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Abstract: - Hypercubes, meshes, and tori are well known interconnection networks for parallel computing. The 
Supercube network is a generalization of the hypercube. The main advantage of this network is that it has the same 
connectivity and diameter as that of the hypercube without the constraint that the number of nodes be a power of 2. 
This paper proposes novel algorithms of fault-tolerant meshes and tori embedded in supercubes with node failures. 

The main results obtained (1) a replacing sequence of a supercube is including approximate to ( 2log N  +1) 

nodes. Therefore, there are O( ) faults, which can be tolerated. (2) The result implies that optimal 

simulation of mesh and torus in a faulty supercube for balancing the processor and communication link loads at 
present. According to the result, we can easily port the parallel or distributed algorithms developed for these 
structures to the supercubes. Therefore, these methods of reconfiguring enable extremely high-speed parallel 
computation. 

2log N 
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1 Introduction 
Selection of an appropriate interconnection network is 
the key to the design of any distributed/ multiprocessor 
system, because the speed of internode communication, 
rather than that of computation, is known to be the 
bottleneck in accomplishing speedup with multiple 
processors. Over the past two decades, an 
overwhelming number of interconnection networks 
have been reported in the literature. Examples include 
crossbars, multiple bused, multistage interconnection 

networks, and hypercubes[24], to name a few. Among 
these, the hypercube has received considerable 
attention due mainly to its rich topological properties. 
The hypercube is a regular structure, has a small 
diameter, and offers good connectivity with a 
relatively small node degree. Moreover, a number of 
other well-known topologies, such as rings, trees, 
meshes, and tori can be embedded in the hypercube. 
The hypercube is a popular architecture for parallel 
machines, but it cannot be a general architecture 
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widely used because hypercubes are not incrementally 
expandable. The Supercube[27, 42] is one of 
hypercube-derived computers[25] and does not have 
the drawbacks from the hypercube. Speaking of its 
architecture, a supercube has the same connectivity 
and diameter as the corresponding hypercube. It is 
shown to have the following desirable characteristics: 

1. The nodes connectivity of an N-node 

supercube is at least 2log N .   
2. The node degree of an N-node supercube is 

between (k - 1) and (2k - 2), where 

k= 2log N .   
3. Adding a new node to an existing network is 

easy; it does not need reorganization of 
existing edges. 

4. The diameter of an N-node supercube is 

2log N    at most. 

A mesh connected computer[7, 11, 20, 25, 32] is 
easy to construct because it is regular, it has short 
connections, it requires only four connections per node, 
and it is possible to build in two dimensions without 
having any connections cross. Each node that is not on 
an edge of the array has a direct connection with its 
four nearest neighbors. At the same time, the top row 
is connected to the bottom row and leftmost column is 
connected to the rightmost column, so the 
interconnections logically form a torus[25]. The 
construction of such a machine in two dimensions 
requires that some connections cross. 

The mesh and torus are two of the most important 
networks for parallel computers. A great deal of 
research has focused on the mesh and torus networks 
and several parallel computers have been built with 2- 
or 3-dimensional mesh or torus topologies. Examples 
include the CLIP4[9, 10], the GAPP25 (NCR 
Microelectronic Products Division), the MPP[25] (of 
Goodyear Aerospace), the MP-1[25] (sold by 
MASPAR Corporation), and the J-machine[25] is a 
project at MIT in a 3-dimensional mesh topology. 
Mesh connected computers were shown to be efficient 
in performing many image and matrix operations. If a 
mesh connected computer can be simulated with a 
hypercube or a hypercube-derived computer, those 
same algorithms can be used on these other topologies. 
In the paper, one of the most important issues in the 
design of a system which contains many components is 
the system’s performance in the presence faults. 

