
TAR based shape features in unconstrained handwritten digit 

recognition 
 

P. AHAMED AND YOUSEF AL-OHALI 

Department of Computer Science 

King Saud University  

P.O.B. 51178, Riyadh 11543  

SAUDI ARABIA  

shamapervez@gmail.com , yousef@ccis.edu.sa  
 

 

Abstract: - In this research, the recognition accuracy of triangle-area representation (TAR) based shape feature 

is measured in recognizing the totally unconstrained handwritten digits.  The TAR features for different 

triangles of variable side lengths that are formed by taking the combinations of different contour points were 

computed. The set of contour points that yielded the best features was experimentally discovered. For 

classification a curve matching technique is used.   

Several experiments were conducted on real-life sample data that was collected from postal zip codes written 

by mail writers. The highest recognition result of 98.5 % was achieved on the training data set and 98.3% on 

the test data set.  

 

Key-Words: - Triangle area representation, Shape descriptors, Digit recognition, Contour points, and 

zip codes 

 

1 Introduction 
One of the advantages of shape descriptor based 

features is that they provide structural description of 

the underlying pattern for recognition. This has 

attracted researcher’s attention [1]- [14]. As a result, 

a large number of shape description techniques have 

evolved. These techniques are broadly classified 

into contour-based and region-based techniques. If a 

technique extracts shape features from the contour 

(boundary) only then it is classified as a contour-

based technique, and if a technique extracts the 

property of a region like the area covered by a 

region then it is classified as the region based 

technique. These techniques can extract structural 

and global features. A contour based technique can 

extract structural features like chain code, polygon, 

B-spline and invariants while a region-based 

technique can extract structural features like convex 

hull and media axis and the like. Similarly, global 

features like perimeter, compactness, eccentricity, 

shape signature, Fourier descriptors can be extracted 

from the contour and global features like area and 

moments can be extracted from the regions [1].  

In this paper, the performance of a contour-

based technique referred to as triangle-area 

representation (TAR) signature has been measured 

in recognizing the totally unconstrained handwritten 

postal zip code digits [15] and [16]. 

A TAR signature reflects contour characteristics 

like concavity or convexity at contour points at 

which it is computed [2][3] [4] and [5]. In addition, 

it is very effective in capturing the local as well as 

global shape characteristics by simply varying the 

triangle side-lengths. Its’ main advantage is that it 

can be used to define translation, rotation, and scale 

invariant shape features (also referred to as shape 

descriptors in this paper).   

There are many variations of TAR signatures.  

In their paper Roh and Kweon  [2] have defined 

TAR based shape features using five equally spaced 

contour points P1(t), P2(t), P3(t), P4(t) and P5(t)  
form a list of N contour points where the point 

Pi(t) is the co-ordinate (xi(t), yi(t)) of the i
th
 

contour point, and t  denotes the set of contour 

points selected at time t. For each selection 

t=1,2,3,…,N they defined the shape invariant 

I(t) as:
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where, )()()( 415 tPtPtP , )()()( 415 tPtPtP , 

)()()( 415 tPtPtP  and )()()( 415 tPtPtP are the areas 

of triangles formed by joining the points: {(P5(t), 

P1(t), P4(t)), (P5(t) P2(t)P3(t)), (P5(t), P1(t), P3(t)) 

and (P5(t) P2(t) P4(t)}, and the five contour points 

were determined as: 

 

P1(t)=(x (t), y (t)), 

P2(t)= (x (N/5+t), y (N/5+t)), 

P3(t)= (x (2N/5+t), y (2N/5+t)), 

P4(t)= (x (3N/5+t), y (3N/5+t)), 

P5(t)= (x (4N/5+t), y (4N/5+t)). 

 

They obtained the shape signature of a pattern 

by plotting the value I(t) versus t for different values 

of t=1,2,3,…, N, and tested the performance this 

descriptor in image retrieval. Through a series of 

experiments, they have demonstrated that these 

features are invariant under rotation, translation and 

scale, and also stable and robust. 

