
Fault-Tolerant Meshes and Tori Embedded in a Faulty
Supercube

*Jen-Chih Lin1, 2Shih-Jung Wu, Huan-Chao Keh3, and Lu Wang4

1Department of Digital Technology Design,
National Taipei University of Education,

No.134, Sec. 2, Heping E. Rd., Da-an District,
Taipei City 106, Taiwan, R.O.C.
E-mail:*yachih@tea.ntue.edu.tw

2 Department of Innovative Information and Technology,
Tamkang University,

No. 180 Linwei Road., Chiao-hsi Shiang,
I-lan County 26247, Taiwan, R.O.C.

3Department of Computer Science and Information Engineering,
Tamkang University

No. 151 Ying-chuan Road, Tamsui,
Taipei 251, Taiwan, R.O.C.

4Graduate Institute of Management Science,
Tamkang University,

No. 151 Ying-chuan Road, Tamsui,
Taipei 251, Taiwan, R.O.C.

Abstract: - Hypercubes, meshes, and tori are well known interconnection networks for parallel computing. The
Supercube network is a generalization of the hypercube. The main advantage of this network is that it has the same
connectivity and diameter as that of the hypercube without the constraint that the number of nodes be a power of 2.
This paper proposes novel algorithms of fault-tolerant meshes and tori embedded in supercubes with node failures.

The main results obtained (1) a replacing sequence of a supercube is including approximate to (2log N  +1)

nodes. Therefore, there are O() faults, which can be tolerated. (2) The result implies that optimal

simulation of mesh and torus in a faulty supercube for balancing the processor and communication link loads at
present. According to the result, we can easily port the parallel or distributed algorithms developed for these
structures to the supercubes. Therefore, these methods of reconfiguring enable extremely high-speed parallel
computation.

2log N 

Key-Words: - fault-tolerant, mesh, tori, graph embedding, supercube

1 Introduction
Selection of an appropriate interconnection network is
the key to the design of any distributed/ multiprocessor
system, because the speed of internode communication,
rather than that of computation, is known to be the
bottleneck in accomplishing speedup with multiple
processors. Over the past two decades, an
overwhelming number of interconnection networks
have been reported in the literature. Examples include
crossbars, multiple bused, multistage interconnection

networks, and hypercubes[24], to name a few. Among
these, the hypercube has received considerable
attention due mainly to its rich topological properties.
The hypercube is a regular structure, has a small
diameter, and offers good connectivity with a
relatively small node degree. Moreover, a number of
other well-known topologies, such as rings, trees,
meshes, and tori can be embedded in the hypercube.
The hypercube is a popular architecture for parallel
machines, but it cannot be a general architecture

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 445 Issue 5, Volume 9, May 2010

widely used because hypercubes are not incrementally
expandable. The Supercube[27, 42] is one of
hypercube-derived computers[25] and does not have
the drawbacks from the hypercube. Speaking of its
architecture, a supercube has the same connectivity
and diameter as the corresponding hypercube. It is
shown to have the following desirable characteristics:

1. The nodes connectivity of an N-node

supercube is at least 2log N .   
2. The node degree of an N-node supercube is

between (k - 1) and (2k - 2), where

k= 2log N .   
3. Adding a new node to an existing network is

easy; it does not need reorganization of
existing edges.

4. The diameter of an N-node supercube is

2log N   at most.

A mesh connected computer[7, 11, 20, 25, 32] is
easy to construct because it is regular, it has short
connections, it requires only four connections per node,
and it is possible to build in two dimensions without
having any connections cross. Each node that is not on
an edge of the array has a direct connection with its
four nearest neighbors. At the same time, the top row
is connected to the bottom row and leftmost column is
connected to the rightmost column, so the
interconnections logically form a torus[25]. The
construction of such a machine in two dimensions
requires that some connections cross.

