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University of Sao Paulo

Department of Computer Systems
Av. Trabalhador Saocarlense, 400

BRAZIL
joelmir@icmc.usp.br

Abstract: Different from traditional processors, Moore´s Law was one of the reasons to duplicate cores, and at
least until today it is the solution for safe consumption and operation of systems using millions of transistors. In
terms of software, parallelism will be a tendency over the coming years. One of the challenges is to create tools
for programmers who use HLL (High Level Language) producing hardware directly. These tools should use the
utmost experience of the programmers and the flexibility of FPGA (Field Programmable Gate Array). The main
aspect of the existing tools which directly convert HLL into hardware is dependence graphics. On the other hand,
a dynamic dataflow architecture has implicit parallelism. ChipCflow is a tool to convert C directly into hardware
that uses FPGA as a partial reconfiguration based on a dynamic dataflow architecture. In this paper, the relation
between traditional dataflow architecture and contemporary architecture, as well as the main characteristics of the
ChipCflow project will be presented.

Key–Words: Dataflow Architecture; Reconfigurable Hardware; Tagged-token; Run-time Reconfiguration; Protocol
for dataflow.

1 Introduction
We present a FPGA dataflow architecture to im-

plement high-performance logic. Dataflow machines
are programmable computers in which the hardware
is optimized for fine-grain data-driven parallel com-
putation.

There is no sharp definition of dataflow machines
in the sense of a widely accepted set of criteria to
distinguish dataflow machines from all other comput-
ers, [36] considering that dataflow machines are all
programmable computers where the hardware is opti-
mized for fine-grain data-driven parallel computation
[37]. Fine grain means that the processes that run
in parallel are approximately of the size of a conven-
tional machine code instruction [36], [37].

Data driven means that the activation of a pro-
cess is solely determined by the availability of its in-
put data. This definition excludes simulators, as well
as nonprogrammable machines, for instance those that
implement the dataflow graph directly in the hardware
which is an approach that is popular in constructing
dedicated signal processors [36], [18].

The dataflow model of computation offers a sim-
ple, yet powerful, formalism for describing paral-
lel computation and this systems represents a unique
class of computer architecture which combines a het-

erogeneous, fine-grain model of computation with la-
tency hiding mechanisms. In contrast to the von Neu-
mann model of computation, the execution of an in-
struction in the Dataflow model relies on the avail-
ability of its operands, rather than on a predefined
sequence of instructions [2], [30]. Even in parallel
versions of the von Neumann model, sequencing of
instructions is controlled explicitly by the program-
mer or compiler. In a Dataflow system, the selection
of instructions for execution is performed using the
hardware at execution time and is constrained only by
the partial order implicit in the program’s data depen-
dency graph. The result of the computation is fine-
grained and shows a much higher degree of paral-
lelism than codes written for parallel von Neumann
machines. This fine-grained parallelism is then used
for exploiting replicated hardware for increased per-
formance, masking memory access latency, and main-
taining a uniform distribution of workload [30].

This kind of architecture was first researched in
the 1970s and was discontinued in the 1990s ([5];
[11]; [14]). With the advance of technology of
microelectronics, the Field Programable Gate Array
(FPGA) has been used, mainly because of its flexibil-
ity, the facilities to implement complex systems and
intrinsic parallelism [29].
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The datafow architecture is a topic which has
come to light again [9]; [33], especially because of
the reconfigurable architecture, which is totally based
on FPGAs. Static and dynamic dataflow architectures
are presented as two implementations of the abstract
dataflow model [2]. In particular, this paper will dis-
cuss the dynamic architecture, which is based on the
architecture generated by Chipcflow.

System designers have been finding the cost/per-
formance trade-offs tipping increasingly in favor of
FPGA devices over high-performance DSP (Digital
Signal Processor) chips and perhaps most signifi-
cantly when compared to the risks and up-front costs
of a custom ASIC solution. Combining the flexibility
of the GPP (General Purpose Processor) and the effi-
ciency of ASIC (Application-Specific Integrated Cir-
cuit) in one device has been proven to be a good solu-
tion [26].

Most computationally intensive algorithms can be
described using a relatively small amount of C source
code when compared to a hardware-level, equivalent
description. The ability to quickly try out new algo-
rithmic approaches from C-language models is there-
fore an important benefit of using a software-oriented
approach to design. Reengineering low-level hard-
ware designs, on the other hand, can be a tedious
and error-prone process [26], due to the need of a
solid background in logic and circuit design. Further-
more, the programming tools chain is long and com-
plex when compared to the simple compilation step of
traditional languages [23].

When a program is written in a high level lan-
guage like C and C++, an equivalent workable and
easy to modify code for a given reconfigurable sys-
tem should be automatically generated. The user will
program a reconfigurable architecture without having
to deal with issues like hardware/software partition-
ing, task distribution, simulation, timing analysis and
hardware reconfiguration. The system should do the
job for the user [7].

As FPGAs have grown in logic capacity, their
ability to host high-performance software algorithms
and complete applications has grown correspondingly
[26], [8], [16]. For software engineers, the main aim
is to present FPGAs as software-programmable com-
puting resources.

Software development methods and software lan-
guages can be used in a practical way to create
FPGA-based, high-performance computing applica-
tions, without a deep knowledge of hardware design.
Even when the entire hardware design is eventually
recorded with a lower-level HDL, high-level design
languages enable hardware engineers to rapidly ex-
plore the design space and create working prototypes.

The main advantages in using a C compiler to

FPGA is the approach to hardware abstraction where
the programmer does not need to understand all the
details of the hardware target, and yet is guided by the
programming model, towards more appropriate meth-
ods of coding and a balance between software design
productivity and hardware design results, as measured
in system performance and size can be achieved.

While FPGA-design time remains drastically
shorter then ASIC-design time, implementing a func-
tion in FPGA can still take days, weeks, or even
months. This is not acceptable for a software pro-
grammer or a mechanical engineer, who is used to
implementing applications on a general purpose com-
puter in a few minutes or hours with far less difficulty
and knowledge than required by FPGA programming
tools [7].