In a similar approach, El Rube et. al [5] have 

tested the robustness of a multi-scale triangle-area 

representation for 2-D shapes and  discovered that 

the representation is least affected by noise. In 

further experiments, Alajlana et. al [3] and [4] have 

discovered that the TAR based shape descriptors are 

adaptive as they can capture the varying levels of 

details simply by controlling the selection of the 

number of contour points while generating the 

signature.  These properties of the TAR signature 

based shape descriptors are the main motivation to 

test their performance in terms of recognition 

accuracy on real-life samples of unconstrained 

handwritten digits. For this purpose, the test data set 

that is described in Ahmed and Suen [4] and 

Abuhaiba and Ahmed and [5] is used. This data set 

reflects natural variations and distortions in shape, 

size and orientation.  The data was obtained from 

the totally unconstrained handwritten postal zip 

codes that were collected by the US postal service 

department from the dead letter envelopes at offices 

across the country and they were digitized on 16 

gray levels.  

In the experiments, reported in here, samples 

possessing almost all the natural variations except 

breaks in shapes were used. Fig. 1 below shows 

representative samples from the data set.  

In search of a better recognition result, stage-

wise classification schemes were developed in 

which the first stage is the prediction stage that is 

referred to as prediction module hereafter.  This 

module was designed to predict the probable classes 

of an unknown sample. The second stage is referred 

to as the recognition module. This module accepts 

the list of the predicted classes and determines the 

actual identity of the unknown sample within these 

classes.  

 

 

Fig.1 Data Set Representative Samples 
 

The prediction module uses a zone-based 

prediction method. In this method, characteristics of 

the joint distribution of two TAR feature elements 

were studied to determine a viable zone size. The 

prediction helped in narrowing down the identity of 

the unknown patterns.   

As mentioned before, the recognition stage 

recognizes the pattern as one of the member of the 

predicted pattern classes. In this stage a curve 

matching technique is used. The curve matching is 

an active area of research and its applications are 

being explored in searching shapes where shapes are 

represented as parameterized curve in two-

dimensions [17]-[24]. This representation reduces 

the shape matching problem to the problem of 

matching two curves in a two-dimensional 

Euclidean space, and curve matching techniques, 

like dynamic space warping described in [3], and 

Fr´echet distance [18]-20],[22] and [24] which is a 

natural measure for matching curves, are being 

devised and tested.  

We have developed a new curve matching 

technique that uses the cumulative feature curve 

obtained from the unknown pattern and matches it 

against a set of prototypical curves representing the 

average cumulative feature curves of the known 

pattern classes. The prototypical curves are feature 

growth curves that are estimated from the training 

set samples.        
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The stage-wise classification scheme has 

yielded a very promising correct recognition result 

of 98.5 % and 98.3% on the training and test set 

data respectively.  

The TAR technique is presented in Section 2. 

The design of the prediction stage is described in 

Section 3 and the recognition stage in Section 4. The 

experimental results are represented in Section 5 

and a discussion on the performance in Section 6. 

 

 

 2 Triangular-Area Representation 

(TAR) 
The Triangular Area Representation (TAR) is 

computed from a circular list of contour points. The 

list is obtained from the pattern image I[M,N] 

having  M rows and N columns. The point I[0,0] is 

the top leftmost  point  and I[M-1, N-1]  is the 

bottom rightmost point. Let the list of contour points 

be P0(x0, y0),   P1(x1, y1),…, Pn-1(xn-1, yn-1), where n is 

the total number of contour points. The point Pi (xi, 

yi), denotes the x and y co-ordinate of the ith  

contour point Pi . The point   P0(x0, y0)   is the fist 

contour point that is detected by scanning the image 

row-by-row starting from the point I[0,0]. Once the 

first boundary point is detected, starting from that 

point the rest of the contour points were detected 

and recorded by following the contour clockwise. 

