45.3% 45.3% 45.3% 37.7% 30.2%
ex_dpath 43.2% 40.7% 39.5% 38.3% 33.3% 24.7% 19.8%

exponent_d
p 21.1% 21.1% 19.3% 21.1% 21.1% 12.3% 7.02%

imdr_dpath 24.2% 27.4% 25.8% 24.2% 21.0% 14.5% 11.3%
incmod 24.6% 24.6% 24.6% 21.1% 22.8% 19.3% 14.0%

mantissa_d
p 26.1% 23.2% 23.2% 23.2% 23.2% 17.4% 11.6%

icu_dpath 28.0% 28.0% 24.0% 24.0% 16.0% 13.3% 2.67%
multmod_d

p 6.56% 3.28% 6.56% 6.56% 6.56% 0.00% 0.00%

pipe_dpath 32.3% 32.3% 32.3% 32.3% 32.3% 32.3% 29.0%
prils_dp 16.2% 13.5% 10.8% 10.8% 10.8% 10.8% 10.8%

rsadd_dp 27.0% 32.4% 29.7% 29.7% 27.0% 18.9% 10.8%
ucode_dat 41.4% 41.4% 36.2% 34.5% 34.5% 27.6% 20.7%
ucode_reg 56.0% 56.0% 56.0% 56.0% 56.0% 56.0% 56.0%
smu_dpath 19.5% 19.5% 19.5% 22.0% 19.5% 19.5% 19.5%

Overall 29.0% 28.8% 27.8% 27.5% 26.2% 21.9% 17.8%
 Figure 14 shows the percentage of total tracks 
reduced over all routing channels for all benchmark 
circuits. As shown, the architecture with four 
serializers and ten deserializers per CLB requires 
29.0% less routing tracks than the conventional 
routing architecture. As the number of deserializers is 

reduced, the track reduction drops significantly from 
29.0% to 17.8% with the knee of the graph occurring 
at six deserializers per CLB. 
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Fig. 15  Routing Area Reduction 

 Table 5 shows the percentage of tracks reduced 
per circuit. As shown, the architecture with four 
serializers and ten deserializers per CLB consistently 
achieves the highest percentage of routing track 
reduction since this configuration nearly serializes all 
multi-bit signals for each benchmark circuit. As the 
number of deserializers is reduced, it becomes more 
probably for the deserializers to become congested as 
multi-bit signals compete for their use. Consequently, 
with increased congestion, more multi-bit signals 
must remain un-serialized. Since each un-serialized 
signal requires four routing tracks instead of one, 
track reduction decreases across all benchmarks. 
 
 
6.4 Serialization Results – Active Area 
We define routing area as the total active area consumed 
by the serializers, deserializers, switch blocks and all 
types of connection blocks. Figure 15 shows the 
percentage of routing area reduction achieved by the serial 
routing architecture over the conventional routing 
architecture. As shown the routing area reduction follows 
closely with routing track reduction. From ten 
deserializers to six deserializers, we observed an area 
reduction of 4.44% to 6.37%. For five and four 
deserializers, on the other hand, the amount of active area 
reduction is quickly reduced and becomes negative. These 
results show that, for our benchmark set, the best number 
of deserializers per CLB, in terms of active area, is seven. 
 Table 5 shows that, with seven deserializers, there 
is a lower than maximum 27.5% routing track 
reduction. However, as shown in Section 4, the area 
cost of the deserializer circuit is quite significant and 
not all deserializers in a ten deserializer configuration 
are utilized. As a result, by reducing the number of 
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deserializers per CLB, the overall active area is 
reduced. 
 Table 6 shows a detailed breakdown of the results 
collected from our experiments for four serializers 
and seven deserializers. As shown, of the 15 
benchmark circuits, eight produced routing area 
reductions and seven have an increase in routing area. 
In general, larger benchmarks produced significant 
routing area reductions due to the large number of 
multi-bit signals that they contain. The smaller 
circuits, on the other hand, produced less routing area 
reduction or exhibit an increase in routing area. 
 One exception to this trend is the multimod_dp 
circuit. As shown in column 2 of Table 6, the circuit 
contains relatively little multi-bit signals even though 
it ranks third in size (in terms of conventional routing 
area). As shown in [13], many of the inter-CLB 
signals contained in multimod_dp shift bit positions 
as they travel from a CLB output bus to a CLB input 
bus. These shifts cannot be captured by the current 
non-shifting serial routing resources and hence are 
not included in the percentage value shown in column 
2. The result suggests that adding shifting capabilities 
to the serial routing resources potentially can improve 
the area efficiency of multimod_dp-like circuits. 
 Another exception to the rule is the smallest 
benchmark, ucode_reg, which produced a significant 
area reduction of 21.6%. In this circuit, 74% of the 
inter-CLB signals are multi-bit signals, consequently, 
it benefits significantly from serialization. 
 The table shows that the percentage of multi-bit 
signals per circuit (defined as the total number of 
two-terminal connections in multi-bit inter-CLB 
signals vs. the total number of two-terminal 
connections in all inter-CLB signals) has a significant 

