
EFFECT OF SERIALIZED ROUTING RESOURCES ON THE
IMPLEMENTATION AREA OF DATAPATH CIRCUITS ON FPGAS

SEBASTIAN IP AND ANDY GEAN YE

Department of Electrical and Computer Engineering
Ryerson University

350 Victoria Street, Toronto, Ontario, M5B 2K3
CANADA

email: sebastian.ip@gmail.com, aye@ee.ryerson.ca

Abstract: - In this work, we investigate the effect of serialization on the implementation area of datapath
circuits on FPGAs. With ever-increasing logic capacity, FPGAs are being increasingly used to implement large
datapath circuits. Since datapath circuits are designed to process multiple-bit wide data, FPGA routing
resources, which typically consist of a significant amount of FPGA area, are routinely being used to transport
multiple-bit wide signals. Consequently, it is important to design efficient routing architectures for transporting
multiple-bit wide signals on FPGAs. Serialization, where several bits of a signal are first time-multiplexed and
then transported over a single wire, has been effectively used to increase the I/O bandwidth of FPGAs. Recent
work has proposed to use serialization to increase the area efficiency of FPGA routing resources for
transporting multiple-bit wide signals. Most of the work, however, has focused on circuit-level design issues.
Little work has been done on the overall effect of serialization on the area efficiency of FPGAs. In this work,
we investigate the overall effect of serialization on the area efficiency of FPGAs. We propose a detailed FPGA
routing architecture, which contains a set of serialization routing resources, and its associated routing tool.
Using the architecture and the tool, we measure the effect of serialization on active area and track count. We
found that, for benchmarks that contain four-bit wide datapath circuits, serialization can achieve a maximum
active area reduction of 6.4% and a routing track reduction of 29%.

Key-Words: - Field-Programmable Gate Arrays, Serial Routing Resources, Routing, Area Efficiency

1 Introduction
Field-Programmable Gate Arrays (FPGAs) are
reconfigurable devices that are designed to
implement a wide variety of digital systems including
video processing, biomedical imaging, digital
communications and high performance computing
applications. Most of these applications contain a
large proportion of datapath circuits that are designed
to process multiple-bit wide data.
 Datapath circuits usually are constructed out of
highly regular bit-sliced structures. During the
technology mapping and placement phase of the
design flow, these regular structures are often
preserved in order to take advantage of the
specialized FPGA structures such as carry chains,
multi-bit memory blocks, and arithmetic units [1]-
[14]. The preserved regularity puts an increasing
demand on FPGA routing resources to efficiently
transport multiple-bit wide signals on FPGAs.
 Serialization, where several bits of signals are
time-multiplexed and transmitted over a single wire,
potentially can be used to reduce the number of
routing tracks that are required to route a datapath

circuit. Since routing resources typically consist of
over 50% of the total FPGA area [13], the reduction
can be used to increase the area efficiency of FPGAs.
 The area efficiency of FPGAs is particularly
important since a significant density gap exists
between FPGAs and Application Specific Integrated
Circuits (ASICs). This gap manifests itself in terms of
active area (the amount of area that the transistors
occupy) and wiring density. In particular, FPGAs
dedicate a significant amount of active area to
memory for storing the configuration information and
to programmable switches for configuring the logic
and routing resources. At the same time, FPGAs also
must provide sufficient routing tracks for the largest
applications that they implement while the smaller
applications often leave many tracks unused.
 As the process technology shrinks, wiring area
and wiring density have become an increasingly
important aspect of integrated circuit design [15]. In
this work, we measure the effect of serialization on
both the active area and wiring density of FPGAs. In
particular, we use the traditional standard of post-
place-and-route minimum-width-transistor area [16]

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1401 Issue 12, Volume 9, December 2010

to measure the impact of serialization on routing area.
To this end, we propose a detailed serial routing
architecture and a modified version of the Negotiated
Congestion (NC) router [16]-[18] to efficiently
serialize and route signals on FPGAs.
 The remainder of this paper is organized as
follows: Section 2 provides a detailed discussion on
the motivation and related work; Section 3 describes
the conventional FPGA routing architecture that this
work is based on; Section 4 describes the design of
the serialized routing architecture; Section 5
describes the modifications to the Computer-Aided
Design (CAD) flow; Section 6 presents experimental
results; and Section 7 concludes.

2 Motivation and Related Work
Serialization has been effectively used to increase the
I/O bandwidth of FPGAs. In particular, Xilinx and
Altera both offer FPGAs with gigabit-per-second
serial transceivers [19] [20] and the Virtual Wires
project has demonstrated the effectiveness of
serialization in overcoming I/O pin limitations of
FPGAs for large multi-FPGA prototyping systems
[21] [22].
 As the process dimension shrinks, the
performance penalty of on-chip serial communication
has been significantly reduced [23]-[25]. Several
recent work [26]-[29] has proposed to incorporate
serialization circuits into FPGA routing resources
based on techniques such as wave-pipelining [30]-
[32] and surfing [33]-[35]. The work, however, has
focused on circuit-level designs and no investigations
have been performed at the architectural level. Time-
multiplexed routing architectures based on cycle-by-
cycle reconfiguration have also been proposed [36]-
[38]. Instead of serializing multi-bit signals, these
architectures share routing resources by reconfiguring
the routing resources every clock cycle. Only [38] has
evaluated the area efficiency of these reconfigurable
architectures and the evaluation is estimated based on
global scheduling results instead of the actual post-
place-and-route results.
 Architectural-level investigations based on post-
place-and-route results are important since, due to the
reconfigurability of FPGAs, the area efficiency of
FPGAs is strongly dependent on the utilization of its
routing resources and, in particular, the effectiveness
of FPGA CAD tools to utilize these resources. In this
work, we propose a detailed serial routing

architecture and its associated serialization-aware
router. Based on the architecture and its supporting
CAD tools, we evaluate the effect of serialization on
the area efficiency of FPGAs.

3 FPGA architectural Description
We base our study on the island-style FPGA [39]
shown in Figure 1. In the figure, a set of Configurable
Logic Blocks (CLBs) are arranged in a grid. At the
edges of the grid are IO blocks. Horizontal and
vertical routing channels run between the rows and
columns of the CLBs. Each channel contains a set of
routing tracks and each track consists of a set of wire
segments that span two CLBs. Switch blocks are used
to connect the routing segments together at the
intersections of the routing channels. The input and
output pins of the CLBs are connected to the track
segments through the input and output connection
blocks, respectively.