The Chipcflow project is a system where a C pro-
gram is initially converted into a Dynamic Dataflow
graph, followed by its execution in Reconfigurable
Hardware. A dynamic partial reconfiguration, present
in some FPGAs is explored and provides dynamic
dataflow execution.

This paper describes the architecture of the hard-
ware generated by the Chipcflow. The architecture
generated by the tool explores one of the main prob-
lems encountered in dataflow research: the manage-
ment of data structures but more specifically arrays.
Given that the semantics of Data-Flow languages are
basically functional in nature, the modification of a
single element of an array needs the creation of an-
other array, identical to the original, except for the al-
tered element. Multiple references to an array require
multiple copies of the array, even when only one ele-
ment is needed.

The remainder of the paper is organized as fol-
lows: section 2 focuses on dataflow model of execu-
tion, related architectures and the tagged-token model.
Section 3 emphasizes on related work. Section 4
shows the basic structure for Chipcflow: the compiler,
its operators, and some examples of graphs which are
presented. Iterative constructors are described which
enable various instances of an operator to be exe-
cuted in the dynamic model of dataflow using an it-
erative constructor respectively. The Matching data
that identifies items of data partners is described. The
implementation of the operator and its instances are
also described and some details of implementation
are shown. Finally, the management of data struc-
tures and control iterative constructors are presented,
specifically how these structures are dealt with, and
their differences with the previous ones.
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2 Dataflow Model

The dataflow model of execution offers attractive
properties for parallel processing. First, it is asyn-
chronous: due to the fact that it bases instruction exe-
cution on operand availability, synchronization of par-
allel activities is implicit in the dataflow model. Sec-
ond, it is self-scheduling: except for data dependen-
cies in the program, dataflow instructions do not con-
strain sequencing; hence, the dataflow graph represen-
tation of a program exposes all forms of parallelism,
eliminating the need to explicitly manage parallel ex-
ecution. For high-speed computations, the advantage
of the dataflow approach over the control-flow method
stems from the inherent parallelism embedded at the
instruction level. This enables efficient exploitation of
fine-grain parallelism in application programs [20].

In the most recent data-flow machines are mul-
tiprocessors which execute parallel program graphs
rather than sequential programs. The order of exe-
cution of the nodes in the graph (or instructions) is
determined by the availability of their operands rather
than the strict sequencing of instructions in a von Neu-
mann machine. Consequently the program statements
are executed in a non-deterministic manner, and par-
allelism is obtained if more than one node executes
at the same time. Figure 1 shows a sample data-
flow graph for an arithmetic expression and Figure 2
shows a model for the hardware required to execute
such data-flow programs. In this hardware, the pro-
gram graph is distributed to the processing elements
(PEs) so that the computation of A*B can proceed at
the same time as C+D.

Figure 1: A data-flow graph

In Data-Flow systems, data values rather than be-
ing stored at particular addresses are tagged. The tag
includes the address of the instruction for which the
particular data value is destined and other information
defining the computational context in which that value
is used. This context is called the value’s color. The
data value, together with its tag, is called a token [30].

A dataflow program is described by a directed
graph where the nodes denote operations, e.g. addi-
tion and multiplication, and the arcs denote data de-

Figure 2: The processing element (PE) of the MIT
tagged token dataflow machine, [2]

pendencies between operations, Figure 1 [2].
Any arithmetic or logical expression can be trans-

lated into an acyclic dataflow graph in a straightfor-
ward manner, Figure 1. Data values are carried on
tokens, which flow along the arcs. A node may exe-
cute (or fire) when a token is available on each input
arc. When it fires, a data token is removed from each
input arc, a result is computed using these data values,
and a token containing the result is produced on each
output arc [2].

In order for an instruction, requiring two operands
to execute, both tokens must exist and be brought to-
gether. This synchronization process is called match-
ing. Once these input tokens are matched, the instruc-
tion is performed, and the result token(s) are sent on
to subsequent instructions. Note that tokens which do
not require matching may go directly to the execution
unit. These tokens are called by-pass tokens.

Dataflow graphs can be viewed as a machine
language for a parallel machine where a node in a
dataflow graph represents a machine instruction. The
instruction format for a dataflow machine is essen-
tially an adjacency list representation of the program
graph: Each instruction contains an op-code and a
list of destination instruction addresses. Recall that
an instruction or node may execute whenever a token
is available on each of its input arcs and that when
it fires, the input tokens are consumed, result value
is computed and a result token is produced on each
output arc. This dictates the following basic instruc-
tion cycle: (a) detect when an operation is enabled
(this is equivalent to collecting operand values); (b)
determine the operation to be performed, i.e. fetch
the instruction; (c) compute results; and (d) gener-
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ate result tokens. This is the basic instruction cy-
cle of any dataflow machine; however, there remains
tremendous flexibility in the details of how this cycle
is performed.

It is interesting to contrast dataflow instructions
with those of conventional machines. In a von Neu-
mann machine, instructions specify the addresses of
the operands explicitly and the next instructions im-
plicitly via the program counter (except for branch in-
structions). In a dataflow machine, operands (tokens)
carry the address of the instruction for which they are
destined, and instructions contain the addresses of the
destination instructions. Since the execution of an in-
struction is dependent upon the arrival of operands,
instruction scheduling and management token storage
are closely related in any dataflow computer.

Dataflow graphs show two kinds of parallelism in
instruction execution, [2]:

• The first we might call spatial parallelism: Any
two nodes can potentially execute concurrently if
there is no data dependence between them;

• The second form of parallelism results from
pipelining independent waves of computation
through the graph.

The essential point to keep in mind in considering
ways to implement the dataflow model is that tokens
imply storage. The token storage mechanism is the
key feature of dataflow architecture. There are cur-
rently two main classifications for dataflow architec-
tures, static and dynamic or Tagged-Token Dataflow.