The mesh and torus are two of the most important
networks for parallel computers. A great deal of
research has focused on the mesh and torus networks
and several parallel computers have been built with 2-
or 3-dimensional mesh or torus topologies. Examples
include the CLIP4[9, 10], the GAPP25 (NCR
Microelectronic Products Division), the MPP[25] (of
Goodyear Aerospace), the MP-1[25] (sold by
MASPAR Corporation), and the J-machine[25] is a
project at MIT in a 3-dimensional mesh topology.
Mesh connected computers were shown to be efficient
in performing many image and matrix operations. If a
mesh connected computer can be simulated with a
hypercube or a hypercube-derived computer, those
same algorithms can be used on these other topologies.
In the paper, one of the most important issues in the
design of a system which contains many components is
the system’s performance in the presence faults.

In a multiprocessor system, we follow two fault
models. The first model assumes that, in a faulty node,

the computational function of the node is lost while the
communication function remains intact; this is the
partial faulty model. The second model assumes that,
in a faulty node, the communication function is lost too;
this is the total faulty model. In this paper, our model is
the partial faulty model. That is, when the computation
nodes are faulty, the communication links are well and
only the faulty nodes are remapped. In this paper, we
consider only the second type of fault-tolerant design
in a supercube.

The power of a message-passing parallel computer
depends on the topology chosen for underlying
interconnection network, which can be modeled as
undirected graph. Different graphs have been proposed
as static interconnection topology for multiprocessors.
Therefore, we model both the parallel algorithm and
the parallel machine as graphs. Graph embedding[16]
problem have application in a wide variety of
computational situations. For example, the flow of
information in a parallel algorithm defines a program
graph, and embedding this in a network tells us how to
organize the computation on the network. Other
problems are laying out circuits on chips, representing
data structures in computer memory, and finding
efficient program control structures.

Given two graphs, G(V, E) and G'(V', E'),
embedding the guest graph G in the host graph G'
maps each vertex in the set V into a vertex (or a set of
vertices) in the set V' and each edge in the set E into an
edge(or a set of edge)in the E'. Let these nodes in a
graph correspond to processors and edges to
communication links in an interconnection network.
Embedding one graph into another is important
because an algorithm may have been designed for a
specific interconnection network. Four costs associated
with graph embedding are dilation, expansion, load,
and congestion. The maximum amount that we must
stretch any edge to achieve an embedding is called the
dilation of the embedding. By expansion, we mean the
ratio of the number of nodes in the host graph to the
number of nodes in the graph that is being embedded.
The congestion of an embedding is the maximum
number of edges of the guest graph that are embedded
using any single edge of the host graph. The load of an
embedding is the maximum number of nodes of the
guest graph that are embedded in any single node of
the host graph. An efficient simulation of one network
on another network requires that these four costs be as
small as possible. However, for most embedding
problems, it is impossible to obtain an embedding that
minimizes these costs simultaneously. Therefore, some

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 446 Issue 5, Volume 9, May 2010

tradeoffs among these costs must be made.
The paper develops novel algorithms to facilitate

the embedding job when the supercube contains faulty
nodes. Of particular concern are the network structures
of the supercube that balance the load before as well as
after faults starting to demote the performance of the
supercube. To obtain replaceable nodes of faulty nodes,

2-expansion is permitted such that up to (+1)

faults can be tolerated with congestion 1, dilation 2,

and load 1, where is the dimension of a

supercube. Results presented herein demonstrate that
embedding methods are optimized.

2log N  

2log N

The remaining part of this paper is organized as
follows. Section 2 introduces the topological properties
of the hypercube, the mesh, the torus, and the
supercube. Notations and definitions of terms are also
provided. In section 3, the paper presents the method
for embedding meshes and tori in a supercube. Section
4 describes the novel fault-tolerant algorithm for
embedding meshes and tori in a faulty supercube with
2-expansion. Conclusions are finally made in section 5.

2 Preliminaries
This section formally introduces these definitions of

these topologies of the hypercube, the mesh, the torus,
and the supercube. For completeness, we begin with
the list of useful properties of above interconnection
networks.