In a multiprocessor system, we follow two fault 
models. The first model assumes that, in a faulty node, 

the computational function of the node is lost while the 
communication function remains intact; this is the 
partial faulty model. The second model assumes that, 
in a faulty node, the communication function is lost too; 
this is the total faulty model. In this paper, our model is 
the partial faulty model. That is, when the computation 
nodes are faulty, the communication links are well and 
only the faulty nodes are remapped. In this paper, we 
consider only the second type of fault-tolerant design 
in a supercube. 

The power of a message-passing parallel computer 
depends on the topology chosen for underlying 
interconnection network, which can be modeled as 
undirected graph. Different graphs have been proposed 
as static interconnection topology for multiprocessors. 
Therefore, we model both the parallel algorithm and 
the parallel machine as graphs. Graph embedding[16] 
problem have application in a wide variety of 
computational situations. For example, the flow of 
information in a parallel algorithm defines a program 
graph, and embedding this in a network tells us how to 
organize the computation on the network. Other 
problems are laying out circuits on chips, representing 
data structures in computer memory, and finding 
efficient program control structures. 

Given two graphs, G(V, E) and G'(V', E'), 
embedding the guest graph G in the host graph G' 
maps each vertex in the set V into a vertex (or a set of 
vertices) in the set V' and each edge in the set E into an 
edge(or a set of edge)in the E'. Let these nodes in a 
graph correspond to processors and edges to 
communication links in an interconnection network. 
Embedding one graph into another is important 
because an algorithm may have been designed for a 
specific interconnection network. Four costs associated 
with graph embedding are dilation, expansion, load, 
and congestion. The maximum amount that we must 
stretch any edge to achieve an embedding is called the 
dilation of the embedding. By expansion, we mean the 
ratio of the number of nodes in the host graph to the 
number of nodes in the graph that is being embedded. 
The congestion of an embedding is the maximum 
number of edges of the guest graph that are embedded 
using any single edge of the host graph. The load of an 
embedding is the maximum number of nodes of the 
guest graph that are embedded in any single node of 
the host graph. An efficient simulation of one network 
on another network requires that these four costs be as 
small as possible. However, for most embedding 
problems, it is impossible to obtain an embedding that 
minimizes these costs simultaneously. Therefore, some 
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tradeoffs among these costs must be made. 
The paper develops novel algorithms to facilitate 

the embedding job when the supercube contains faulty 
nodes. Of particular concern are the network structures 
of the supercube that balance the load before as well as 
after faults starting to demote the performance of the 
supercube. To obtain replaceable nodes of faulty nodes, 

2-expansion is permitted such that up to ( +1) 

faults can be tolerated with congestion 1, dilation 2, 

and load 1, where  is the dimension of a 

supercube. Results presented herein demonstrate that 
embedding methods are optimized. 

2log N  

2log N

The remaining part of this paper is organized as 
follows. Section 2 introduces the topological properties 
of the hypercube, the mesh, the torus, and the 
supercube. Notations and definitions of terms are also 
provided. In section 3, the paper presents the method 
for embedding meshes and tori in a supercube. Section 
4 describes the novel fault-tolerant algorithm for 
embedding meshes and tori in a faulty supercube with 
2-expansion. Conclusions are finally made in section 5. 
 
 

2 Preliminaries  
This section formally introduces these definitions of 

these topologies of the hypercube, the mesh, the torus, 
and the supercube. For completeness, we begin with 
the list of useful properties of above interconnection 
networks. 

A hypercube Hn of order n, is defined to be a 
symmetric graph G= (V, E) where V is the set of 2n 
vertices, each representing a distinct n-bit binary 
number and E is the set of symmetric edges such that 
two nodes are connected by an edge iff the number of 
positions where the bits differ in the binary labels of 
the two nodes is 1.  