The contour following process stops at the last 

contour point Pn-1(xn-1, yn-1), which is in the contour 

point in the 8-neighborhood of the start point P0(x0, 

y0). 

To compute a TAR value at the point Pi (xi, yi), 

three contour points from the list, say Pk (xk, yk), Pi 

(xi, yi) and Pr (xr, yr), where k < i < r   were selected 

and the area of the triangle formed by these points 

was computed by evaluating the determinant value 

Ai as shown in equation 1. 

It can be easily verified that the value of Ai is 0 

whenever (xk, yk), (xi, yi) and (xr, yr) are co-linear, 

and Ai < 0 for convex and Ai > 0 for concave regions 

(Alajlana et. al, 2007). The signed value of Ai 

provides an estimate of the distribution of the three 

contour points (xk, yk), (xi, yi) and (xr, yr).  

1
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2

1

rr

ii

kk
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yx
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       (1) 

 

A TAR signature is a plot of triangle number 

versus the area of the triangle. For example, if Pk 

(xk, yk), Pi (xi, yi) and Pr (xr, yr), where k < i < r, and 

i=1,2,…, m, are a set of m triangles, then the plot of 

(i, Ai ) for i=1,2,…, m is the TAR signature.  

The TAR signature of the image of a handwritten 

digit zero is shown in Fig.2. This signature was 

obtained by triangles formed by three consecutive 

contour points (xi-1, yi-1), (xi, yi), (xi+1, yi+1) for i= 1, 

…, n-1, where n =65 is the total number of contour 

points.  The signature is normalized to one by 

dividing each TAR value Ai by M×N (M=31 and 

N=19). 
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Fig.2 TAR signature of the Digit Zero Image 

3 Prediction Module Design 
The two best TAR features (the features that yielded 

the maximum correct recognition) were 

experimentally determined for prediction module 

design. Let these features be denoted as f1 and f2 

respectively. In implementation, these features are 

the TAR values of triangles P0P1P2 and P2P3P0 as 

shown in Fig 3 (a). The points P0 and P2 are the start 

and midpoint in the contour and their coordinates 

are (x0,y0) and (xn/2,yn/2) respectively,  where 0 and 

n/2 are their indices in the contour point list. 

Similarly, the points P1 and P3 are at the ¼
rth
 and ¾ 

rth
 positions of the contour point list and their 

coordinates are (xn/4,yn/4) and (x3n/4,y3n/4) respectively, 

where n/4 and 3n/4 are the indices of these  points in 

the contour point list.   

To predict the probable classes of an unknown 

pattern, the joint distribution of the feature values of 

f1 and f2 in two dimensional feature space was 

estimated from the training set samples, and the 

prediction zones were estimated. Here a zone is 

defined as a rectangular region. The joint 

distribution of f1 and f2 for 100 training set samples 

of each pattern class 0 to 9 is shown below in Fig. 3 

(b). In the figure, the values of f1 are used for 

horizontal axis and the values of f2 for vertical axis.  

Each feature pair (f1 , f2 ) in the plot represents a 

pattern class.   
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The zones were formed by partitioning the 

feature axes  f1 and f2 into n equal parts. If these 

parts are denoted as 
nffff 1

3

1

2

1

1

1 ,...,,,  and 

nffff 2

3

3

2

2

1

2 ,...,,,  respectively,  then zones are 

defined as rectangles { tr

ji

bl

ji ffff ),(,),( 2121 }, for i,j 

=1,2,3, …, n, where, n is the number of horizontal 

and vertical partitions, and bl

ji ff ),( 21  and 

tr

ji ff ),( 21 are the bottom-left and top-right points of 

the rectangle. The zones are recorded as a tuple  

Zk={ bl

kk ff ),( 21 , tr

kk ff ),( 21 , Lk}, where the first 

two fields are the bottom-left and top-right corner 

points that define the zone and Lk is a list that 

contains labels of those sample patterns whose 

feature values  f1 and f2 are lying in zone Zk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (a) Selected contour points 
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Fig.3 (b): Joint distribution of features f1 and f2 in 

digits 0, 1,2, …, 9 

 