In the static dataflow model only one token (or in-
struction operand) is allowed on a program arc at any
time. In the dynamic model many tokens are allowed
on arcs, and their order is determined by special tag
fields. A good overview of these architectures can be
found in [31]. The static scheme was first proposed
by Dennis [12],[13],[14].

In the abstract dataflow model, data values are
carried on tokens, which travel along the arcs con-
necting various instructions in the program graph, and
it is assumed that the arcs are first-in-first-out (FIFO)
queues of unbounded capacity [20].

The tagged-token approach eliminates the need
to maintain FIFO queues on the arcs, as in the static
dataflow model, (though unbounded storage is still as-
sumed) and consequently offers more parallelism than
the static model [2]. The dynamic scheme is used in
Arvind’s research group in MIT [3],[4] and in Manch-
ester University.

2.1 TAGGED-TOKEN DATAFLOW MA-
CHINE

Dataflow architectures can also be classified as
centralized or distributed, based on the organization
of their instruction memories.

The dynamic dataflow organization from MIT is a
multiprocessor system in which the instruction mem-
ory is distributed among the processing elements. The
choice between centralized or distributed memory or-
ganizations has a direct effect on program allocation
[20]

The Tagged-token dataflow machine proposed by
Arvind et al ([6]) is depicted in Figure 2. It comprises
a collection of PEs connected via a packet communi-
cation network. Each PE is a complete dataflow com-
puter. The waiting-matching store is a key component
of this architecture. When a token enters the waiting-
matching stage, its tag is compared against the tags of
the tokens resident in the store. If a match is found,
the matched token is purged from the store and is
forwarded to the instruction fetch stage, along with
the entering token. Otherwise, the incoming token is
added to the matching store to await its partner. (In-
structions are restricted at most to two operands, so a
single match enables an activity.) Tokens that require
no partner, i.e. are destined for a monadic operator
and bypass the waiting-matching stage [2].

The detection of matching tokens is one of the
most important aspects of the dynamic dataflow com-
putation model [20]. Once an activity is enabled, it is
processed in a pipelined fashion without further delay.

Tags of the MIT tagged token dataflow machine
[2] have four parts: invocation ID, iteration ID, code
block, and instruction address. The latter two identify
the destination instruction and the former two identify
a particular firing of that instruction. The iteration ID
distinguishes between different iterations of a particu-
lar invocation of a loop code-block, while the invoca-
tion ID distinguishes between different invocations.

The invocation ID in the tag designates a set of
three registers (CBR, DBR, and MAP) that contain all
the information associated with the invocation. CBR
contains the base address of the code block in pro-
gram memory; DBR contains the base address of a
data area that holds values of loop variables that be-
have as constants, and MAP contains mapping infor-
mation describing how activities of the invocation are
to be distributed over a collection of PEs. The instruc-
tion fetch stage is thus able to locate the instruction
and any required constants. The op-code and data-
values are passed to the arithmetic logic unit (ALU)
for processing. In parallel with the ALU, the com-
puted tag stage accesses the destination list of the in-
struction and prepares result tags using the mapping
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information. Result values and tags are merged into
tokens and passed to the network, where upon they
are routed to the appropriate waiting-matching store
[2]

Therefore, in addition to the functional units de-
scribed in Figure 2, each PE must have a token buffer.
This buffer can be placed at a variety of points, in-
cluding the output stage or the input stage, depending
on the relative speeds of the various stages. Both the
waiting-matching store and the token buffer have to
be large enough to make the probability of overflow
acceptably small [2].

The invocation request is passed to a system-wide
resource manager so that resources such as a new in-
vocation ID, program memory etc, can be allocated
for the new invocation.

A code-block invocation can be placed on essen-
tially any collection of processors. Various instances,
i.e. firings, of instructions are assigned for PEs within
a collection by ”hashing” the tags [2].

The management of data structures, arrays in par-
ticular, is one of the major problems in Data-Flow re-
search. Given that the semantics of Data-Flow lan-
guages are basically functional in nature, the modifi-
cation of a single element of an array needs the cre-
ation of another array, identical to the original, except
for the altered element. Multiple references to an ar-
ray require multiple copies of the array, even when
only one element is needed. Solutions are varied and
depend largely on the architecture [30].

Data structures have two modes of reference, to
the data structure as a whole and to the individual ele-
ments.

Data structures in Data-Flow systems require spe-
cial treatment. In most systems, there is an additional,
specialized function unit (e.g. the structure store in
the Manchester machine [2] which provides the stor-
age and performs token colouring.

Another disadvantage, specially for the dynamic
model is that data may be output in any order and must
be resorted to if ordering is important. This may add
a considerable overhead to the computation [1].

Thus in cases when pipelining is the most impor-
tant form of parallelism and there is little loop unfold-
ing or feedback, as in many real world control prob-
lems, the dynamic architectures have the added com-
plexities of tagging and untagging, the increased net-
work traffic and the resorting of data. For example,
each iteration of a loop in a dynamic machine must
include a tag generation code, even if the loop has a
data dependency in it that forbids loop unfolding. This
overhead is not present in the static model [1].

3 Related work

More recently, new dataflow architectures were
proposed, mainly TRIPS and WaveScalar [34], [22],
[32], [28], [21], [35]. These architectures are based
in an Tiled architectures. The basic premise of these
architectures is that larger, higher-performance imple-
mentations can be constructed by replicating the basic
tile across the chip.

Many computer architects are beginning to shift
their focus away from today’s complex, monolithic,
high-performance processors. Instead, they are de-
signing a much simpler processing element (PE) and
compensating for its lower individual performance by
replicating it across a chip. PE replication provides ro-
bustness in the face of fabrication errors, and the com-
bination reduces wire delay for both data and control
signal transmission. The result is an easily scalable
architecture that enables a chip designer to capitalize
on future silicon process technologies [34].