There are many topologies can be embedded in 
hypercubes or hypercube-derived computers. One of 
these is mesh and torus. It is very popular network 
interconnection. One of the most attractive properties 
of the binary n-cube topology is that meshes and tori of 
arbitrary dimensions can be embedded in it. This is one 
of the main reasons for the success of hypercube 
architectures. Because of these, we consider the mesh 
and torus size in each direction is a power of 2. Figure 
1-1 and Figure 1-2 show us two examples. First 
example is a 2221 2-dimensional mesh and second 
example is a 22 22 2-dimensional torus which are 
bi-directional connection between two nodes. 

              
Figure 1-1: A 2221 2-dimensional mesh  
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Figure 1-2: A 2222 2-dimensional torus 

Definition 1[18, 38] The Hamming distance of two 
nodes x and y, denoted by HD(x ,y), is the number of 
1's in the bit set of resulting sequence of the bitwise 
XOR of x and y. 
Definition 2[18] The Binary-Reflected Gray Code 
(BRGC) is defined recursively as follows. 
 Cn+1={0Cn, 1(Cn)

R}, where C1={0 , 1} and 
 C2={0C1 , 1(C1)

R}� 
For example, a 2-bit Gray Code can be constructed 

by the sequence, defined in definition 2, and insert a 
cipher in front of each codeword in C1, then insert an 
one in front of each codeword in (C1)

R . We get the 
code C2={00, 01, 11, 10}. Now, we can then repeat the 
procedure to built a 3-bit Gray Code, and also get the 
code C3=0C21(C2)

R={000, 001, 011, 010, 110, 111, 
101, 100}. 
Definition 3[20]  mesh or torus is a 
2-dimension mesh or torus that the mesh or torus size 
in each direction is a power of 2. i.e., it is such 

that .� 

21 mm 

s2r mm ,2 21 
Definition 4[20] Higher dimension mesh or torus is a 

 mesh or torus in d-dimension, and 

assume that the mesh or torus size in each direction is a 
power of 2. � 

dmmm  21

Definition 5[19] For any two nodes x and y, let x=xn ... 
x0, y=yn ... y0, then Dim(x ,y)={i in (0 ... n) | xi≠yi}. 

A supercube is constructed by any number of 
nodes and based on hypercube. A supercube, denoted 
by SN, is defined as an undirected graph SN = (V, E), 
where V is the set of processors (called nodes in our 

discussion) and E is the set of bidirectional 
communication links between the processors (called 
edges). Assume that V contains N nodes and each node 
can be numbered by an identical number in the range 

over (0, N-1), in a 2log N   -dimensional supercube, 

each node can be expressed by a ( +1)-bit 

binary string, where N is a positive integer. 
2log N 

Definition 6[27, 42] Suppose SN = (V, E) is a 

2log N   -dimensional supercube, then the node set V 

can be divided into three subsets V1, V2, V3, where 

1. V3 = {x | xV, x = 1u, where u is 2log N -bit 

sequences}.  

  

2. V2 = {x | xV, x = 0u, 1u does not exist in V, where 

u is 2log N   -bit sequences},and 

3. V1 = {x | xV, x =0u, 1uV, where u is 

2log N   -bit sequences}. 

Definition 7[27, 42] Suppose SN = (V, E) is a 

2log N   -dimensional supercube, then the edge set E 

is the union of E1, E2, E3 and E4, where 
1. E1 ={(x, y)| x, yV, x = 0u, y = 0v, where u, v are 

2log N   -bit sequences and HD(x, y)= 1}, 

2. E2 ={(x, y)| x, y in V3, x = 1u, y = 1v, where u, v 

are 2log N   -bit sequences and HD(x, y)= 1}, 

3. E3 ={(x, y)| x in V3, y in V2, x = 1u, y = 0 u, 

where u, v are 2log N   -bit sequences and 
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4. E4 ={(x, y)| x in V3, y in V1, x = 1u, y = 0v, where 
u is n-bit sequences }. 

We illustrate the supercube with 13-node is shown 
in Figure 2. 