The zone width and height were estimated from the 

training set samples by estimating an optimal 

partition size that yielded the best zone formation 

i.e., no zone contained more than a pre-specified 

number of distinct pattern classes.  After estimation, 

all the non-empty zones were recorded as a tuple in 

an array Z of tuples [Z1 Z2 Z3 ,…, Zm], where m is 

the total number of non-empty zones in n×n 
rectangles. To predict the classes for a given feature 

pair (f1,f2)  the array Z is searched to locate the zone 

in which the feature pair lies. If it lies, say in zone 

Zk, then the predicted classes are the labels list Lk 

that belongs to Zk.  

 

4 Recognition Module Design 
This module uses TAR features but these features 

are different from those two features that are used in 

the prediction module. These features are extracted 

from the TAR signatures that are defined to capture 

more boundary details which are obtained by taking 

more than two triangles of varying side lengths at 

different contour locations. The extraction of these 

features is described in Section 4.1. For 

classification, the prototypes that represented the 

classes were generated for the TAR signatures of 

each class samples. The prototype generation 

process is described in Section 4.2. To obtain a 

better recognition score a curve matching based 

classification procedure was developed which is 

given in Section 4.3.   

 

4.1 Feature Extraction  
As mentioned before, triangles having sides of 

different lengths and are located at different contour 

positions were used for TAR signature generation. 

One of the advantages of this approach is that it 

gives flexibility in devising exploratory feature 

extraction techniques. Consequently, it helps in 

determining an optimal discriminatory TAR feature 

set from the combinations of triangles having sides 

of different lengths and they are located at different 

contour positions.  In search of such a feature set for 

unconstrained digit recognition several experiments 

were conducted and the definition and extraction of 
the feature set that yielded better recognition result 

is described below.  

In this case, the feature set was obtained from 

the contour part P0 to Pn/3 in n point contour list P0, 

P1, …, Pn-1. This contour part was partitioned into ℵ 
equal segments. By choosing different values of ℵ, 

different feature sets can be formed. Assume that 

the endpoints of each of the ℵ segments are: (P(k-1)× 

τ , Pk× τ ), where k=1,2,3,…, ℵ,  are segment 

numbers and τ= n/(3×ℵ ) is the segment length.  For 

the segment number 1 (k=1) the segment endpoints 

are P0 and Pτ, where P0 is the contour start point and 
Pτ is the point after τ points from the start point. 

P0 

P3 

P2 

P1 
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Similarly, for k=ℵ  the segment endpoints are Pn/3- τ 
and Pn/3. For each k=1,2,3,…, ℵ  a triangle with 
three contour points (P(k-1)×τ , Pn/3+(k-1)×τ , P 2n/3+(k-1)×τ 
) can be formed and its TAR value is considered as 

the feature  fk. The feature values are normalized to 

1.   

For clarity consider Fig. 4 and assume that it 

contains 45 contour points (n=45). In this figure, the 

contour part P0 P15 is divided into 3 (ℵ=3) 

segments: P0 P5 , P5 P10  and P10 P15 where the 

segment length is τ =5 points. In this case, three 
features f1, f2 and f3 can be generated by computing 

the areas of the triangles ∆(P0P15 P 30), ∆(P5P20 P 35) 

and ∆(P10P25 P 45) respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 TAR Signature Computation 

 

Fig.5 shows a plot of the average of each feature 

value of 16 (ℵ=16) features observed in 1000 

sample with 100 samples per digit.  In the plot, digit 

classes are represented by different colors (see the 

side legend).  