WaveScalar is a tagged-token, dynamic dataflow
architecture. Like all dataflow architectures its appli-
cation binary is a program dataflow graph. Each node
in the graph is a single instruction which computes
a value and sends it to the instructions that consume
it. An instruction executes after all its input operand
values arrive according to a principle known as the
dataflow firing rule. WaveScalar can execute pro-
grams written with conventional von Neumann-style
memory semantics (i.e. those composed in languages
like C/C++) and correctly orders memory operations
with a technique called wave-ordered memory [5]. A
PE contains all the logic for dataflow execution. It
has an input interface that receives tokens containing
a data value and information that associates the value
with a particular instruction. These tokens are stored
in a matching table, which is implemented as a small,
non-associative cache [34].

The TRIPS / GPA [22] processor is a recent
VLIW-dataflow hybrid. TRIPS bundles hyperblocks
of VLIW instructions together vertically and de-
scribes their dependencies explicitly instead of im-
plicitly through registers. Within a hyperblock, in-
structions fire according to the dataflow firing rule,
while communication between hyperblocks occurs
through a register file. At its core, TRIPS remains
a von Neumann architecture, because the program
counter still determines the sequence of hyperblocks
the processor executes. TRIPS is an innovative way to
build a Very Long Instruction Word (VLIW) proces-
sor from next generation silicon technology. A VLIW
bundles instructions horizontally to be executed in
parallel [32].

The TRIPS [22]; [28] processor uses dataflow
ideas to build a hybrid von Neumann/dataflow ma-
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Figure 3: The Flow Diagram for Chipcflow tool

chine. It uses a program counter to guide execu-
tion, but instead of moving from one instruction to the
next, the TRIPS PC selects frames (similar to hyper-
blocks [21]) of instructions to execute in an array of
16 processing elements that make up a TRIPS proces-
sor [35].

The TRIPS processor and WaveScalar share the
same technological challenges, and tend to use the
same terminology to describe aspects of their designs.
However, the only architectural feature TRIPS and
WaveScalar share is the use of direct links between
instructions of the same hyper-block (in TRIPS) di-
rected acyclic graph (in WaveScalar).

Despite high-level similarities between waves and
frames and the WaveScalar and TRIPS PE designs, the
two architectures are quite different. Because it uses
a program counter to select frames of instructions for
execution, TRIPS must speculate aggressively. Map-
ping a frame of instructions onto the PE array takes
several cycles, so the TRIPS processor speculatively
maps frames onto the PEs ahead of time. WaveScalar
does not suffer from this problem because its dynamic
dataflow execution model enables the instructions to
remain in the grid for many executions, making the
need for speculation obvious. The disadvantage of the
WaveScalar’s approach is the need for complex tag-
matching hardware to support dynamic dataflow exe-
cution [35]

The two projects also have much in com-
mon. Both take a hybrid static/dynamic approach
to scheduling instruction execution by carefully plac-
ing instructions in an array of processing elements
and then allowing execution to proceed dynamically.
This places both architectures between dynamic out-
of-order superscalar designs and statically scheduled
VLIW machines. These designs have run into prob-
lems because dynamic scheduling hardware does not
scale and by nature, static scheduling is conservative.
A hybrid approach will be necessary, but it is as yet
unclear whether either WaveScalar or TRIPS strikes

the optimal balance [35].
FPGAs can also be viewed as tiled architectures

and can offer insight into the difficulties tiled proces-
sor designers may face. FPGAs already provide het-
erogeneous arrays of tiles (e.g., simple lookup tables,
multipliers, memories, and even small RISC cores)
and vary the mix of tiles depending on the size of the
array [34].

4 The Chipcflow tool

The ChipCflow project is a system where a C pro-
gram is initially converted into a Dynamic Dataflow
graph, followed by its execution in Reconfigurable
Hardware. Its flow diagram is shown in Figure 3. The
ChipCflow system begins in a host machine where
a C program is used to be converted into a control
dataflow graph (CDFG 1) generating a CDFG object
program. The CDFG program is converted into a
VHDL where modules of CDFG are accessed from
a data base of VHDL modules, where there are all
operators of Chipcflow implemented in VHDL. After
generating the complete VHDL program, an EDA tool
to convert the VHDL program into a bitstream and to
download it to a FPGA is used.

4.1 The Operators and C statements imple-
mented in Dataflow Graphs

The operators to be used in the Chipcflow project
are: ”decider”, ”non deterministic merge”, ”determin-

1The CDFG is a directed acyclic graph in which a node can be
either an operation node or a control node (representing a branch,
loop, etc.) [24]. The directed edges in a CDFG represent the
transfer of a value or control from one node to another. An edge
can be conditional representing a condition while implementing
the if/case statements or loop constructs. The CDFG has the ad-
vantage of depicting both control and data constructs in a single
graph, giving a better state-space exploration capability.
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istic merge”, ”branch”, ”copy” and ”operator”. They
are described in Figure 4 and Figure 5.

Figure 4: Dataflow control and computation nodes, to-
kens arrive at operators, (filled circles, empty circles,
empty square and empty triangle indicate different to-
kens of arrival to the operators).

Figure 5: Dataflow control and computation nodes,
tokens fired.

Using these dataflow nodes, we can build any de-
terministic dataflow graph. These dataflow nodes be-
have as follows:

1. Copy: This dataflow node duplicates tokens to
two receivers. It receives a token on its input
channel and copies the token to all of its output
channels.

2. Function: This dataflow node computes arbitrary
functions of two variables. These functions can
be ”plus”, ”multiplier”, etc. It waits until tokens
have been received on all its input channels and

then generates a token with results on its output
channel.

3. Deterministic merge: it receives a control token
in channel C. If the control token has a FALSE
value, it reads a data token from channel A, oth-
erwise it reads a data token from channel B. Fi-
nally, the data token is sent to channel Z. A merge
node is similar to a multiplexer except that a to-
ken on the unused conditional input channel will
not be consumed and does not need to be present
for the merge node to process tokens on the ac-
tive input data channel.