Fig. 1 FPGA Structure

 As shown in Figure 2, each CLB contains four
logic clusters. Each cluster contains a set of four
tightly connected Basic Logic Elements (BLEs) [16].
Each BLE contains a four-input Look-Up Table
(LUT) and can be used to implement either
combinational or sequential logic. As shown in the
Figure 2(a), each cluster contains ten logically
equivalent input pins and four logically equivalent
output pins.
 As in [13] and [14], the four clusters are structured
for implementing four neighboring bit-slices from a
datapath circuit. Consequently, for each CLB, the

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

I/O I/O I/O

I/O I/O I/O

I/O

I/O

I/O
 I/O

I/O

I/O

Disjoint
Switch Block

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1402 Issue 12, Volume 9, December 2010

cluster-level inputs are grouped into ten four-bit wide
input buses as shown in Figure 2(b). Similarly, the
cluster-level outputs are grouped into four four-bit
wide output buses.

Fig. 2 CLB Structure

Fig. 3 Output and Input Connection Block Structure

 The connection blocks are used to connect the
input and output pins of a CLB to the routing tracks.
In this work, the same types of connection blocks
from [16] are used. In particular, as shown in Figure
3(a), an output connection block connects an output
pin to its neighboring routing tracks. It consists of a
shared output buffer along with a set of SRAM
controlled pass transistor switches. An input
connection block, on the other hand, connects an

input pin to its neighboring routing tracks. It consists
of a multiplexer and a set of shared isolation buffers
as shown in Figure 3(b).
 As in [16], the connection blocks are specified by
two architectural parameters Fc_in and Fc_out. In
particular, Fc_in specifies the percentage of routing
tracks that a CLB input pin connects to and Fc_out
specifies the percentage of routing tracks that a CLB
output pin connects to. Finally, the disjoint topology
[40] is used for each switch block.
 Note that four-input LUTs, four BLEs per cluster,
ten input pins per cluster, four output pins per cluster,
and four clusters per CLB are shown to be efficient
for implementing datapath-oriented FPGAs in [13].
The segment length of two has been shown to be
efficient for both datapath-oriented [13] and
conventional FPGAs [16]. All transistors in CLBs,
connection blocks and switch blocks are sized based
on the transistor sizing methodology from [13] and
[16].

4 Serial Routing Architecture
We augment the conventional routing architecture
with serializers and deserializers. A serializer
converts a four-bit wide signal into a one-bit wide,
time-multiplexed, serial signal. The serial signal can
be more efficiently routed through the FPGA routing
resources since it requires considerably less routing
tracks than the original four-bit wide signal.
Deserializers are used to convert the serialized signals
back into their original four-bit wide parallel form.

4.1 Serializer and Deserializer Connectivity
Figure 4 shows the connectivity of the serializers and
deserializers. As shown in Figure 4(a), each serializer
can be connected to a number of CLB output buses.
Dedicated connections similar to the input connection
blocks are used to connect the CLB outputs to the
serializers. In particular, each serializer contains four
input pins. Each pin corresponds to one of the four
bits that are to be serialized by the serializer. The pin
is connected to a corresponding bit of a CLB output
bus through a multiplexer. The output of the serializer
is then connected to the routing tracks by a dedicated
output connection block. Note that, as shown in
Figure 4(a), the CLB outputs also retain their direct
connections to the routing tracks through their own
output connection blocks. Consequently, the signals

CLB

SRAM

CLB

Fc_in

Fc_out

(a) Output Connection Block

(b) Input Connection Block

Shared
Buffers

Logic Cluster
0

Logic Cluster
1

Logic Cluster
2

Logic Cluster
3

Input
Bus 0
Input
Bus 1

Input
Bus 9

Output
Bus 0

Output
Bus 3

BLE 0

BLE 1

BLE 2

BLE 3

Fully
Connected

Local
Routing
Network

Output 0

Output 1

Output 2

Output 3

Input 0
Input 1

Input 9

(a) Logic Cluster Structure

(b) CLB Structure

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1403 Issue 12, Volume 9, December 2010

can bypass the serializers and be directly connected
to the tracks. (For clarity the pass transistor switches
shown in Figure 3(a) are not shown in Figure 4(a)).

Fig. 4 Serializer and Deserializer Connectivity

 As shown in Figure 4(b), a deserializer contains a
single input that receives the serialized signals. The
input is connected to the routing tracks by a single
input connection block. The output of a deserializer
consists of four bits – each representing one bit of the
original four-bit wide parallel signal. As shown in the
figure, these bits are connected to the input
connection blocks of the corresponding CLB input
buses. As for the serializer, each output bit of the

deserializer is connected to a corresponding bit from
a CLB input bus. Note that, as shown in the figure,
the CLB inputs also retain direct connections to the
routing tracks through the input connection blocks.
(For clarity the isolation buffers shown in Figure 3(b)
are not shown in Figure 4(b)).
 Note that when a deserializer is connected to only
one CLB input bus, the deserializer, as shown in
Figure 4(c), can share its input connection block with
the input connection block of a CLB input pin from
the bus. The sharing requires an additional 2:1
multiplexer to connect the output of the shared input
connection block to the corresponding CLB input pin.
The sharing, however, also reduces the number of
input connection blocks from five to four. Since the
overall implementation area of the deserializer is
reduced, the sharing is always assumed in this work.
 As shown in Figure 4, the connectivity of the
serializers and the deserializers can be quantified by
six architectural parameters. In particular, Fc_ser is
equal to the percentage of four-bit wide CLB output
buses per CLB that can be connected to a serializer.
Fc_des is equal to the percentage of four-bit wide
CLB input buses per CLB that can be connected to
each deserializer. Fc_out_ser is equal to the
percentage of tracks that the output pin of a serializer
can connect to and Fc_in_des is equal to the
percentage of tracks that the input pin of a
deserializer can connect to. Finally, Num_ser and
Num_des are equal to the number of serializers and
deserializers per CLB, respectively.

4.2 Pipelined Routing Tracks and

Synchronization
In this work, as in [41]-[44], the routing tracks are
pipelined to increase the throughput of the serial
transmission. In particular, in each switch block, the
buffers are replaced by latches. All the latches in the
serializers, the deserializers and the switch blocks are
clocked by a single clock, the global serial clock.
 Due to the pipelined routing tracks, the number of
clock cycles that it takes for a signal to travel from its
serializer to its deserializer varies depending on the
number of switch blocks that the signal must go
through. Consequently, serialized signals can reach
their deserializers at different times. For example, if
one serialized signal must travel through three switch
blocks to reach its deserializer, the deserializer should
start the deserialization process three cycles after the

(b) Deserializer

(a) Serializer

Serializer

CLB

Deserializer

CLB

Deserializer

CLB

CLB
Output

Bus

CLB
Output

Bus

CLB
Input
Bus

CLB
Input
Bus

Fc_ser

Fc_out_ser

Fc_des

Fc_in_des

max(Fc_in_des, Fc_in)

(c) One Output Bus per Deserializer Optimization

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1404 Issue 12, Volume 9, December 2010

first bit of the signal is transmitted by the serializer.
Another signal, however, might travel through ten
switch blocks to reach its deserializer. This
deserializer must start its deserialization process ten
cycles after the first bit of the signal is transmitted by
the serializer. Consequently, each deserializer must
be individually synchronized with respect to its
serializer.