To study the contribution of individual feature 

in the accumulative growth of feature values, 

features  fk , k=1,2,…, ℵ,  were transformed into a 

growth function form: ∑
=

=
k

j

jfks
1

)( , where s(k) is 

an increasing function as s(k) ≤ s(k+1) for k =1,2,…, 

ℵ. The advantage of this representation is that it 

gives simple representation (see Fig. 6) as compared 

to the original signature (Fig.5).  
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Fig.5: Plot of Average Feature Values 

Cumulative Average Feature Values

-1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Features

C
u
m
u
la
ti
v
e
 v
a
lu
e
s

0

1

2

3

4

5

6

7

8

9

 

Fig.6: The Cumulative Average Feature Values  
 

4.2 Prototype Creation 
The prototypes are class representatives. In this 

research prototypes (one for each class) were 

created from the average cumulative feature values 

)(
c

ks for k=1,2,…, ℵ  and for class c = 1, 2, …, m,  

where m is the number of classes and ℵ is the 

number of features. The values of )(
c

ks  are 

computed as  /)()(
1

c

N

i

c

i

c Nksks
c

∑
=

= , where )(ksci :is 

the cumulative value of the k
th
 feature of the i

th
 

sample in class c, and  Nc  is the total number of 

samples in class c.  

As mentioned before, in this research the average 

feature values )(
c

ks  are used as prototype. One of 

the advantages of using the cumulative feature 

values is that the prototypes can be modeled using 

known growth functions.  In that case, instead of 

storing the average values, only the model 

parameters of the growth function need to be 

estimated, and the prototypes can be generated in 

real-time and prototype curve shapes can be varied 

P0 

P15 
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in real-time to accommodate the variations; 

otherwise to capture the variations several 

prototypes may be required for each class.   

 

4.3 Classification 
The classification module accepts the cumulative 

feature curve s(k) of an unknown pattern, where 

k=1,2,…, ℵ and ℵ is the total number of features. 

The classifier classifies s(k)  by comparing it against 

the prototypes )(sc k , k=1,2,…, ℵ   of each class c  

= 1,2,…, m. The classification criteria is to classify 

s(k) into class c, if  the value of the function Ψ (s(k), 

)(sc k ) is maximum for c  = 1,2,…, m, where 

function Ψ (s(k), )(sc k ) compares the two curves 

s(k) and )(sc k  and yields a similarity index. The 

step-wise curve comparing process is as follows. 

1. Create a feature-wise difference table 

ck ,δ between the two curves s(k) and )(sc k  by 

computing the value ck ,δ = )()( ksks c− , for  

k= 1,2,…, ℵ and c=1,2,…, m.   

2. Create a rank table ck ,γ  by assigning a rank to 

the elements of each row of ck ,δ by the 

following rules:  

� ck ,γ = 1, if  ck ,δ  is the smallest value,   

� ck ,γ = 2, if  ck ,δ  is the next higher value and 

so on.    

� … 

� …. 

� Finally, ck ,γ = m if ck ,δ  is the highest value.  

Note:  In the ranking process a tie may occur. In 

which case, assign average rank to all the elements 

that are in tie.  For example, if 
1,ck

δ , 
2,ckδ  and 

3,ckδ  

have equal values for the classes c1, c2 and c3, then 

the ranks for 
1,ckγ = 

2,ckγ =
3,ckγ = (c1+ c2 + c3,) /3.    

C. Compute ∑
ℵ

=

=
1

,

k

ckcd γ   

The cd  value can also be used to classify an 

unknown pattern into class c if cd is the minimum 

of id , i=1, 2, 3, …, m and c ≠ i. Experiments were 

conducted with this classification procedure but the 

result shows poor recognition performance (see 

Section 5).  To improve the recognition performance 

a weighted similarity measure, described below, was 

developed and used. 

 

A. Compute the rank frequency table ℜi 
for each 

class i =1, 2,3,…, m using the training set 

samples. In this table, each entry ℜi 
=(

i

ck ,γ ) is 

the frequency with which the k
th
 feature ranks 

the training sample of some i
th
 class as the 

member of class c.  

B. For an unknown pattern obtain ck ,γ  as described 

in steps 1 and 2 before. 