4. Branch: This dataflow node performs a two-way
controlled token branch and allows tokens to be
conditionally sent to channels. It receives a con-
trol token in channel C and a data token in chan-
nel A. If the control token has a FALSE value,
it sends the data token to channel Y; otherwise it
sends the data token to channel Z. A branch node
is similar to a demultiplexer, except that no to-
ken is generated in the unused conditional output
channel in its implementation.

5. The Decider operator will be used to generate a
control signal ”TRUE” or ”FALSE” after execut-
ing a boolean operation such as ”¿”, ”¡=”, ”/=”,
etc.

6. The Non-deterministic merge operate like a de-
terministic merge, except that there is no control
token. This operator acts as first-in, first-out. For
example, if a data token comes first in channel
A, this token will be sent to output Z, otherwise
a token in channel B will be sent to output Z.

In order to build conditional and loop program
graphs, there are two control operators: branch and
merge. Unlike the other operator in Chipcflow, the
branch and merge are not well-behaved in isolation,
but yield well-behaved graphs when used in condi-
tional and loop schemes [2]. Each graph is either
acyclic or a single loop.

The dataflow graph of the While statement was
implemented using these operators and is described in
Figure 6. In this figure, there are two branch oper-
ators; two deterministic merges; five copy operators;
one decider with a boolean operator ”¿” and two op-
erators with an arithmetic operation ”+”.

In the next section, the basic structure for the C
compiler and some examples of graphs are presented.
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Figure 6: Example of graph extracted from a while
command

4.2 The C Compiler to generate dataflow
graph

The compiler was designed and developed to gen-
erate a control and dataflow graph (CDFG) from a
source code written in C language. The compiler
structure was implemented in C++ and it is made up
of two main parts: the CDFG extraction and VHDL
code generator [29].

The compiler generates a series of intermediate
files, such as a binary mapping file that is then used
to mount the CDFG and then the compiler generates
the VHDL that can be synthesized by a tool such as
Xilinx ISE.

4.2.1 Generating a Binary Mapping File after
Lexical Analysis

To generate a Binary Mapping file, a token was
defined and its format is described in Figure 7. The
first 4-bits of the token were used to identify the op-
erator; the second, the third and the fourth 5-bits were
used to identify the three inputs (a, b and c) of the
operator; finally, the sixth and the seventh 5-bits to
identify the outputs (s and z) of the operator. This is a
generic template for the operator with three inputs and
two outputs signal, however there are operators with
less than three input signals and just one output signal.

Figure 7: The format of the token

The packet of bits for this particular operator can

be clearly seen in the first packet of bits in Figure 8,
which is in accordance with the format described in
Figure 7. The ”xxxxx” in the packet of bits represent
an arc with no connection signal. Thus, a file with
these packets of bits is a binary representation for a
dataflow graph extracted from a while C statement in
the C compiler [29].

Figure 8: the Binary Mapping File generated for
While C command.

The next step is to use the binary representation
to identify the VHDL operators, which components
will be used and which instances and their intercon-
nections will be generated to execute the VHDL pro-
gram in the ISE Xilinx platform.

In order to generate a VHDL program, the file
with the binary mapping is converted using the oper-
ators in VHDL Modules shown in Figure 3, which is
already implemented in VHDL having their instances
and interconnections.

A complete example of the process is described
below. Algorithm 1 is used to generate the CDFG
graph and the corresponding VHDL code. In Figure
9, a C program to be converted into a VHDL and cor-
respondent dataflow graph are described.

As discussed above, the compiler is made up of
two main parts: the CDFG extraction and VHDL code
generator. After the CDFG extraction, the correspon-
dent dataflow graph representation is shown in Figure
9, which is a graphic representation of the dataflow
graph described in Figure 9.

In the VHDL code generator phase, the compiler
uses binary mapping and the modules are selected
from a library which contains the Chipcflow opera-
tors, already implemented in VHDL and stored in a
VHDL module data base, Figure 3. The final result
is a VHDL structural description file which has the
Chipcflow operators placed and connected together in
the CDFG graph as generated by the compiler. Fi-
nally, the VHDL files are ready to be executed in the
tool as the ISE Foundation from Xilinx [29]. In the
listing 1, the VHDL code generated for the binary
mapping is described in the Figure 9.

Listing 1: The IF, FOR, WHILE Command in
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Figure 9: the Example of C Program and correspondent Dataflow Graph