An inevitable consequence of the flexible of 
construction and the fault-tolerant of a supercube is an 
uneven distribution of the utilized communication 
ports over system nodes. Although the supercube loses 
its property of regularity, more links help obtain the 
replacement nodes of the faulty nodes of the supercube. 
The supercube with 13-node is shown in Figure 2. In 

the Figure 2, V1 = {0000, 0001, 0010, 0011, 0100}, V2 
= {0101, 0110, 0111}, V3 = {1000, 1001, 1010, 1011, 
1100}, E1 = {(0000, 0001), (0000, 0010), (0000, 0100), 
(0001, 0011), (0001, 0101), (0010, 0011), (0010, 0110), 
(0011, 0111), (0100, 0101), (0100, 0110), (0101, 0111), 
(0110, 0111}, E2 = {(1000, 1001), (1000, 1010), (1000, 
1100), (1001, 1011), (1010, 1011)}, E3={(0101, 1001), 
(0101, 1100), (0110, 1010), (0110, 1100), (0111, 
1011)}, E4={(0000, 10000), (0001, 1001), (0010, 
1010), (0011, 1011), (0100, 1100)}.  
 

  
Figure 2: A supercube with 13-nodes 

 
 

3 Embedding of meshes and tori   
The section describes the representation used to solve 
that embeds a mesh and torus in a supercube with 
2-expansion. 
Lemma 1[20]  mesh or torus, denoted by 

, is a 2-dimensional mesh or torus, where 

 can be embedded in an 

n-dimensional hypercube where n = r+ s. � 

21 mm 

s2
1 2m mM 

rm 21  m, 2 

Lemma 2[20] Any dmmm  21

dm  

ip2

 mesh or torus, 

denoted by , in the d-dimensional space 

Rd, where mi = can be embedded in an 
n-dimensional hypercube where n = p1 + p2+…+ pd. 
The numbering of the mesh or torus nodes is any 
numbering such that its restriction to each ith variable is 
a Gray sequence which is described in definition 2. 
Note that the assumption that all mi’s be power of 2. � 

1 2m mM

Our proposition is best illustrated by an example. 
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Consider a  mesh or torus i.e., d = 2, p1 =2, p2  2 22 2
M


The embedding approach that a 

1 2 d
 

mesh or torus can be embedded in a SN with 
2-expansion is as follows.  

m m mM   

 
 
= 2, n = p1 + p2 = 4. A binary number H of any node of 
the 4-dimensional hypercube can be regarded as 
consisting of two parts: its first 2 bits and its last 2 bits, 
which we write in the form H = X1X2Y1Y2, where Xi and 
Yi are bits 0 or 1. It is clear from the definition of an 
n-dimensional hypercube ( with n = 4 ) that when the 

last 2 bits are fixed, then the resulting  nodes form 
a p1-dimensional hypercube ( with p1 = 2 ). Whenever 
we fix the first 2 bits we obtain a p2-dimensional 
hypercube. The embedding then becomes clear. 
Choosing a 2-bit BRGC for the x direction and 2-bit 
BRGC for the y direction, the point ( ) of the 

mesh or torus is assigned to the node X1X2Y1Y2 where 
X1X2 is the 2-bit BRGC for dimension of p1 while Y1Y2 
is the 2-bit BRGC for dimension of p2. Herein, we 
illustrate the result of the mesh or torus in Figure 1-2. 

12 p

ix iy,

Embedding approach 

1 2 dm m mM    ( mi = ), SN (ip2 12 2n nN   ), 

1 2p  + p + + d p lo  2g N   ,  1 2 d p , ,  p 1p ,

NS  ( , )G V E , 
1 2

' '( , )
dm m mM G V E    ,  

V   ' V '  (Denoted by unique binary string) 