Fig. 5 Preamble of 0-1 Transition in Serial

Transmission

Fig. 6 Serializer

Fig. 7 Serializer Operation

 To synchronize the operation of the serializers and
the deserializers, all latches in the switch blocks are
first initialized to 0. As shown in Figure 5, each
serializer then transmits a preamble of 0-to-1
transition before transmitting its first serialized
signal. When the preamble reaches the deserializer, it
is used by the deserializer to trigger the
deserialization process.

4.3 Serializer Design
The detailed design of the serializer is shown in
Figure 6. It consists of three latches and four 2:1
multiplexers. The serializer is controlled by three

global clock signals – the global synch, the global
load and the global serial clock. The operation of the
serializer is shown in Figure 7. First, the global synch
signal is asserted to create a preamble of 0-to-1
transition at the serializer output. The global load
signal is asserted at the same time to load the first set
of CLB output values into the serializer. These values
are then shifted out of the serializer output one bit at a
time in four clock cycles. After four cycles, the global
load signal is asserted again to load the next set of
CLB output values into the serializer.

Fig. 8 Deserializer

Fig. 9 Deserializer Operation

Local Load

Global Serial Clock

0 1 b0 b1 b2 b3 b4 b5 b6 b7

Serial Input

b0 b4

Local Serial Clock (Local Load | Global Serial Clock)

b1 b5

b2 b6

b3 b7

o0-o3

0-1 Transition Preamble

o3 o2 o1 o0

Global Serial Clock

Local Serial
Clock

Deserializer
Input

(a) Seven Latch Shift Register

Deserializer Input

Local
Load

i3 i2 i1 i0

Global Serial Clock

Global
Sync

(b) Load Signal Generator

b2 1

Global Load
Global Serial Clock Global Sync

b1 b0

b3

Serializer
Output

Serializer Output

Global Sync

Global Load

Global Serial Clock

0 1 b0 b1 b2 b3 b0 b1 b2 b3

0-1 Transition Preamble

DeserializerSerializer

b0 b1 b2 b3 0 0 1 b0 0 0

Direction of Serial Transmission

0-1
Transition

b1

Data Set #1 First 2 Bits of
Data Set #2

Switch Blocks

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1405 Issue 12, Volume 9, December 2010

4.4 Deserializer Design
The design of the deserializer is shown in Figure 8. It
consists of a seven-latch shift register as shown in
Figure 8(a) and a load signal generator as shown in
Figure 8(b). The operations of the shift register and
the load signal generator are shown in Figure 9. As
shown the latches are arranged in two banks. The
three latches in the lower bank are controlled by the
global serial clock. The input of the first latch is
directly connected to the input of the deserializer.
 The inputs of the four latches in the upper bank
are connected to the corresponding outputs from the
lower bank and the deserializer input as shown in
Figure 8(a). The latches in the upper bank are
controlled by the local serial clock (which is equal to
the output of the load signal generator, local load,
ORed with the global serial clock). The outputs of the
upper bank, labeled o0-o3, are directly connected to a
CLB input bus. Note that the lower bank of latches
are used to de-serialize the input signal from the
deserializer input and the top bank of latches are used
to isolated any signal changes during the
deserialization process from the CLB input bus.
 The load signal generator is designed to
synchronize the operation of the serializers and the
deserializers. In particular, the same global synch
signal that creates the preamble of 0-to-1 transition at
the serializer also initializes the load signal generator
(as shown in Figure 8(b)) of the deserializer by
loading a set of initialization values (i0 to i3) into the
latches. A combinational circuit is then used to detect
the 0-to-1 transition at the input of the deserializer.
Consequently, as shown in Figure 9, the output of the
load signal generator (local load) remains 1 until a 0-
to-1 transition is detected by the combinational
circuit. The load signal generator then pulses the local
load signal every four clock cycles in order to load a
new set of deserialized data into the upper bank of the
seven-latch shift register.

4.5 Transistor Sizing
Note that the latches and the multiplexers are sized
according to [13] and [16]. The combinational circuit
is constructed out of CMOS gates with minimum
drive strength and equalized rise and fall times. Each
serializer consumes 32.9 minimum-width-transistor
area and each deserializer consumes 126.5 minimum-
width-transistor area. In comparison, a CLB
consumes 6712 minimum-width-transistor area [13].

Since a maximum of ten deserializers and four
serializers can be attached to a CLB, in combination,
the serializers and deserializers consume a maximum
of 1395 minimum-width-transistor area. For the
switch blocks, each latch requires 3.87 additional
minimum-width-transistor area than the buffer that it
replaces. Finally, the clock network design from [45]
is used for the three clock networks required to drive
the additional global clock signals (global synch,
global load, and global clock). Overall, these three
clock networks consume an additional 169.0
minimum-width-transistor area per CLB tile.

5 CAD Flow
To efficiently utilize the serial routing resources, we
modify the Versatile Place and Route (VPR) CAD
flow [16] to model the serial routing architecture. In
particular, circuits are mapped onto the CLB structure
as shown in Figure 2 using the Synopsys synthesis
and the datapath-oriented T-VPACK packing tools as
in [13] [14]. This mapping process preserves as much
datapath regularity as possible in order to maximize
the number of inter-CLB signals that can be grouped
into four-bit wide groups and be serialized by the
serializers. The VPR placer is then used to place the
packed CLBs onto the serial FPGA.

Fig. 10 Serializer and Deserializer Representation in

Routing Resource Graph

 Routing is performed using a modified version of
the VPR router. Based on the Negotiated Congestion
algorithm [18], the router selectively serializes multi-
bit signals based on the congestion of the serializers
and the deserializers. As shown in Figure 10,
additional nodes are added to the routing resource
graph to model the connectivity of the serializers and
the deserializers. In particular, in the figure, a