Algorithm 1 Code with IF, FOR,WHILE Com-
mands

a ⇐ 3
b ⇐ 0
y ⇐ 1
z ⇐ 2
for I = 0 to n do

if z > 1 then
z ⇐ a+ b

else
x ⇐ 3
while x > 1 do

for j = 0 to j < n do
x ⇐ x+ 1
y ⇐ y + x
z ⇐ z + i

end for
end while

end if
end for

VHDL[29]
1 . −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 . −− Company : P r o j e t o ChipCf low
3 . −− En g i n e e r : k e l t o n Augus to Pontara da Costa
4 . −− Cr ea t e Date : 0 8 : 4 3 : 2 0 0 3 / 2 7 / 2 0 0 9
5 . −− Module Name : C i r c u i t o c o m p l e t o − B e h a v i o r a l
6 . −− R e v i s i o n 0 . 0 1 − F i l e Crea ted
7 . −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 . l i b r a r y i e e e ;
9 . use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
1 0 . use i e e e . s t d l o g i c a r i t h . a l l ;
1 1 . use i e e e . s t d l o g i c s i g n e d . a l l ;
1 2 .
1 3 . −−−− uncomment t h e f o l l o w i n g l i b r a r y d e c l a r a t i o n
1 4 . i f i n s t a n t i a t i n g
1 5 . −−−− any x i l i n x p r i m i t i v e s i n t h i s code
1 6 . −−l i b r a r y UNISIM
1 7 . −−use UNISIM . VComponents . a l l
1 8 .
1 9 . ENTITY c i r c u i t o f i n a l IS
2 0 . port ( a : in s t d l o g i c v e c t o r (31 downto 0 ) ;
2 1 . b : out s t d l o g i c v e c t o r (31 downto 0 ) ;
2 2 . END;
2 3 .
2 4 . ARCHITECTURE b e h a v i o r OF c i r c u i t o f i n a l IS
2 5 .
2 6 . Component m e r g e d e t e r m i n i s t i c
2 7 . port (
2 8 . a : in s t d l o g i c v e c t o r (31 downto 0 ) ;
2 9 . b : in s t d l o g i c v e c t o r (31 downto 0 ) ;
3 0 . c : out s t d l o g i c v e c t o r (31 downto 0 ) ;
3 1 . z : out s t d l o g i c v e c t o r (31 downto 0)
3 2 . ) ;
3 3 . END Component ;
3 4 .
3 5 . Component copy
3 6 . port (
3 7 . a : in s t d l o g i c v e c t o r (31 downto 0 ) ;
3 8 . z : out s t d l o g i c v e c t o r (31 downto 0 ) ;
3 9 . y : out s t d l o g i c v e c t o r (31 downto 0)
4 0 . ) ;
4 1 . END Component ;
4 2 .
4 3 . Component d e c i d e r
4 4 . port (
4 5 . a : in s t d l o g i c v e c t o r (31 downto 0 ) ;
4 6 . b : in s t d l o g i c v e c t o r (31 downto 0 ) ;
4 7 . z : out s t d l o g i c v e c t o r (31 downto 0)
4 8 . ) ;
4 9 . END Component ;
5 0 .
5 1 . Component o p e r a t o r
5 2 . port ( a : in s t d l o g i c v e c t o r (31 downto 0 ) ;
5 3 . b : in s t d l o g i c v e c t o r (31 downto 0 ) ;
5 4 . z : out s t d l o g i c v e c t o r (31 downto 0)
5 5 . ) ;
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5 6 . END Component ;
5 7 .
5 8 . Component b r an ch
5 9 . port (
6 0 . a : in s t d l o g i c v e c t o r (31 downto 0 ) ;
6 1 . c : in s t d l o g i c v e c t o r (31 downto 0 ) ;
6 2 . z : out s t d l o g i c v e c t o r (31 downto 0 ) ;
6 3 . y : out s t d l o g i c v e c t o r (31 downto 0)
6 4 . ) ;
6 5 . END Component ;
6 6 .
6 7 . s i g n a l i10 , i36 , i12 , i30 , i15 , i33 , i18 , i37 , i20 ,
6 8 . i38 , i39 , i40 , i11 , i13 , i14 , i41 , i16 , i17 , i19 , i42 ,
6 9 . i21 , i26 , i22 , i23 , i24 , i25 , i27 , i28 , i29 , i31 , i32 ,
7 0 . i43 , i34 , i35 , i44 , i111 , i112 , i131 , i132 , i171 , i172 ,
7 1 . i211 , i212 , i221 , i222 , i231 , i232 , i231 , i232 ,
7 2 . i231 , i232 , i231 , i232 , i231 , i232 , i231 , i232 , i251 ,
7 3 . i252 , i291 , i 292 : s t d l o g i c v e c t o r (31 downto 0 ) ;
7 4 .
7 5 . BEGIN
7 6 . u1 : m e r g e d e t e r m i n i s t i c port map ( i10 , i36 , i 1 1 ) ;
7 7 . u2 : copy port map ( i11 , i111 , i 112 ) ;
7 8 . u3 : d e c i d e r port map ( i12 , i111 , i 1 3 ) ;
7 9 . u4 : copy port map ( i13 , i131 , i 132 ) ;
8 0 . u5 : m e r g e d e t e r m i n i s t i c port map ( i112 , i131 , i 1 4 ) ;
8 1 . u6 : o p e r a t o r port map ( i14 , i30 , i 4 1 ) ;
8 2 . u7 : m e r g e d e t e r m i n i s t i c port map ( i15 , i33 , i132 , i 1 6 ) ;
8 3 . u8 : d e c i d e r port map ( i16 , i30 , i 1 7 ) ;
8 4 . u9 : copy port map ( i17 , i171 , i 172 ) ;
8 5 . u10 : o p e r a t o r port map ( i18 , i37 , i 1 9 ) ;
8 6 . u11 : m e r g e d e t e r m i n i s t i c port map ( i19 , i15 , i171 , i 4 2 ) ;
8 7 . u12 : m e r g e d e t e r m i n i s t i c port map ( i20 , i38 , i172 , i 2 1 ) ;
8 8 . u13 : copy port map ( i21 , i211 , i 212 ) ;
8 9 . u14 : d e c i d e r port map ( i211 , i30 , i 2 6 ) ;
9 0 . u15 : m e r g e d e t e r m i n i s t i c port map ( i10 , i39 , i26 , i 2 2 ) ;
9 1 . u16 : copy port map ( i22 , i221 , i 222 ) ;
9 2 . u17 : d e c i d e r port map ( i221 , i12 , i 2 3 ) ;
9 3 . u18 : copy port map ( i23 , i231 , i 232 ) ;
9 4 . u19 : copy port map ( i23 , i231 , i 232 ) ;
9 5 . u20 : copy port map ( i23 , i231 , i 232 ) ;
9 6 . u21 : copy port map ( i23 , i231 , i 232 ) ;
9 7 . u22 : copy port map ( i23 , i231 , i 232 ) ;
9 8 . u23 : copy port map ( i23 , i231 , i 232 ) ;
9 9 . u24 : m e r g e d e t e r m i n i s t i c port map ( i222 , i231 , i 2 4 ) ;
1 0 0 . u25 : o p e r a t o r port map ( i24 , i30 , i 2 5 ) ;
1 0 1 . u26 : copy port map ( i25 , i251 , i 252 ) ;
1 0 2 . u27 : m e r g e d e t e r m i n i s t i c port map ( i26 , i38 , i232 , i 2 7 ) ;
1 0 3 . u28 : b r an c h port map ( i27 , i233 , i28 , i 2 8 ) ;
1 0 4 . u29 : o p e r a t o r port map ( i28 , i30 , i 2 9 ) ;
1 0 5 . u30 : copy port map ( i29 , i291 , i 292 ) ;
1 0 6 . u31 : m e r g e d e t e r m i n i s t i c port map ( i30 , i40 , i234 , i 3 1 ) ;
1 0 7 . u32 : b r an c h port map ( i31 , i235 , i32 , i 3 2 ) ;
1 0 8 . u33 : o p e r a t o r port map ( i32 , i291 , i 4 3 ) ;
1 0 9 . u34 : m e r g e d e t e r m i n i s t i c port map ( i33 , i15 , i236 , i 3 4 ) ;
1 1 0 . u35 : b r an c h port map ( i34 , i237 , i35 , i 3 5 ) ;
1 1 1 . u36 : o p e r a t o r port map ( i35 , i251 , i 4 4 ) ;
1 1 2 . END b e h a v i o r ;