2 2 2 2 1log log 1 logN N Nv X X X X X           0   

2 1 1log N 0X X X   
     

'V   can be embedded in  denote as V

2 2 2 2 1log log 1 log0 N N N 0X X X          
 X � 

Theorem 1 A 
2 2r sM


2-dimensional mesh or torus can 

be embedded in a supercube SN where 

2logr s  N    with load 1, dilation 1, congestion 1, 

and expansion 2. The binary node number of any mesh and torus 
node is obtained by concatenation its binary x 
coordinate and its binary y coordinate. Therefore, if we 
call Gray sequence any subsequence of a BRGC, we 
observe that any column of mesh and torus nodes 
forms a Gray sequence and any row of mesh and torus 
nodes forms a Gray sequence. Thus, we will refer to 
the codes defined above as 2-D Gray codes. 
Generalizations to higher dimensions are 
straightforward and one can state the above lemma 2. 

Proof. This is trivial by lemma 1, lemma 2, and the 
above embedding approach. �  
Theorem 2 Any d-dimensional mesh or 

torus, where mi =  can be embedded in a SN, 

where  with load 1, 

dilation 1, congestion 1 and expansion 2. 

1 2 dm m mM   

ip2

d+ p l1 2 2p  + p + og N 

Proof. It is trivial by the above embedding approach. � 
This is the best illustrated by an example in Figure 

3. That is a 2 12 2
M


 mesh or torus can be embedded in 

a S13 with 2-expansion. 

Lemma 3 For any given N, a hypercube Hn must be a 

subgraph of a supercube SN, where 12 2n nN   .  
Proof. A supercube SN must contain a hypercube Hn. 
That is trivially by the generation schema of a 
supercube SN graph. It must contain the maximum 
hypercube Hn.� 
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Figure 3: Embedding of a 2 12 2

M


 mesh and torus in a supercube S13 with 2-expansion 

   , 

 

1 2 d 2p  + p + + p log N  

1


1 2 dp , p , ,  p
 

4 Fault-Tolerant embedding of meshes 
and tori with node failures Output: y /*the replaceable node*/ 

1. i=0  
The session 3 shows that a  mesh and 

torus can be embedded in a SN graph with expansion 2, 
load 1, congestion 1, and dilation 1. Hence, in this 
section, we consider a  mesh and torus  

1 2 dm m mM   

dm  1 2m mM

2. if a node x is faulty 
3. then 
4.   { 
5.    search the node f1 

    /* HD(x, f1)=1, Dim(x, f1)={ 2log N   }*/  
 6.    if f1 is a exist node and it is free 
can be embedded in a SN with 2-expansion graph 
which contains faulty node. 

7.    then 
8.  return(f1) /*replace x with f1*/ 

The algorithm design described in this section 
mainly accorded with the idea the search of bit 
sequence. We show that each node can be expressed 

by ( +1)-bit binary string 2log N

2 2log 1 logN N

9.  exit() 
10.    else 

11.  while i <  do 2log N  


02 2 1log NX X X    
X    


12.  { 
13.  search the node f2 X  where Xi is bit 0 

or 1. We search of highest dimension first. If the node 
is already used or fault, then we retain the most 
significant bit and change a bit at a time from 0X  to 

 sequentially until we find the replace node. 

Therefore, the replacing sequence can be found the 
replace node. Now, we propose a novel algorithm for 
embedding a  mesh and torus in a faulty 

SN with 2-expansion as follows. 

2log 1NX   

dm1 2m mM  

        /* HD(x, f2)=2, Dim(x, f2)={ 2log N   , i}*/ 

14.  if f2 is a exist node and it is free 
15.  then 
16.  return(f2) /*replace x with f2*/ 
17.  exit() 
18.       } 
19.       i=i+1 
20.   } 

   21.  return(“Failure”) 
   22.  end Algorithm MTtoS(x) 

By the algorithm MTtoS ( ), the replacing sequence 
of the faulty node is shown as follows. 