Sources

CLB Output Bus

Tracks

Serializer

CLB Input Bus

Sinks

Deserializer

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1406 Issue 12, Volume 9, December 2010

serializer node is connected to a CLB output bus.
Signals from the bus can be serialized into a bit of
time-multiplexed signal by the serializer and be
routed through one of the four routing tracks
connected to the serializer. Similarly, the deserializer
node is connected to four tracks and its outputs are
connected to a CLB input bus.
 To route a four-bit wide signal, we first route bit 0
of the signal (the test bit) through the routing
resources. From its CLB output pin, the test bit has
the option of either expanding through a serializer or
be directly connected to a routing track. If the bit
expands through a serializer, it represents the
serialized version of the entire multi-bit signal and
must enter a deserializer before reaching its target
CLB. If the bit bypasses the serializers, it remains un-
serialized and must bypass all deserializers. Both the
serialized and un-serialized versions of the signal are
expanded simultaneously. During the expansion, the
version with the least accumulated congestion cost
reaches the destination first and is selected as the
route for the entire signal. If the serialized version is
selected, the remaining bits in the four-bit wide signal
are marked as routed. If the un-serialized version is
selected, the remaining bits in the four-bit wide signal
are routed individually as single-bit signals.
 Note that the serialized version and the un-
serialized version of a signal can expand onto the
same routing track. Conventional routing algorithms
only use a single wave-front. When two parts of the
same wave-front are expanded onto the same routing
resource, the part with the higher congestion cost is
eliminated [46]. The serialized and un-serialized
versions of the test bit, however, represent two
electrically distinct signals. Replacing one with the
other eliminates future expansion opportunities. For
example, Figure 11(a) shows a wave-front consisting
of three nodes – two gray nodes representing the un-
serialized version of the expansion and one black
node representing the serialized version. As shown,
the un-serialized version has expanded onto the two
routing tracks on the left while the serialized version
is at the serializer.
 During the next expansion, the serialized version
expands onto the same tracks occupied by the un-
serialized version. Assuming the serialized
expansions have lower costs, they replace the un-
serialized expansions and become part of the new
wave-front as shown in Figure 11(b). Eliminating the
un-serialized version, however, also eliminates future

expansion opportunities. For example, in the figure,
the deserializer node is already occupied.
Consequently, none of nodes on the wave-front
shown in Figure 11(b) can expand into the
deserializer without causing congestion. As a result,
the router cannot find an uncongested routing
solution.

Fig. 11 Single Wave-Front Solution

 In this work, we keep two distinct wave-fronts –
one for the serialized version and another for the un-
serialized version. The two wave-fronts do not
interfere with each other and the wave-front that
reaches the destination first determines the route of
an entire signal. An example of the dual wave-front
expansion is shown in Figure 12. In this example,
when the serialized wave-front expands onto the two
nodes that are already occupied by the un-serialized
wave-front, both wave-fronts are kept. Consequently,
the congested deserializer can be bypassed by the un-

Sources

CLB Output Bus

Tracks

Serializer

CLB Input Bus

Sinks (Target)

Deserializer
(Occupied)

Sources

CLB Output Bus

Tracks

Serializer

CLB Input Bus

Sinks (Target)

Deserializer
(Occupied)

(a) Just Before Serialized Wave-Front Replacing
Un-Serialized Wave-Front

(b) Right After Serialized Wave-Front Replacing Un-Serialized Wave-Front

Un-Serialized Wave-Front
Serialized Wave-Front
Occupied Node

Test Bit

Test Bit

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1407 Issue 12, Volume 9, December 2010

serialized wave-front, which directly expands onto
the target CLB input pin.

Fig. 12 Dual Wave-Front Solution

6 Experimental Results
To evaluate the effect of serialization on FPGA area
and track utilization, a set of 15 benchmark circuits
from the Pico-Java processor [47] were mapped onto
the serial routing architecture using the CAD flow
from Section 5. These benchmarks were used in
several previous studies on datapath-oriented FPGAs
[13] [14]. The area and track count are then measured
and compared to the conventional routing
architecture.

6.1 Architectural Parameters
The conventional architectural parameters are set to
the values as shown in Table 1. As shown, each CLB
input is connected to 50% of the routing tracks in its
neighboring routing channel (Fc_in = 50%) and each
CLB output is connected to 25% of the routing tracks
(Fc_out = 25%) in its neighboring routing channel.
These values were shown to be efficient in [13] and
[16]. Similarly, as in Section 3, the track segment
length is set to two and the disjoint switch block
topology is used. The LUT size is set to four. Each
logic cluster contains four BLEs, and each CLB
contains four logic clusters. Finally, as shown in
Figure 2, there are four four-bit wide output buses
and ten four-bit wide input buses per CLB.
 Table 2 shows the additional architectural
parameter settings for the serial routing architecture.

In particular, each serializer/deserializer is mapped to
a dedicated CLB output/input bus by setting Fc_ser to
0.25 and Fc_des to 0.1. Note that, despite this one-to-
one mapping of serializers/deserializers to
output/input buses, serialized signals still can
exit/enter a CLB through any of the
serializers/deserializers due to the logic equivalency
of logic cluster output/input pins. In particular, a four-
bit wide output from a CLB can be routed to any of
the CLB output buses by the fully connected local
routing network shown in Figure 2(a) [16]. The
output can then be serialized by the serializer
connected to the bus. Similarly, a serialized signal
can enter a CLB through any of the deserializers.
Once deserialized, each bit of the signal can then be
routed from the corresponding logic cluster input to
any of the LUT inputs through the fully connected
local routing network.

Table 1. Conventional Routing Architecture
Parameters

Architectural Parameter Value
Fc_out 0.25
Fc_in 0.5

Segment Length 2
Switch Block Topology Disjoint

LUT Size 4
Number of BLEs per Cluster 4
Number of Clusters per CLB 4

Number of Output Buses 4
Number of Input Buses 10

Table 2. Serial Routing Architecture Parameters
Architectural Parameter Value

Fc_ser 0.25
Fc_des 0.1

Fc_out_ser 0.25
Fc_in_des 0.5
Num_ser 4
Num_des From 10 to 4

 As shown in Table 2, Fc_out_ser is set to 0.25 and
Fc_in_des is set to 0.5. These values are selected to
be the same as the Fc_out and Fc_in values of the
conventional routing architecture, respectively. By
equating Fc_out_ser/Fc_in_des to Fc_out/Fc_in, a
serialized signal has the same level of connectivity
to/from routing tracks as an un-serialized signal.
Consequently, serialization decisions are based
entirely on the effect of serialization and are not
influenced by connectivity differences to/from the
routing tracks.
 As shown in Table 3 when mapped onto
architectures with four serializers and ten
deserializers, the benchmark circuits on average
utilizes 48.9% of the serializers and 30.0% of the
deserializers. Since only a maximum of four

Sources

CLB Outputs

Tracks

Serializer

CLB Inputs

Sinks (Target)

Deserializer
(Occupied)

Un-Serialized Wave-Front
Serialized Wave-Front
Occupied Node

Dual Wave-Front
Un-occupied node
to be expanded
into next

Test Bit

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1408 Issue 12, Volume 9, December 2010

serializers are required per CLB, each serializer
represents a significant proportion (25%) of the total
number of serializers. Each deserializer, on the other
hand, represents a much smaller proportion (10%) of
the total number of deserializers. In addition, as
shown in Section 4, each deserializer contains a load
signal generator for synchronizing its operations with
the serializers. A deserializer thus consumes
significantly more area than a serializer (126.5 vs.
32.9 minimum-width-transistor area). As a result,
reducing the number of serializers significantly
reduces the percentage of signals that can be
serialized while only achieving a minimum reduction
in the total area consumed by the
serializers/deserializers per CLB. Reducing the
number of deserializers, on the other hand, can
substantially reduce the total serializer/deserializer
area while still maintaining a high rate of serialization
[48]. As a result, in this work, as shown in Table 2,
the number of deserializers is varied from ten to four
and the number of serializers is fixed at four.