A hypercube Hn of order n, is defined to be a
symmetric graph G= (V, E) where V is the set of 2n
vertices, each representing a distinct n-bit binary
number and E is the set of symmetric edges such that
two nodes are connected by an edge iff the number of
positions where the bits differ in the binary labels of
the two nodes is 1.

There are many topologies can be embedded in
hypercubes or hypercube-derived computers. One of
these is mesh and torus. It is very popular network
interconnection. One of the most attractive properties
of the binary n-cube topology is that meshes and tori of
arbitrary dimensions can be embedded in it. This is one
of the main reasons for the success of hypercube
architectures. Because of these, we consider the mesh
and torus size in each direction is a power of 2. Figure
1-1 and Figure 1-2 show us two examples. First
example is a 2221 2-dimensional mesh and second
example is a 22 22 2-dimensional torus which are
bi-directional connection between two nodes.

Figure 1-1: A 2221 2-dimensional mesh

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 447 Issue 5, Volume 9, May 2010

Figure 1-2: A 2222 2-dimensional torus

Definition 1[18, 38] The Hamming distance of two
nodes x and y, denoted by HD(x ,y), is the number of
1's in the bit set of resulting sequence of the bitwise
XOR of x and y.
Definition 2[18] The Binary-Reflected Gray Code
(BRGC) is defined recursively as follows.
 Cn+1={0Cn, 1(Cn)

R}, where C1={0 , 1} and
 C2={0C1 , 1(C1)

R}�
For example, a 2-bit Gray Code can be constructed

by the sequence, defined in definition 2, and insert a
cipher in front of each codeword in C1, then insert an
one in front of each codeword in (C1)

R . We get the
code C2={00, 01, 11, 10}. Now, we can then repeat the
procedure to built a 3-bit Gray Code, and also get the
code C3=0C21(C2)

R={000, 001, 011, 010, 110, 111,
101, 100}.
Definition 3[20] mesh or torus is a
2-dimension mesh or torus that the mesh or torus size
in each direction is a power of 2. i.e., it is such

that .�

21 mm 

s2r mm ,2 21 
Definition 4[20] Higher dimension mesh or torus is a

 mesh or torus in d-dimension, and

assume that the mesh or torus size in each direction is a
power of 2. �

dmmm  21

Definition 5[19] For any two nodes x and y, let x=xn ...
x0, y=yn ... y0, then Dim(x ,y)={i in (0 ... n) | xi≠yi}.

A supercube is constructed by any number of
nodes and based on hypercube. A supercube, denoted
by SN, is defined as an undirected graph SN = (V, E),
where V is the set of processors (called nodes in our

discussion) and E is the set of bidirectional
communication links between the processors (called
edges). Assume that V contains N nodes and each node
can be numbered by an identical number in the range

over (0, N-1), in a 2log N   -dimensional supercube,

each node can be expressed by a (+1)-bit

binary string, where N is a positive integer.
2log N 

Definition 6[27, 42] Suppose SN = (V, E) is a

2log N   -dimensional supercube, then the node set V

can be divided into three subsets V1, V2, V3, where

1. V3 = {x | xV, x = 1u, where u is 2log N -bit

sequences}.

  

2. V2 = {x | xV, x = 0u, 1u does not exist in V, where

u is 2log N   -bit sequences},and

3. V1 = {x | xV, x =0u, 1uV, where u is

2log N   -bit sequences}.

Definition 7[27, 42] Suppose SN = (V, E) is a

2log N   -dimensional supercube, then the edge set E

is the union of E1, E2, E3 and E4, where
1. E1 ={(x, y)| x, yV, x = 0u, y = 0v, where u, v are

2log N   -bit sequences and HD(x, y)= 1},

2. E2 ={(x, y)| x, y in V3, x = 1u, y = 1v, where u, v

are 2log N   -bit sequences and HD(x, y)= 1},

3. E3 ={(x, y)| x in V3, y in V2, x = 1u, y = 0 u,

where u, v are 2log N   -bit sequences and

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 448 Issue 5, Volume 9, May 2010

4. E4 ={(x, y)| x in V3, y in V1, x = 1u, y = 0v, where
u is n-bit sequences }.

We illustrate the supercube with 13-node is shown
in Figure 2.