Input:  x  /*the faulty node*/,  

  ( mi = ),  
1 2 dm m mM   

ip2  node0=
2 2 2 1log 1 log0 N N 0X X X      

 X  
  SN ( ),  12 2n nN  
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 node1=
2 2 2 1log 1 log1 N N 0X X X      

 X

0'

  

 node2=
2 2 2 1log 1 log1 N NX X X      

 X

0'

  

 node3=
2 2 2 1log 1 log1 N NX X X      

 X

0

 

   = 
2 2 2 1log 1 log1 ' N NX X X      

 X  

We illustrate an example of embedding a  

mesh or torus in a supercube S13 as shown in Figure 3. 
Furthermore, we illustrate an example of finding a 
replacing sequence in a 2-expansion supercube S13 
with node failures as shown in Figure 4.  

12 22 
M

  
 node( +1) 2log N  

 
Figure 4: The replacing sequence of embedding a  Mesh or torus in a faulty supercube S13  12 22 

M

By Figure 4, when the faulty node (0000) exists, 
we execute the operations of the MTtoS( ). All node of 
the replacing sequence is listed as {1000, 1001), 1010, 
1100)} by MTtoS( ). 
Theorem 3 A 2-dimensional mesh or torus can 

be embedded in a faulty SN that 

2 2r sM


2logr s N      

with load 1, dilation 2, congestion 1 and expansion 2. 
Proof. By executing the MTtoS method and the 
definition of the partial faulty model, allowing us to 
get congestion 1 and load 1. And we allow 
2-expansion to obtain the replace node of faulty node. 
When a node is faulty, the dilation maybe become 
1+1=2 at most by executing the MTtoS method in a 
worst case. Because these nodes and links of replacing 
sequences are not replicated from the MTtoS method, 
four costs associated with graph embedding are 
dilation 2, expansion 2, load 1 and congestion 1. � 
Theorem 4 A replacing sequence of the MTtoS 

method is including approximate to ( +1) 

nodes. 
2log N  

Proof. Every node can be represented by a 

( +1)-bit binary string 2log N

2 2log 1N N



02 2 1log log NX X X X  
 X      

 where  1,0pi . 

First, we change the most significant bit from 0 to 1. 

Then, a bit can be changed from X0 to 
2log 1NX   

 

sequentially by the MTtoS method. Because the 
supercube may be having a lack of some nodes, a 
replacing sequence of the MTtoS method is including 

approximate to ( 2log N  +1) nodes. � 

Theorem 5 There are O( ) faults can be 

tolerated in the faulty supercube with 2-expansion. 
2log N 

Proof. It is trivial by theorem 4. � 
Theorem 6 The result implies that optimal simulation 
of mesh and torus in a faulty supercube for balancing 
the processor and communication link loads. 
Proof. Our results demonstrate that a mesh and torus 
can be embedded in a faulty supercube with load 1, 
dilation 2, congestion 1 and expansion 2. These nodes 
and links of these replacing nodes are not replicated 
from the algorithm MTtoS( ). This observation implies 
that the primary optimization objective of embedding 
is minimizing the interprocessor communication cost 
and to balance the workload of processors have 
reached.� 
 
 

5 Conclusions  
Supercubes are superior to hypercubes in terms of 

embedding a mesh and torus under faults. Therefore, 
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this paper presented techniques to enhance the novel 
algorithm for fault-tolerant meshes and tori embedded 
in supercubes with node failures. The paper 

demonstrate that O( ) faults can be tolerated 

and the algorithm is optimized mainly for balancing 
the processor and communication link loads. Also, the 
methodology is proven and an algorithm is presented 
to solve them. These existent parallel algorithms on 
mesh or torus architectures to be easily transformed to 
or implemented on supercube architectures with load 1, 
congestion 1, dilation 2, and expansion 2. The useful 
properties revealed and the algorithm proposed in this 
paper can find their way when the system designers 
evaluate a candidate network’s competence and 
suitability, balancing regularity and other performance 
criteria, in choosing an interconnection network. 
Therefore, we can easily port the parallel or distributed 
algorithms developed for these structuring of mesh and 
torus to the supercubes.  

2log N 
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