4.3 The system generated by Chipcflow

In most dataflow machines, the hardware is im-
plemented as a collection of PEs fixed in the hard-
ware and the compiler using sophisticated optimiza-
tion techniques is able to distribute the application of
users in these PEs. [36]; [10]; [17]; [25]; [19]; [27];
[15]; [34].

The Chipcflow architecture is different; the archi-
tecture is only generated based on the user applica-
tion. The Chipcflow architecture focuses on solving
one of the major research problems in dataflow, the
management of data structures, particularly arrays as
already discussed above and still optimized to save
space and power due to exploring technology of par-
tial and dynamic reconfigurations in the Virtex family
FPGA from Xilinx.

Figure 10 shows the Chipcflow token. The fields
(Activation, Nesting and Iteration) make up the tag of
the token. The field ”data” represents the data value
that the tokens carry.

Figure 10: the format of the Tagged-Token

4.3.1 Matching unit

The matching unit is a key component of
Chipcflow architecture. Its main objective is to syn-
chronize the token input in the operators. Once all the
input tokens of the operators are matched, the instruc-
tion is performed, and the result token(s) are sent on
to subsequent instructions. The description of this unit
has been discussed above.

The matching unit with 3 inputs can be seen in
Figure 11.

Figure 11: The matching unit with 3 inputs

As can be seen in Figure 11, this unit has input
tokens, internal registers to the inputs and output to-
kens.

The Design Statistics for Matching Unit with 2
inputs can be observed in Table 1.

The design statistics for the matching unit with 3
inputs can be observed in Table 2.

When a token arrives at the input, a series of tests
are made with their tags: if a token arrives in input A,
for example, the corresponding registers of the other
entries are tested to verify if they are empty. If true,
the token of input A is stored in register A. On the
other hand, if register B and / or C are not empty, the
token in input A is compared with them. If they are
equal, then tokens A, B and C are sent to the output of
the matching unit and therefore processed by the oper-
ator. Otherwise an instance of this operator is created
and the token is stored in register A of the matching
unit belonging to this operator. Instances of operators
are described in the following sections.

Operands that have matching unit are: the branch,
operator and deterministic-merge. On the other hand,
tokens which do not require matching may go directly
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Table 1: Matching unit with 2 inputs using device 2vp30ff896-6 of Xilinx FPGA
Device Elements Range Utilization
Number of Slice Flip Flops 64 out of 27.392 0%
Number of 4 Input LUTs 80 out of 27.392 0%
Number of Slices 46 out of 13.696 0%
Numbers of IOs 120
Number of bonded IOBs 120 out of 556 21%
Number of GCLKs 2 out of 16 12%
Minimum period: 2.228ns (Maximum Frquency: 448.827Mhz
Minimum input arrival time before clock: 5.780ns
Maximum output required time after clock: 4.881ns
Maximum combinational path delay: 5.549ns

Table 2: Matching unit with 3 inputs using device 2vp30ff896-6 of Xilinx FPGA
Device Elements Range Utilization
Number of Slice Flip Flops 96 out of 27.392 0%
Number of 4 Input LUTs 78 out of 27.392 0%
Number of Slices 178 out of 13.696 0%
Numbers of IOs 149
Number of bonded IOBs 149 out of 556 26%
Number of GCLKs 3 out of 16 18%
Minimum period: 3.038ns (Maximum Frquency: 329.164Mhz
Minimum input arrival time before clock: 6.535ns
Maximum output required time after clock: 5.873ns
Maximum combinational path delay: 6.758ns

to the output of operators. These tokens are called
by-pass tokens. Operators that do not contain match-
ing units are: the copy and non-deterministic-merge.
The Chipcflow architecture matching units may con-
tain two or three inputs, depending on the number of
entries in the operator.

4.3.2 The branch operator

This section shows the implementation of the
branch operator, used by Chipcflow. This operator is
shown in Figure 12. The results of the implementation
are described in Table 3.

The Branch operator consists of control units.
These units have specific functions in the operator as
follows:

• Matching unit: this is a matching unit with 3 in-
puts, as discussed above. When all the tokens in
the input of the operator are equal, the matching
unit sends it to the multiplexer unit. Otherwise
your inputs are sent to the place unit.

• Multiplex unit: this unit is similar to a multi-
plexer. The output of this unit is sent to the fire

Figure 12: Branch unit operator

unit. The understanding of the multiplexer will
be explained in the next item.

• Place unit: this unit is responsible for the pro-
tocol to create new instances of the operator.
The model of creating new instances will also be
shown in the next item.