C. For each class i=1,2,3,…, m  compute 

i

ck

cki

ck

,

,

,
γ

γ
φ =  for all k = 1,2,3,…, ℵ and c = 

1,2,3,…, m. 

D. Compute the function   

∑
ℵ

=

=
1

,))(),((
k

i

ck

c ksks φψ .  

E. Classify an unknown pattern having cumulative 

feature values s(k) into class c if  Ψ (s(k), 

)(sc k ) is the maximum for the class c.  

This classification procedure improved the 

recognition accuracy considerably (Section 5) 

 

 

5 Experiments  
As mentioned before, several experiments were 

conducted in search of the best possible recognition 

score. This section describes these experiments 

along with their respective feature extraction and 

classification methods, and recognition 

performance. Experiment 5 is the main experiment. 

The other experiments are described just to illustrate 

the performance of the techniques that provided 

insight that has lead to the development of improved 

techniques. 

 

5.1 Experiment 1 
The objective of the first experiment was to assess 

the applicability of TAR feature in unconstrained 

handwritten digit recognition. In this experiment the 

TAR feature of a single triangle of side length n/3, 

where n is the total number of contour points was 

used. The triangle was formed by selecting the 

contour points (Pi-n/3 , Pi , Pi+n/3) for a given i ∈[n/3 , 
2n/3] and the TAR feature was computed (as 

described in Fig 4 Section 4.1).   

During the training phase, for every selected 

triangle the average feature value
c
f and its variance 

2

cσ  for each class c were estimated. Using these 

values an unknown pattern was classified as coming 

from the class c if its TAR value belongs to the 

interval
2

cc
kf σ±  where k is a chosen constant.  In 
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case, the TAR value does not belong to any class 

interval then the unknown pattern is declared 

unrecognized. Several experiments were conducted 

using different triangle locations and the recognition 

performance for different TAR values was 

estimated. The best correct recognition performance 

of 22.2% was observed on 1000 training set samples 

for k=0.2.  

 

5.2 Experiment 2 
In this experiment the joint distribution of two TAR 

feature values that were obtained from the two 

triangles was studied.  Like experiment 1 the side 

length of both the triangles were taken as n/3 and 

they were selected from two different locations in 

the range as described in experiment 1.   From the 

training set samples, the class feature means for 

each 
cf1 and

cf2  , and class feature 

variances
2

,1 cσ and 
2

,2 cσ  were estimated and the 

intervals of the form ( )2

,222

2

,111 , c

c

c

c

kfkf σσ ±±  were 

formed for each class c, where k1 and k2 are the 

chosen constants. Their values were estimated from 

the training set samples. 

In this case, an unknown pattern having feature 

values f1 and f2 was recognized as coming from the 

class c if the feature values f1 and f2 fall in the class 

interval ( )2

,222

2

,111 , c

c

c

c

kfkf σσ ±± .  

Experiments were conducted for several triangle 

combinations and for each combination k1 and k2 

values were chosen. In these experiments the 

triangles formed by the points P0, P1, P2 and P3 
shown in Fig.3 (a) yielded the best recognition 

result. The horizontal triangle combinations 

(�P3P0P1 and �P1P2P3) yielded 42.2% and the 

vertical triangle combinations (�P0P1P2 and 

�P2P3P0) yielded 43.7% correct recognition on the 

1000 training samples that were used in experiment 

1.  

 

 

5.3 Experiment 3 
In this experiment, features obtained from the 

horizontal and vertical sets of triangles, described in 

experiment 2, were used but in two different 

classification schemes. Both the schemes use 

prediction and recognition modules. To classify a 

pattern, first its features were presented to the 

prediction module. The output of this module is a 

set of probable classes which is sent to the 

recognition module along with the feature elements.  

The recognition module recognizes the unknown 

pattern as one of the members of the predicted 

classes.  
In the first scheme, the TAR features obtained 

from the vertical set of triangles were used to create 

the zone-based prediction module and hence to 

predict the probable classes.  The TAR features 

obtained from the horizontal set of triangles were 

used to recognize an unknown pattern as one of the 

members of the predicted classes using the interval 

method described in experiment 2. This method 

improved the correct recognition percentage to 

49.8%.  