An inevitable consequence of the flexible of
construction and the fault-tolerant of a supercube is an
uneven distribution of the utilized communication
ports over system nodes. Although the supercube loses
its property of regularity, more links help obtain the
replacement nodes of the faulty nodes of the supercube.
The supercube with 13-node is shown in Figure 2. In

the Figure 2, V1 = {0000, 0001, 0010, 0011, 0100}, V2
= {0101, 0110, 0111}, V3 = {1000, 1001, 1010, 1011,
1100}, E1 = {(0000, 0001), (0000, 0010), (0000, 0100),
(0001, 0011), (0001, 0101), (0010, 0011), (0010, 0110),
(0011, 0111), (0100, 0101), (0100, 0110), (0101, 0111),
(0110, 0111}, E2 = {(1000, 1001), (1000, 1010), (1000,
1100), (1001, 1011), (1010, 1011)}, E3={(0101, 1001),
(0101, 1100), (0110, 1010), (0110, 1100), (0111,
1011)}, E4={(0000, 10000), (0001, 1001), (0010,
1010), (0011, 1011), (0100, 1100)}.

Figure 2: A supercube with 13-nodes

3 Embedding of meshes and tori
The section describes the representation used to solve
that embeds a mesh and torus in a supercube with
2-expansion.
Lemma 1[20] mesh or torus, denoted by

, is a 2-dimensional mesh or torus, where

 can be embedded in an

n-dimensional hypercube where n = r+ s. �

21 mm 

s2
1 2m mM 

rm 21  m, 2 

Lemma 2[20] Any dmmm  21

dm  

ip2

 mesh or torus,

denoted by , in the d-dimensional space

Rd, where mi = can be embedded in an
n-dimensional hypercube where n = p1 + p2+…+ pd.
The numbering of the mesh or torus nodes is any
numbering such that its restriction to each ith variable is
a Gray sequence which is described in definition 2.
Note that the assumption that all mi’s be power of 2. �

1 2m mM

Our proposition is best illustrated by an example.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 449 Issue 5, Volume 9, May 2010

Consider a mesh or torus i.e., d = 2, p1 =2, p2 2 22 2
M


The embedding approach that a

1 2 d

mesh or torus can be embedded in a SN with
2-expansion is as follows.

m m mM   

= 2, n = p1 + p2 = 4. A binary number H of any node of
the 4-dimensional hypercube can be regarded as
consisting of two parts: its first 2 bits and its last 2 bits,
which we write in the form H = X1X2Y1Y2, where Xi and
Yi are bits 0 or 1. It is clear from the definition of an
n-dimensional hypercube (with n = 4) that when the

last 2 bits are fixed, then the resulting nodes form
a p1-dimensional hypercube (with p1 = 2). Whenever
we fix the first 2 bits we obtain a p2-dimensional
hypercube. The embedding then becomes clear.
Choosing a 2-bit BRGC for the x direction and 2-bit
BRGC for the y direction, the point () of the

mesh or torus is assigned to the node X1X2Y1Y2 where
X1X2 is the 2-bit BRGC for dimension of p1 while Y1Y2
is the 2-bit BRGC for dimension of p2. Herein, we
illustrate the result of the mesh or torus in Figure 1-2.

12 p

ix iy,

Embedding approach

1 2 dm m mM    (mi =), SN (ip2 12 2n nN  ),

1 2p + p + + d p lo  2g N   , 1 2 d p , , p 1p ,

NS (,)G V E ,
1 2

' '(,)
dm m mM G V E    ,

V  ' V '  (Denoted by unique binary string)

2 2 2 2 1log log 1 logN N Nv X X X X X           0 

2 1 1log N 0X X X   
  

'V  can be embedded in denote as V

2 2 2 2 1log log 1 log0 N N N 0X X X          
 X �

Theorem 1 A
2 2r sM


2-dimensional mesh or torus can

be embedded in a supercube SN where

2logr s  N   with load 1, dilation 1, congestion 1,

and expansion 2. The binary node number of any mesh and torus
node is obtained by concatenation its binary x
coordinate and its binary y coordinate. Therefore, if we
call Gray sequence any subsequence of a BRGC, we
observe that any column of mesh and torus nodes
forms a Gray sequence and any row of mesh and torus
nodes forms a Gray sequence. Thus, we will refer to
the codes defined above as 2-D Gray codes.
Generalizations to higher dimensions are
straightforward and one can state the above lemma 2.