Table 3. Percentage of Serialization, Serializer
Utilization and Deserializer Utilization for

the 4 Serializer 10 Deserializer Configuration

Benchmark

of Two-
Terminal
Multi-Bit

Connections

% of
Serialized
Multi-Bit

Connections

% of Used
Serializers

% of Used
Deserializers

icu_dpath 3972 99.2% 57.1% 42.6%
ex_dpath 3456 99.9% 59.2% 44.1%
ucode_dat 1608 100.0% 54.5% 41.7%
imdr_dpath 1304 100.0% 61.1% 38.3%
dcu_dpath 1220 100.0% 58.3% 40.5%

mantissa_dp 1156 99.3% 54.3% 36.1%
incmod 808 100.0% 44.9% 31.5%

multmod_dp 684 100.0% 26.7% 15.4%
smu_dpath 472 99.2% 40.3% 23.9%
pipe_dpath 436 100.0% 56.7% 21.3%

exponent_dp 428 100.0% 43.1% 24.2%
rsadd_dp 384 100.0% 52.2% 38.3%
prils_dp 280 95.7% 32.4% 21.9%

code_seq_dp 252 100.0% 42.7% 9.6%
ucode_reg 128 100.0% 50.0% 20.0%

Overall 16588 99.6% 48.9% 30.0%

6.2 Serialization Penalty
To encourage serialization, the NC router, as
described in Section 5, penalizes un-serialized multi-
bit signals. In particular, if a test bit is expanded from
a CLB output pin directly onto a track without being
serialized, the expansion cost of the track is first
multiplied by a penalty factor and then accumulated
into the total expansion cost of the bit. In this work,
we vary the penalty factor from 1000 to 2x108. The

smaller values were shown to be ineffective, as many
multi-bit signals were left un-serialized [48]. The
higher values from 2x107 to 2x108, on the other hand,
produce good serialization results since they force
test bits to go through serializers unless the associated
routing resources are highly congested.
 As shown in Table 4, in this work, a set of penalty
factors are selected for each benchmark circuit based
on the criterion of minimizing track count. Table 3
shows that, with these values, nearly all multi-bit
signals are serialized for each benchmark circuit for
the architecture containing four serializers and ten
deserializers per CLB.

Table 4. Penalty Factor Results
Benchmark Penalty Factor (x106)

10 Des 9 Des 8 Des 7 Des 6 Des 5 Des 4 Des
code_seq_

dp 80 80 20 100 100 20 80

dcu_dpath 60 60 100 120 60 100 80
ex_dpath 60 20 20 100 60 60 60

exponent_d
p 100 60 120 200 120 40 60

imdr_dpath 20 60 200 120 60 20 200
incmod 60 200 100 80 20 60 100

mantissa_d
p 60 80 80 80 100 120 80

icu_dpath 60 100 60 80 20 60 40
multmod_d

p 40 80 80 200 120 40 60

pipe_dpath 60 40 80 60 60 20 20
prils_dp 200 20 80 80 60 60 40

rsadd_dp 120 120 80 100 80 40 80
ucode_dat 60 40 80 80 100 20 80
ucode_reg 80 60 80 60 60 60 80
smu_dpath 60 60 80 200 60 60 80

6.3 Serialization Results – Track Count
As in [49]-[51], a binary search is performed to
determine the minimum channel width required to
successfully route each circuit. Figure 13 shows the
average number of tracks reduced per channel over
the conventional routing architecture. As shown, the
architecture with four serializers and ten deserializers
per CLB requires the least number of tracks. As the
number of deserializers per CLB decreases from ten
to seven, the track reduction per channel decreases
slightly from 14.9 tracks to 13.9 tracks. From six to
four deserializers per CLB, tracks reduced per
channel decreases significantly, where the
architecture containing four serializers and four
deserializers per CLB uses only 8.07 less tracks per
channel than the conventional routing architecture.

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1409 Issue 12, Volume 9, December 2010

6

8

10

12

14

16

10 9 8 7 6 5 4

C
h
an
n
e
l
W
id
th
 R
e
d
u
ct
io
n

Number of Deserializers

Fig. 13 Channel Width Reduction

15.0%

20.0%

25.0%

30.0%

10 9 8 7 6 5 4

%
 R
o
u
ti
n
g
Tr
ac
k
R
e
d
u
ct
io
n

Number of Deserializers

Fig. 14 Routing Track Reduction

Table 5. Per Circuit Routing Track Reduction
Benchmark % of Routing Track Reduction

10 Des 9 Des 8 Des 7 Des 6 Des 5 Des 4 Des
code_seq_

dp 23.7% 23.7% 23.7% 23.7% 23.7% 23.7% 23.7%

dcu_dpath 45.3% 45.3% 45.3% 45.3% 45.3% 37.7% 30.2%
ex_dpath 43.2% 40.7% 39.5% 38.3% 33.3% 24.7% 19.8%

exponent_d
p 21.1% 21.1% 19.3% 21.1% 21.1% 12.3% 7.02%

imdr_dpath 24.2% 27.4% 25.8% 24.2% 21.0% 14.5% 11.3%
incmod 24.6% 24.6% 24.6% 21.1% 22.8% 19.3% 14.0%

mantissa_d
p 26.1% 23.2% 23.2% 23.2% 23.2% 17.4% 11.6%

icu_dpath 28.0% 28.0% 24.0% 24.0% 16.0% 13.3% 2.67%
multmod_d

p 6.56% 3.28% 6.56% 6.56% 6.56% 0.00% 0.00%

pipe_dpath 32.3% 32.3% 32.3% 32.3% 32.3% 32.3% 29.0%
prils_dp 16.2% 13.5% 10.8% 10.8% 10.8% 10.8% 10.8%

rsadd_dp 27.0% 32.4% 29.7% 29.7% 27.0% 18.9% 10.8%
ucode_dat 41.4% 41.4% 36.2% 34.5% 34.5% 27.6% 20.7%
ucode_reg 56.0% 56.0% 56.0% 56.0% 56.0% 56.0% 56.0%
smu_dpath 19.5% 19.5% 19.5% 22.0% 19.5% 19.5% 19.5%

Overall 29.0% 28.8% 27.8% 27.5% 26.2% 21.9% 17.8%
 Figure 14 shows the percentage of total tracks
reduced over all routing channels for all benchmark
circuits. As shown, the architecture with four
serializers and ten deserializers per CLB requires
29.0% less routing tracks than the conventional
routing architecture. As the number of deserializers is

reduced, the track reduction drops significantly from
29.0% to 17.8% with the knee of the graph occurring
at six deserializers per CLB.