• Unplaced unit: this unit is responsible for real-
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Table 3: Branch unit operator, using the Virtex device from Xilinx 2vp30ff896-6
Device Elements Range Utilization
Number of Slice Flip Flops 132 out of 27.392 0%
Number of 4 Input LUTs 106 out of 27.392 0%
Number of Slices 240 out of 13.696 0%
Numbers of IOs 180
Number of bonded IOBs 180 out of 556 32%
Number of GCLKs 4 out of 16 25%
Minimum period: 3.038ns (Maximum Frquency: 329.164Mhz
Minimum input arrival time before clock: 6.558ns
Maximum output required time after clock: 5.880ns
Maximum combinational path delay: 6.765ns

locating instances of the operator to maximize
available space to allocate new ones.

• Fire unit: this unit is responsible for sending the
result token to the subsequent operator.

4.3.3 The model to create new instances

The Branch operator and deterministic-merge op-
erators have a matching unit, place unit and unplaced
unit, as shown in Figure 12. Each of these operators
has the ability to allocate new instances. The instances
are allocated or deallocated when all partner tokens of
an instance are available.

Figure 13: Tokens arrive on the branch operator

In Figure 13, a branch operator is shown, which
receives various tokens in its inputs A, B and C. Creat-
ing instances depends on the tests made by the match-
ing unit, as discussed above. Each time a token ar-
rives, the coincidence of the tag of this token is ver-
ified the tokens stored in the matching unit of the

branch operator. If there is no coincidence, a new in-
stance is created and the non match token is stored in
the register of the matching unit of the new instance
in the corresponding register to the input of the token.
In Figure 14, the allocation of instances relating to to-
kens which arrived at the branch operator is shown.

A system as a collection of concurrent hardware
dataflow nodes that communicate with each other
through message-passing channels was designed.

The operators/operator and operators/instances
communication use handshake protocols to send and
receive tokens at the arc/channels respectively.

The ChipCflow architecture explores partial dy-
namic reconfiguration from Xilinx FPGAs, particu-
larly those from the Virtex classes.

Functions which are too large to fit in one FPGA
are partitioned into different sections which are suc-
cessively downloaded into the FPGA in accordance
with a predefined schedule. Temporary placement de-
fines the time at which it is mapped into the FPGA for
computation for each module. Additionally the posi-
tion of the module inside the FPGA is given. Using
partial reconfigurable devices, parts of the device can
be replaced while the remaining part is still active.

Concerning application, one partial reconfig-
urable device can be used to save space and power. As
the objects arrive at the conveyor over a given period,
the device can be periodically and partially reconfig-
ured to execute the different tasks [7].

Operators in a CDFG graph, for example, shown
in Figure 9 are implemented in the FPGA without par-
tial reconfiguration. On the other hand, the instances
are created and destroyed at the runtime. These in-
stances are temporarily implemented on the device.

Empirical analysis showed that the time spent to
reconfigure each instance is high. Therefore, we are
studying the possibility to instantiate a number ”n” of
instances at a time, instead of one by one and decom-
press to reconfigure the FPGA more efficiently [8].
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Figure 14: Operator branch with your created instances

4.3.4 Memory organization and management of
data structure

For the management of data structures and control
iterative constructors, Chipcflow has three operators:
the NTM (New Tag Manager); NIG (New Iteration
Generation) and NTD (New Tag Destructor).

A new tag is generated for the operator NTM
when the data goes into a program, function or pro-
cedure generating a new activation in the tag shown
in Figure 10. The NTM operator also removes the tag
when the data leaves the program, function or proce-
dure. The NIG operator modifies a tag generating a
new value for the iteration. The NTD operator modi-
fies a tag of the data turning it back to the correspon-
dent level of activation before the input in the last it-
erative constructor and sends this information to the
NTM correspondent to that level.

The NTM, NIG and NTD modify the fields (ac-
tivation, nesting and iteration) of the token, thus con-
trolling the movement of tokens in the operators.

If there is a loop implemented with iterative oper-
ations (”WHILE”, ”REPEAT” and ”FOR”), the input
of data into the loop generates a new tag that is as-
sociated to the old tags. For each cycle of the loop,
the tag must be adjusted to indicate a new iteration.
As the iterative operations can be nested, the tag also
has the input of data in the loop which will generate a
new tag. For each cycle of the loop, the tag must be
adjusted to indicate a new iteration. As the iterative
operations can be nested, the tag also has the level of
the nest. At the end of each iterative constructor, part
of the tag is modified indicating that the tag is leaving
that level of activation tag. In Figure 15, a program
using the iterative construction is shown.

Figure 15: the Chipcflow of the program using itera-
tive constructors

The compiler creates Chipcflow memory banks
for each program variable and especially with the
NTM operator, which directly accesses the program
variables in the memory enabling the modification of
a single element of an array or data structure, for ex-
ample. Thus, is not necessary the creation of another
array identical to the original to keep the elements of
the array sorted.

The organization of memory depends on the com-
piler which analyzes the source program. There may
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be the creation of memory which is centralized, dis-
tributed or simply registers for constant variables.

Although there are various organizations of mem-
ory in the various NTM distributed CDFG graph. As
each loop, function or procedure has a NTM, the or-
ganization of memory depends on the complexity of
these blocks.

5 Conclusion

The major contributions of this paper are the de-
scription of the ChipCflow tool, which convert C di-
rectly into the hardware in a dynamic dataflow ar-
chitecture, using a dynamic FPGA reconfiguration.
Initially various considerations are reflected the tra-
ditional dataflow architecture and the contemporary
dataflow architecture. Therefore, the advantages of
using ChipCflow, mainly in the data structure are de-
scribed. The best advantage of the dataflow archi-
tecture presented in this paper is parallelism, associ-
ated with a mechanism of instances and the individual
structures of matching stores for each instance, com-
pared to the centralized matching stores present in tra-
ditional dataflow architecture. Another advantage of
the chipcflow architecture is to use a specific operator
for data structures as a vector and matrix. Normally,
it is necessary to use two vectors or two matrices, one
used as an input, and another generated with the out-
put. In the ChipCflow, the same array is used, the
difference is the specific operator for that.
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