Proof. This is trivial by lemma 1, lemma 2, and the
above embedding approach. �
Theorem 2 Any d-dimensional mesh or

torus, where mi = can be embedded in a SN,

where with load 1,

dilation 1, congestion 1 and expansion 2.

1 2 dm m mM   

ip2

d+ p l1 2 2p + p + og N 

Proof. It is trivial by the above embedding approach. �
This is the best illustrated by an example in Figure

3. That is a 2 12 2
M


 mesh or torus can be embedded in

a S13 with 2-expansion.

Lemma 3 For any given N, a hypercube Hn must be a

subgraph of a supercube SN, where 12 2n nN   .
Proof. A supercube SN must contain a hypercube Hn.
That is trivially by the generation schema of a
supercube SN graph. It must contain the maximum
hypercube Hn.�

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 450 Issue 5, Volume 9, May 2010

Figure 3: Embedding of a 2 12 2

M


 mesh and torus in a supercube S13 with 2-expansion

 ,

1 2 d 2p + p + + p log N  

1


1 2 dp , p , , p

4 Fault-Tolerant embedding of meshes
and tori with node failures Output: y /*the replaceable node*/

1. i=0
The session 3 shows that a mesh and

torus can be embedded in a SN graph with expansion 2,
load 1, congestion 1, and dilation 1. Hence, in this
section, we consider a mesh and torus

1 2 dm m mM   

dm  1 2m mM

2. if a node x is faulty
3. then
4. {
5. search the node f1

 /* HD(x, f1)=1, Dim(x, f1)={ 2log N   }*/
 6. if f1 is a exist node and it is free
can be embedded in a SN with 2-expansion graph
which contains faulty node.

7. then
8. return(f1) /*replace x with f1*/

The algorithm design described in this section
mainly accorded with the idea the search of bit
sequence. We show that each node can be expressed

by (+1)-bit binary string 2log N

2 2log 1 logN N

9. exit()
10. else

11. while i < do 2log N  


02 2 1log NX X X    
X    


12. {
13. search the node f2 X where Xi is bit 0

or 1. We search of highest dimension first. If the node
is already used or fault, then we retain the most
significant bit and change a bit at a time from 0X to

 sequentially until we find the replace node.

Therefore, the replacing sequence can be found the
replace node. Now, we propose a novel algorithm for
embedding a mesh and torus in a faulty

SN with 2-expansion as follows.

2log 1NX   

dm1 2m mM  

 /* HD(x, f2)=2, Dim(x, f2)={ 2log N   , i}*/

14. if f2 is a exist node and it is free
15. then
16. return(f2) /*replace x with f2*/
17. exit()
18. }
19. i=i+1
20. }

 21. return(“Failure”)
 22. end Algorithm MTtoS(x)

By the algorithm MTtoS (), the replacing sequence
of the faulty node is shown as follows.

Input: x /*the faulty node*/,

 (mi =),
1 2 dm m mM   

ip2 node0=
2 2 2 1log 1 log0 N N 0X X X      

 X
 SN (), 12 2n nN  

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 451 Issue 5, Volume 9, May 2010

 node1=
2 2 2 1log 1 log1 N N 0X X X      

 X

0'

 node2=
2 2 2 1log 1 log1 N NX X X      

 X

0'

 node3=
2 2 2 1log 1 log1 N NX X X      

 X

0

 =
2 2 2 1log 1 log1 ' N NX X X      

 X

We illustrate an example of embedding a

mesh or torus in a supercube S13 as shown in Figure 3.
Furthermore, we illustrate an example of finding a
replacing sequence in a 2-expansion supercube S13
with node failures as shown in Figure 4.