impact on area reduction. Our results suggest that in 
order for a benchmark to benefit from serialization 
(in terms of active area reduction) the percentage of 
multi-bit signals in the circuit must be at least 53% or 
greater.  
 
 
7 Conclusions 
In this work, we investigated the effect of 
serialization on FPGA routing efficiency. Based on 
our benchmark circuits, we found that, for four-bit 
wide serial routing resources, a maximum active area 
reduction of 6.39% can be achieved through 
serialization. The configuration that achieves the 
maximum active area reduction contains four 
serializers and seven deserializers. For maximum 
routing track reduction, on the other hand, the serial 
routing architecture should contain four serializers 
and ten deserializers. This configuration achieves a 
maximum routing track reduction of 29%. 
 This work can be further expanded to investigate 
the effect of serialization on other routing 
architectures. In particular, this work has focused on 
the effect of serialization on bi-directional FPGA 
routing resources. It can be expanded to investigate 
the effect of serialization on directional routing 
resources [52]. Furthermore, in this work, signals are 
selected for serialization solely based on the 
congestion of the serialization routing resources. The 
routing tool did not consider the criticality of signals 
and the distances that a signal must travel. These 
parameters, however, can be important in maximizing 
routing area reduction while minimizing the effect of 
serialization on delay. The design of such routers is 
left as future work. 

Table 6. Routing Area Reduction for 4 Serializers and 7 Deserializers 
Benchmark % of Multi-Bit 

Signals 
Serial Routing Area Conventional 

Routing Area 
% of Area 
Reduction Track Only Serializer Deserializer Clock Network Total 

ucode_reg 74 3.88E+04 1.19E+03 7.93E+03 1.25E+03 4.92E+04 6.27E+04 21.6% 
dcu_dpath 65 5.39E+05 8.44E+03 5.67E+04 8.87E+03 6.13E+05 7.93E+05 22.6% 
ex_dpath 61 2.54E+06 2.59E+04 1.74E+05 2.72E+04 2.77E+06 3.50E+06 20.9% 

ucode_dat 61 1.05E+06 1.32E+04 8.86E+04 1.39E+04 1.16E+06 1.32E+06 11.7% 
icu_dpath 61 3.28E+06 2.97E+04 1.99E+05 3.12E+04 3.54E+06 3.73E+06 5.25% 
rsadd_dp 61 1.96E+05 3.30E+03 2.21E+04 3.46E+03 2.25E+05 2.35E+05 4.45% 

mantissa_dp 56 8.95E+05 8.44E+03 5.67E+04 8.87E+03 9.69E+05 1.01E+06 4.25% 
pipe_dpath 56 2.42E+05 4.75E+03 3.19E+04 4.99E+03 2.84E+05 2.80E+05 -1.42% 
imdr_dpath 53 1.01E+06 1.07E+04 7.17E+04 1.12E+04 1.11E+06 1.13E+06 2.49% 
smu_dpath 51 3.03E+05 4.75E+03 3.19E+04 4.99E+03 3.71E+05 3.64E+05 -1.87% 

incmod 48 7.81E+05 8.44E+03 7.17E+04 8.87E+03 8.55E+05 8.44E+05 -1.42% 
exponent_dp 47 4.46E+05 4.75E+03 3.19E+04 4.99E+03 4.88E+05 4.81E+05 -1.30% 
code_seq_dp 46 2.16E+05 3.30E+03 2.21E+04 3.46E+03 2.45E+05 2.38E+05 -2.91% 

prils_dp 42 3.48E+05 4.75E+03 3.19E+04 4.99E+03 3.90E+05 3.35E+05 -16.4% 
multmod_dp 32 1.78E+06 1.60E+04 1.07E+05 1.68E+04 1.92E+06 1.67E+06 -14.7% 
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 This work also provides a base platform for 
examining the efficiency of more advanced 
serialization techniques such as surfing and wave-
pipelining [28] [29]. Finally, future studies should 
also investigate the effect of serialization on circuits 
containing wider multi-bit signals, such as 8-bit, 16-
bit, and 32-bit through the use of wider serializers 
and deserializers.  
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