‐6.00%

‐4.00%

‐2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10 9 8 7 6 5 4

%
 R
o
u
ti
n
g
A
re
a
R
e
d
u
ct
io
n

Number of Deserializers

Fig. 15 Routing Area Reduction

 Table 5 shows the percentage of tracks reduced
per circuit. As shown, the architecture with four
serializers and ten deserializers per CLB consistently
achieves the highest percentage of routing track
reduction since this configuration nearly serializes all
multi-bit signals for each benchmark circuit. As the
number of deserializers is reduced, it becomes more
probably for the deserializers to become congested as
multi-bit signals compete for their use. Consequently,
with increased congestion, more multi-bit signals
must remain un-serialized. Since each un-serialized
signal requires four routing tracks instead of one,
track reduction decreases across all benchmarks.

6.4 Serialization Results – Active Area
We define routing area as the total active area consumed
by the serializers, deserializers, switch blocks and all
types of connection blocks. Figure 15 shows the
percentage of routing area reduction achieved by the serial
routing architecture over the conventional routing
architecture. As shown the routing area reduction follows
closely with routing track reduction. From ten
deserializers to six deserializers, we observed an area
reduction of 4.44% to 6.37%. For five and four
deserializers, on the other hand, the amount of active area
reduction is quickly reduced and becomes negative. These
results show that, for our benchmark set, the best number
of deserializers per CLB, in terms of active area, is seven.
 Table 5 shows that, with seven deserializers, there
is a lower than maximum 27.5% routing track
reduction. However, as shown in Section 4, the area
cost of the deserializer circuit is quite significant and
not all deserializers in a ten deserializer configuration
are utilized. As a result, by reducing the number of

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1410 Issue 12, Volume 9, December 2010

deserializers per CLB, the overall active area is
reduced.
 Table 6 shows a detailed breakdown of the results
collected from our experiments for four serializers
and seven deserializers. As shown, of the 15
benchmark circuits, eight produced routing area
reductions and seven have an increase in routing area.
In general, larger benchmarks produced significant
routing area reductions due to the large number of
multi-bit signals that they contain. The smaller
circuits, on the other hand, produced less routing area
reduction or exhibit an increase in routing area.
 One exception to this trend is the multimod_dp
circuit. As shown in column 2 of Table 6, the circuit
contains relatively little multi-bit signals even though
it ranks third in size (in terms of conventional routing
area). As shown in [13], many of the inter-CLB
signals contained in multimod_dp shift bit positions
as they travel from a CLB output bus to a CLB input
bus. These shifts cannot be captured by the current
non-shifting serial routing resources and hence are
not included in the percentage value shown in column
2. The result suggests that adding shifting capabilities
to the serial routing resources potentially can improve
the area efficiency of multimod_dp-like circuits.
 Another exception to the rule is the smallest
benchmark, ucode_reg, which produced a significant
area reduction of 21.6%. In this circuit, 74% of the
inter-CLB signals are multi-bit signals, consequently,
it benefits significantly from serialization.
 The table shows that the percentage of multi-bit
signals per circuit (defined as the total number of
two-terminal connections in multi-bit inter-CLB
signals vs. the total number of two-terminal
connections in all inter-CLB signals) has a significant

impact on area reduction. Our results suggest that in
order for a benchmark to benefit from serialization
(in terms of active area reduction) the percentage of
multi-bit signals in the circuit must be at least 53% or
greater.

7 Conclusions
In this work, we investigated the effect of
serialization on FPGA routing efficiency. Based on
our benchmark circuits, we found that, for four-bit
wide serial routing resources, a maximum active area
reduction of 6.39% can be achieved through
serialization. The configuration that achieves the
maximum active area reduction contains four
serializers and seven deserializers. For maximum
routing track reduction, on the other hand, the serial
routing architecture should contain four serializers
and ten deserializers. This configuration achieves a
maximum routing track reduction of 29%.
 This work can be further expanded to investigate
the effect of serialization on other routing
architectures. In particular, this work has focused on
the effect of serialization on bi-directional FPGA
routing resources. It can be expanded to investigate
the effect of serialization on directional routing
resources [52]. Furthermore, in this work, signals are
selected for serialization solely based on the
congestion of the serialization routing resources. The
routing tool did not consider the criticality of signals
and the distances that a signal must travel. These
parameters, however, can be important in maximizing
routing area reduction while minimizing the effect of
serialization on delay. The design of such routers is
left as future work.

Table 6. Routing Area Reduction for 4 Serializers and 7 Deserializers
Benchmark % of Multi-Bit

Signals
Serial Routing Area Conventional

Routing Area
% of Area
Reduction Track Only Serializer Deserializer Clock Network Total

ucode_reg 74 3.88E+04 1.19E+03 7.93E+03 1.25E+03 4.92E+04 6.27E+04 21.6%
dcu_dpath 65 5.39E+05 8.44E+03 5.67E+04 8.87E+03 6.13E+05 7.93E+05 22.6%
ex_dpath 61 2.54E+06 2.59E+04 1.74E+05 2.72E+04 2.77E+06 3.50E+06 20.9%

ucode_dat 61 1.05E+06 1.32E+04 8.86E+04 1.39E+04 1.16E+06 1.32E+06 11.7%
icu_dpath 61 3.28E+06 2.97E+04 1.99E+05 3.12E+04 3.54E+06 3.73E+06 5.25%
rsadd_dp 61 1.96E+05 3.30E+03 2.21E+04 3.46E+03 2.25E+05 2.35E+05 4.45%

mantissa_dp 56 8.95E+05 8.44E+03 5.67E+04 8.87E+03 9.69E+05 1.01E+06 4.25%
pipe_dpath 56 2.42E+05 4.75E+03 3.19E+04 4.99E+03 2.84E+05 2.80E+05 -1.42%
imdr_dpath 53 1.01E+06 1.07E+04 7.17E+04 1.12E+04 1.11E+06 1.13E+06 2.49%
smu_dpath 51 3.03E+05 4.75E+03 3.19E+04 4.99E+03 3.71E+05 3.64E+05 -1.87%

incmod 48 7.81E+05 8.44E+03 7.17E+04 8.87E+03 8.55E+05 8.44E+05 -1.42%
exponent_dp 47 4.46E+05 4.75E+03 3.19E+04 4.99E+03 4.88E+05 4.81E+05 -1.30%
code_seq_dp 46 2.16E+05 3.30E+03 2.21E+04 3.46E+03 2.45E+05 2.38E+05 -2.91%

prils_dp 42 3.48E+05 4.75E+03 3.19E+04 4.99E+03 3.90E+05 3.35E+05 -16.4%
multmod_dp 32 1.78E+06 1.60E+04 1.07E+05 1.68E+04 1.92E+06 1.67E+06 -14.7%

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1411 Issue 12, Volume 9, December 2010

 This work also provides a base platform for
examining the efficiency of more advanced
serialization techniques such as surfing and wave-
pipelining [28] [29]. Finally, future studies should
also investigate the effect of serialization on circuits
containing wider multi-bit signals, such as 8-bit, 16-
bit, and 32-bit through the use of wider serializers
and deserializers.