12 22 
M

 
 node(+1) 2log N  

Figure 4: The replacing sequence of embedding a Mesh or torus in a faulty supercube S13 12 22 

M

By Figure 4, when the faulty node (0000) exists,
we execute the operations of the MTtoS(). All node of
the replacing sequence is listed as {1000, 1001), 1010,
1100)} by MTtoS().
Theorem 3 A 2-dimensional mesh or torus can

be embedded in a faulty SN that

2 2r sM


2logr s N    

with load 1, dilation 2, congestion 1 and expansion 2.
Proof. By executing the MTtoS method and the
definition of the partial faulty model, allowing us to
get congestion 1 and load 1. And we allow
2-expansion to obtain the replace node of faulty node.
When a node is faulty, the dilation maybe become
1+1=2 at most by executing the MTtoS method in a
worst case. Because these nodes and links of replacing
sequences are not replicated from the MTtoS method,
four costs associated with graph embedding are
dilation 2, expansion 2, load 1 and congestion 1. �
Theorem 4 A replacing sequence of the MTtoS

method is including approximate to (+1)

nodes.
2log N  

Proof. Every node can be represented by a

(+1)-bit binary string 2log N

2 2log 1N N



02 2 1log log NX X X X  
 X      

 where  1,0pi .

First, we change the most significant bit from 0 to 1.

Then, a bit can be changed from X0 to
2log 1NX   

sequentially by the MTtoS method. Because the
supercube may be having a lack of some nodes, a
replacing sequence of the MTtoS method is including

approximate to (2log N  +1) nodes. �

Theorem 5 There are O() faults can be

tolerated in the faulty supercube with 2-expansion.
2log N 

Proof. It is trivial by theorem 4. �
Theorem 6 The result implies that optimal simulation
of mesh and torus in a faulty supercube for balancing
the processor and communication link loads.
Proof. Our results demonstrate that a mesh and torus
can be embedded in a faulty supercube with load 1,
dilation 2, congestion 1 and expansion 2. These nodes
and links of these replacing nodes are not replicated
from the algorithm MTtoS(). This observation implies
that the primary optimization objective of embedding
is minimizing the interprocessor communication cost
and to balance the workload of processors have
reached.�

5 Conclusions
Supercubes are superior to hypercubes in terms of

embedding a mesh and torus under faults. Therefore,

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 452 Issue 5, Volume 9, May 2010

this paper presented techniques to enhance the novel
algorithm for fault-tolerant meshes and tori embedded
in supercubes with node failures. The paper

demonstrate that O() faults can be tolerated

and the algorithm is optimized mainly for balancing
the processor and communication link loads. Also, the
methodology is proven and an algorithm is presented
to solve them. These existent parallel algorithms on
mesh or torus architectures to be easily transformed to
or implemented on supercube architectures with load 1,
congestion 1, dilation 2, and expansion 2. The useful
properties revealed and the algorithm proposed in this
paper can find their way when the system designers
evaluate a candidate network’s competence and
suitability, balancing regularity and other performance
criteria, in choosing an interconnection network.
Therefore, we can easily port the parallel or distributed
algorithms developed for these structuring of mesh and
torus to the supercubes.

2log N 

References:
[1] S. B. Akers, and B. Krishnamurthy, A

Group-Theoretic Model for Symmetric
Interconnection Networks, IEEE Trans. on
Computers, Vol. 38, 1989, pp. 555-565.

[2] J. R. Armstromg and F. G. Gray, Fault- diagnosis
in n-Cube array of microprocessor, IEEE Trans.
on Computers, Vol. C-30, No. 4, 1992, pp.
587-590.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation: numerical methods,
Prentice Hall, Englewood Ciffs, New Jersey,
1989.

[4] L. Bhuyan and D.P. Agrawal, Generalized
Hypercubes and Hyperbus structure for a
computer network, IEEE Trans. on Computers,
Vol. 33, 1984, pp. 323-333.

[5] C. Chartand and O. R. Oellermann, Applied and
Algorithmic Graph Theory, McGRAW-HILL Inc.,
1993.

[6] K. Day and A. E. Al-Ayyoub, Fault Diameter of
k-ary n-cube Networks, IEEE Trans. on parallel
and distributed systems, Vol. 8, No. 9, 1997, pp.
903-907.

[7] Q. Dong, X. Yang, J. Zhao, and Y. Y. Tang,
Embedding a family of disjoint 3D meshes into a
crossed cube, Information Sciences, Vol. 178, No.
11, 2008, pp. 2396-2405.

[8] S. Dutt and J. P. Hayes, An automorphic
approach to the design of fault-tolerance

Multiprocessor, Proc. 19th Inter. Symp. on
Fault-Tolerant Computing, 1989.

[9] M. J. Duff, CLIP4: A Large Scale Integrated
Circuit Array Parallel Processor, in: IEEE
International Joint Conference on Pattern
Recognition, 1976, pp. 728-733.

[10] M. J. Duff, Real Applications on CLIP4, in
Integrated Technology for Parallel Image
Processing, Academic Press London, 1985, pp.
153-165.

[11] J. Fan, and X. Jia, Embedding meshes into
crossed cubes, Information Sciences, Vol. 177,
No. 15, 2007, pp. 3151-3160.

[12] T. Hameenanttila, X.-L. Guan, J. D. Carothers,
and J.-X. Chen, The Flexible Hypercube: A New
Fault-Tolerant Architecture for Parallel
Computing, Journal of Parallel and Distributed
Computing, Vol. 37, 1996, pp. 213-220.

[13] J. Hastad, T. Leighton, and M. Newman,
Reconfiguring a Hypercube in the Presence of
Faults, ACM Theory of Computing, 1987, pp.
274-284.

[14] J. P. Hayes, and T.N. Mudge, Hypercube
supercomputing, Proc. IEEE, Vol. 77, 1989, pp.
1829-1842.

[15] J. Kuskin, et al., The Stanford FLASH
Multiprocessor, Proceedings of the 21st Annual
International Symposium on Computer
Architecture, 1994, pp. 302-313.

[16] F. T. Leighton, Introduction to parallel
algorithms and architectures: Arrays, Trees,
Hypercubes, MORGAN KAUFMANN
PUBLISHERS, Inc., 1992.

[17] D. Lenoski, et al., The StanfordDASH
Multiprocessor, Computer, Vol. 224, 1971, pp.
63-79.

[18] J.-C. Lin, Embedding Hamiltonian Cycles,
Linear Arrays and Rings in a Faulty Supercube,
International Journal of High Speed Computing ,
Vol. 11, 2000, pp. 189-201.

[19] J.-C. Lin and N.-C. Hsien, Reconfiguring Binary
Tree Structures in a Faulty Supercube with
Unbounded Expansion, Parallel Computing, Vol.
28, 2002, pp. 471-483.

[20] J.-C. Lin, Faulty-Avoiding Methods for
Mapping Meshes in an IEH, WSEAS
Transactions on Computers, Vol. 6, 2007, pp.
888-893.

[21] C.D. Park, and K.-Y. Chwa, Hamiltonian
properties on the class of hypercube-like
networks, Information Processing Letters, Vol.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 453 Issue 5, Volume 9, May 2010

http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235643%232007%23998229984%23653400%23FLA%23&_cdi=5643&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b2d001a211da69c42a13f0f40a838c44
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235643%232007%23998229984%23653400%23FLA%23&_cdi=5643&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b2d001a211da69c42a13f0f40a838c44

91, 2004, pp. 11-17.
[22] F. P. Preparata and J. Vuillemin, The

cube-connected cycles: A versatile network for
parallel computation, Commun. ACM, Vol. 24,
No. 5, 1981, pp. 300-309.