References:
[1] D. Chen and J. Rabaey, “A Reconfigurable

Multiprocessor IC for Rapid Prototyping of
Algorithmic-Specific High-Speed DSP Data
Paths,” IEEE Journal of Solid State Circuits,
Vol. 27, No. 12, December 1992, pp. 1895-
1904.

[2] A. Yeung and J. Rabaey, “A Reconfigurable
Data Driven Multi-Processor Architecture for
Rapid Prototyping of High Throughput DSP
Algorithms,” in Proceedings of the 1993 IEEE
Hawaii International Conference on System
Sciences, Wailea, HI, January 1993, pp. 169-
178.

[3] D. Cherepacha and D. Lewis, “DP-FPGA: An
FPGA Architecture Optimized for Datapaths,”
Journal of VLSI Design, Vol. 4, No. 4, April
1996, pp. 329–343.

[4] C. Ebeling, “RaPiD-Reconfigurable Pipelined
Datapath,” in Proceedings of the 1996
International Workshop on Field-
Programmable Logic, Darmstadt, Germany,
September 1996, pp. 126–135.

[5] R. Bittner, P. Athanas, and M. Musgrove,
“Cold: An Experiment in Wormhole Run-
Time Reconfiguration,” in Proceedings of the
1997 ACM/SIGDA Internaltional Symposium
on Field Programmable Gate Arrays,
Montery, CA, February 1997, pp. 79-85.

[6] J. Hauser and J.Wawrzynek, “Garp: A MIPS
Processor with a Reconfigurable
Coprocessor,” in Proceedings of the 1997
IEEE Symposium on Field-Programmable
Custom Computing Machines, Napa Valley,
CA, April 1997, pp. 24–33.

[7] E. Waingold, “Baring It All to Software: Raw
Machines,” IEEE Computer, Vol. 30, No. 9,
September 1997, pp. 86–93.

[8] T. Miyamori and K. Olukotun, “A
Quantitative Analysis of Reconfigurable
Coprocessors for Multimedia Applications,”

in Proceedings of the 1998 IEEE Symposium
on Field-Programmable Custom Computing
Machines, Napa Valley, CA, April 1998, pp.
2–11.

[9] A. Marshall, T. Stansfield, I. Kostarnov, J.
Vuillemin, and B. Hutchings, “A
Reconfigurable Arithmetic Array for
Multimedia Applications,” in Proceedings of
the 1999 ACM/SIGDA International
Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 1999, pp.
135-143.

[10] A. Alsolaim, “Architecture and Application of
a Dynamically Reconfigurable Hardware
Array for Future Mobile Communication
Systems,” in Proceedings of 2000 IEEE
Symposium on Field-Programmable Custom
Computing Machines, April 2000, Napa
Valley, CA, pp. 205–214.

[11] S. Goldstein, “PipeRench:A Reconfigurable
Architecture and Compiler,” IEEE Computer,
Vol. 33, No. 4, April 2000, pp. 70–77.

[12] K. Leijten-Nowak and J. van Meerbergen,
“An FPGA Architecture with Enhanced
Datapath Functionality,” in Proceedings of the
2003 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays,
Monterey California, February 2003, pp. 195–
204.

[13] A. Ye and J. Rose, “Using Bus-Based
Connections to Improve Field-Programmable
Gate-Array Density for Implementing
Datapath Circuits,” IEEE Transactions on
Very Large Scale Integration Systems, Vol.
14, No. 5, May 2006, pp.462-473.

[14] Ping Chen and Andy Ye, “The Effect of
Multi-Bit Correlation on the Design of Field-
Programmable Gate Array Routing
Resources,” IEEE Transactions on Very Large
Scale Integration Systems, Volume PP, No.
99, October 2009.

[15] www.ITRS.net, 2007.
[16] V. Betz, J. Rose, and A. Marquardt,

Architecture and CAD for Deep-Submicron
FPGAs, February 1999, Kluwer Academic
Publishers.

[17] R. Nair, “A simple yet effective technique for
global wiring,” IEEE Transactions on
Computer-Aided Design, Vol. 6, No. 3, Mar.
1987, pp. 165-172.

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1412 Issue 12, Volume 9, December 2010

[18] C. Ebeling, L. McMurchie, S. Hauck, and S.
Burns, “Placement and Routing Tools for the
Triptych FPGA,” IEEE Transactions on Very
Large Scale Integration Systems, Vol. 3, No.
4, December 1995, pp. 473-482.

[19] Virtex-6 Family Overview, Xilinx, 2010.
[20] Stratix IV Device Handbook, Altera, 2010.
[21] J. Babb, R. Tessier, and A. Agarwal, “Virtual

Wires: Overcoming Pin Limitations in FPGA-
based Logic Emulators,” in Proceedings of the
1994 IEEE Workshop on FPGAs for Custom
Computing Machines, Napa Valley, CA, April
1994, pp. 142-151.

[22] R. Tessier, J. Babb, M. Dahl, S. Hanono, and
A. Agarwal, “The Virtual Wires Emulation
System: A Gate-Efficient ASIC Prototyping
Environment,” in Proceedings of the 1994
ACM International Workshop on Field-
Programmable Gate Arrays, Berkeley, CA,
Feb. 1994.

[23] S. Kimura, T. Hayakawa, T. Horiyama, M.
Nakanishi, and K. Watanabe, “An On-Chip
High Speed Serial Communication Method
Based on Independent Ring Oscillators,” in
Proceedings of the 2003 International Solid
State Circuits Conference, San Francisco, CA,
February 2003, pp. 390-391.

[24] I. Wey, L. Chang, Y. Chen, S. Chang, and A.
Wu, “A 2Gb/S High-Speed Scalable Shift-
Register Based On-Chip Serial
Communication Design for SoC
Applications,” in Proceedings of the 2005
IEEE International Symposium on Circuits
and Systems, Kobe, Japan, May 2005, pp.
1074-1077.

[25] R. Dobkin, A. Morgenshtein, A. Kolodny, and
R. Ginosar, “Parallel vs. Serial On-Chip
Communication,” in Proceedings of the 2008
ACM/SIGDA International Workshop on
System Level Interconnect Prediction,
Newcastle, United Kingdom, April 2008, pp.
43-50.

[26] T. Mak, C. D’Alessandro, P. Sedcole, P.
Cheung, A. Yakovlev and W. Luk,
“Implementation of Wave-Pipelined
Interconnects in FPGAs,” in Proceedings of
the 2008 ACM/IEEE International Symposium
on Networks-on-Chip, Newcastle, United
Kingdom, April 2008, pp.213-214.