[23] D. A. Rennels, On Implemanting Fault-tolerance
in binary hypercubes, Proc. 16th Inter . Symp. on
Fault-tolerant Computing, 1986, pp. 344-349.

[24] Y. Saad, and M. Schultz, Topological properties
of Hypercube, IEEE Trans. on Computers, Vol.
37, 1988, pp. 867-871.

[25] J. L. C. Sanz, The SIMD Model of Parallel
Computation, Springer-Verlag New-York, Inc.,
1994.

[26] C. Seitz, The Cosmic Cube, Commun. ACM, Vol.
28, 1985, pp. 22-33.

[27] A. Sen, Supercube: An Optimally Fault Tolerant
Network Architecture, Acta Informatica, Vol. 26,
1989, pp. 741-748.

[28] A. Sen, A. Sengupta and S. Bandyopadhyay,
Generalized Supercube: An incrementally
expandable interconnection network,
Proceedings of the Third Symposium on
Frontiers of Massively Parallel
Computation-Frontiers'90, 1990, pp. 384-387.

[29] H. Sullivan, T. Bashkow, A large scale,
homogeneous, fully distributed parallel machine,
I, Proc. 4th Symp. Computer Architecture, ACM,
1977, pp. 105-177.

[30] S. Sur and P. K. Srimani, Incrementally
Extensible Hypercube Networks and Their Fault
Tolerance, Mathematical and Computer
Modelling, Vol 23, 1996, pp. 1-15.

[31] S. Sur, and P. K. Srimani, IEH graphs: A novel
generalization of hypercube graphs, Acta
Informatica, Volume 32, 1995, pp 597-609.

[32] C.-H. Tsai, Embedding of meshes in Möbius
cubes, Theoretical Computer Science, Vol. 401,
No. 1, 2008, pp. 181-190.

[33] Y.-C. Tseng and T.-H. Lai, On the Embedding of
a class of Regular Graphs in a Faulty Hypercube,
J. Parallel and Distrib. Comput., Vol. 37, 1996,
pp. 200-206.

[34] L. W. Tucker and G. G. Robertson, Architecture
and applications of the connection machine, IEEE
Comput., Vol. 21, 1988, pp.26-38.

[35] N.-F. Tzeng and H.-L. Chen, An Effective
Approach to the Enhancement of Incomplete
Hypercube Computers, J. Parallel and Distrib.
Comput., Vol. 14, 1992, pp. 163-174.

[36] N.-F. Tzeng and H.-L. Chen, Fast Compaction in

Hypercubes, IEEE Trans. on parallel and
distributed systems, Vol. 9, No. 1, 1998, pp.
50-55.

[37] D. Wang, On Embedding Hamiltonian Cycles in
Crossed Cubes, IEEE Transactions on Parallel
and Distributed Systems, Vo1. 9, 2008, pp.
334-346.

[38] S.-H. Wang, Y.-R. Leu, and S.-Y. Kuo,
Distributed Fault-Tolerant Embedding of Several
Topologies in Hypercubes, Journal of
Information Science and Engineering, Vol. 20,
No. 4, 2004, pp. 707-732.

[39] L.D.Wittie, Communications structures for
largenetworks of microcomputers, IEEE Trans.
Comput., Vol. C-30, 1981, pp.264-273.

[40] C. Xu and F. C. M. Lau, Load Balancing in
Parallel Computers-Theory and Practice, Kluwer
Academic Publishers, Inc., 1997.

[41] P.-J. Yang, S.-B. Tien, and C.S. Raghavendra,
Embedding of Rings and Meshes onto Faulty
Hypercube Using Free Dimensions, IEEE Trans.
on Computers, Vol. 43, No. 5, 1994, pp.
608-618.

[42] S.-M. Yuan, Topological properties of supercube,
Information Processing Letters, Vol. 37, 1991, pp.
241-245.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin, Shih-Jung Wu, Huan-Chao Keh, Lu Wang

ISSN: 1109-2750 454 Issue 5, Volume 9, May 2010

http://www.sciencedirect.com/science/journal/03043975