[27] T. Mak, P. Sedcole, P. Cheung, and W. Luk,
“Wave-Pipelined Signalling for on-FPGA
Communication,” in Proceedings of the 2008
IEEE International Conference on Field-
Programmable Technology, Taipei, Taiwan,
December 2008, pp.9-16.

[28] P. Teehan, G. Lemieux, and M. Greenstreet,
“Towards Reliable 5Gbps Wave-pipelined and
3Gbps Surfing Interconnect in 65nm FPGAs,”
in Proceedings of the 2009 ACM/SIGDA
International Symposium on Field-
Programmable Gate Arrays, Monterey, CA,
February 2009, pp. 43-52.

[29] P. Teehan, G. Lemieux, and M. Greenstreet,
“Estimating Reliability and Throughput of
Source-synchronous Wave-pipelined
Interconnect,” in Proceedings of the 2009
ACM/IEEE International Symposium on
Networks-on-Chip, San Diego, CA, May
2009.

[30] J. Xu and W. Wolf, “Wave Pipelining for
Application-Specific Networks-on-Chips,” in
Proceedings of the 2002 ACM International
Conference on Compliers, Architectures and
Synthesis for Embedded Systems, Greenoble,
France, October 2002, pp. 198-201.

[31] J. Xu and W. Wolf, “A Wave-Pipelined On-
chip Interconnect Structure for Networks-on-
Chips,” in Proceedings of the 2003 IEEE
Symposium on High Performance
Interconnects, Stanford, CA, August 2003, pp.
10-14.

[32] W. Burleson, M. Ciesielski, F. Klass, and W.
Liu, “Wave-Pipelining: A Tutorial and
Research Survey,” IEEE Transactions on Very
Large Scale Intergration Systems, Vol. 6 No.
3, March 1998, pp. 464-474.

[33] B. Winters and M. Greenstreet, “A Negative-
Overhead, Self-Timed Pipeline,” in
Proceedings of the 2002 IEEE International
Symposium on Asynchronus Circuits and
Systems, Manchester, United Kingdom, April
2002, pp. 37-46.

[34] M. Greenstreet and J. Ren, “Surfing
Interconnect,” in Proceedings of the 2006
IEEE International Symposium on
Asynchronous Circuits and Systems, Grenoble,
France, March 2006, pp. 98-116.

[35] S. Yang, M. Greenstreet, and J. Ren, “A Jitter
Attenuating Timing Chain,” in Proceedings of

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1413 Issue 12, Volume 9, December 2010

the 2007 IEEE International Symposium on
Asynchronous Circuits and Systems, Berkeley,
CA, March 2007, pp. 25-38.

[36] S. Trimberger and A. Lesea, “Programmable
Logic Devices with Time-Multiplexed
Interconnect,” United States Patent 6829756,
December 2004.

[37] S. Trimberger and A. Lesea, "FPGA with
time-multiplexed interconnect," United States
Patent 7268581, September 2007.

[38] R. Francis, S. Moore, and R. Mullins, “A
Network of Timing-Division Multiplexed
Wiring for FPGAs,” in Proceedings of the
2008 ACM/IEEE International Symposium on
Networks-on-Chip, Newcastle University, UK,
April 2008, pp. 35-44.

[39] S. Brown, R. Francis, J. Rose, and Z.
Vranesic, Field-Programmable Gate Arrays,
Kluwer Academic Publishers, 1992.

[40] H. Hsieh, W. Carter, J. Ja, E. Cheung, S.
Schreifels, C. Erickon, P. Freidin, L. Tinkey,
and R. Kanuzawa, “Third-Generation
Architecture Boosts Speed and Density of
Field-Programmable Gate Arrays,” in
Proceedings of the 1990 IEEE Custom
Integrated Circuits Conference, May 1990,
pp.31.2.1–31.2.7.

[41] W. Tsu, K. Macy, A. Joshi, R. Huang, N.
Walker, T. Tung, O. Rowhani, V. George, J.
Wawrzynek, and A. DeHon, “HSRA: High-
Speed, Hierarchical Synchronous
Reconfigurable Array,” in Proceedings of the
1999 ACM/SIGDA International Symposium
on Field Programmable Gate Arrays,
Monterey, CA, February 1999, pp. 125-134.

[42] A. Singh, L. Macchiarulo, A. Mukherjee, and
M. Marek-Sadowska, “A Novel High
Throughput Reconfigurable FPGA
Architecture,” in Proceedings of the 2000
ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Monterey,
CA, February 2000, pp. 22-29.

[43] A. Singh, A. Mukherjee, and M. Marek-
Sadowska, “Interconnect Pipelining in a
Throughput-Intensive FPGA Architecture,” in
Proceedings of the 2001 ACM/SIGDA
International Symposium on Field
Programmable Gate Arrays, Monterey, CA,
February 2001, pp. 153-160.

[44] D. Singh and S. Brown, “The Case for
Registered Routing Switches in Field
Programmable Gate Arrays,” in Proceedings
of the 2001 ACM/SIGDA International
Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2001, pp.
161-169.

[45] J. Lamoureux and S. Wilton, “FPGA Clock
Network Architecture: Flexibility vs. Area and
Power,” in Proceedings of the 2006
ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, Montery,
CA, February 2006, pp. 101-108.

[46] F. Rubin, “The Lee Path Connection
Algorithm,” IEEE Transactions on
Computers, Vol. C23, No. 9, September 1974,
pp. 907-914.

[47] Pico-Java Processor Design Documentation,
Sun Microsystems, 1999.

[48] S. Ip, “Serial Enabled CAD Tool for the
Evaluation of Serial FPGA Routing
Architectures,” M.A.Sc. Thesis, Ryerson
University, Department of Electrical and
Computer Engineering, Ryerson University,
Ontario Canada, 2009.

[49] V. Betz and J. Rose, “Effect of the
Prefabricated Routing Track Distribution on
FPGA Area-Efficiency,” IEEE Transactions
Very Large Scale Integration Systems, Vol. 6,
No. 3, September 1998, pp. 445-456.

[50] V. Betz and J. Rose, “FPGA Routing
Architecture: Segmentation and Buffering to
Optimize Speed and Density,” in Proceedings
of the 1999 ACM/SIGDA International
Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 1999, pp. 59-
68.

[51] E. Ahmed and J. Rose, “The Effect of LUT
and Cluster Size on Deep-Submicron FPGA
Performance and Density,” IEEE Transactions
on Very Large Scale Integration Systems, Vol.
12, No. 3, March 2004, pp. 288-298.

[52] G. Lemieux, E. Lee, M. Tom, and A. Yu,
“Directional and Single-Driver Wires in
FPGA Interconnect”, in Proceedings of the
2004 IEEE International Conference on Field-
Programmable Technology, Brisbane,
Australia, December 2004, pp. 41-48.

WSEAS TRANSACTIONS on COMPUTERS Sebastian Ip, Andy Gean Ye

ISSN: 1109-2750 1414 Issue 12, Volume 9, December 2010