The second scheme was similar to the first 

scheme but in this case the horizontal set of 

triangles was used to design the prediction module 

and vertical set of triangles to test the recognition 

performance. In this case, the recognition 

performance was 52.3% which is slightly better.  

The experiment 3 was conducted on the same 1000 

training set samples that were used in earlier 

experiments. 

 

5.4 Experiment 4  
In this experiment, several combinations of two 

TAR feature values were studied to improve the 

prediction performance, and multiple TAR features 

representing 4, 8, 12 and 16 features were studied to 

improve the recognition performance.   

Like experiment 3, prediction zones were 

estimated and it was observed that the two vertical 

triangles that are shown Fig.3 (a) yielded the best 

prediction zones in which no zone contains more 

than three prediction classes. Using 1000 samples 

we observed that the zone height=0.05 and width = 

0.05 yielded the best prediction zones.   

To recognize an unknown pattern, a classifier 

using ∑
=

=
K

k

ckcd
1

,γ as described in Section 4.3 was 

used.   

It was observed that 16 TAR feature set 

produced the best correct recognition percentage of 

63.4% on the same 1000 training samples that were 

used in experiments 1 to 3.  

 

 

5.5 Experiment 5  
This experiment was designed using the prediction 

module and the TAR feature set of experiment 4, 

and the weighted rank classifier described in Section 

4.3. This classifier classifies an unknown pattern 

having feature values s(k) as the member of one of 

the predicated classes c: if  Ψ (s(k), )(sc k ) is 

maximum for that class.  
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This classification procedure improved the 

recognition accuracy significantly to 98.5% that was 

achieved for 16 features on 1000 training samples. 

The confusion matrix of this experiment is shown in 

Table I, which shows that the highest confusion 

occurs between digits 4 and 8 and the next highest 

confusion between 9 and 8. It looks like structural 

variations in digits 4 and 8, and 9 and 8 may have 

yielded almost similar shapes.  

The recognition accuracy was tested on a larger 

test sample of size 2500 digits, and it was observed 

that the accuracy dropped to 85.12%. The confusion 

table of this test is shown in Table II. 

 

 

 

Table: I. Confusion Table Training Set  

(1000 Samples) 

 Recognized As 

U
n
k
n
o
w
n
  
d
ig
it
 

 0 1 2 3 4 5 6 7 8 9 

0 100 0 0 0 0 0 0 0 0 0 

1 0 98 0 0 0 0 0 0 2 0 

2 0 0 100 0 0 0 0 0 0 0 

3 0 0 0 100 0 0 0 0 0 0 

4 0 0 0 0 95 0 0 0 5 0 

5 0 0 0 0 0 100 0 0 0 0 

6 0 0 0 0 0 0 100 0 0 0 

7 0 0 0 0 0 0 0 100 0 0 

8 0 0 0 0 4 0 0 0 95 1 

9 0 0 0 0 1 0 0 0 2 97 

 

Table-II: Confusion Table Test Set 

(2500 Samples) 

 Recognized As 

U
n
k
n
o
w
n
  
d
ig
it
 

 0 1 2 3 4 5 6 7 8 9 

0 250 0 0 0 0 0 0 0 0 0 

1 0 135 3 0 30 17 0 33 32 0 

2 0 0 248 0 0 0 0 2 0 0 

3 0 0 9 227 0 0 0 10 0 4 

4 0 3 1 0 193 0 0 1 25 27 

5 0 0 0 0 0 250 0 0 0 0 

6 0 0 0 0 0 0 250 0 0 0 

7 0 0 36 18 0 0 0 195 0 1 

8 0 0 0 0 16 0 0 0 192 42 

9 0 0 2 0 32 0 0 3 25 188 

 

Table II shows that the digit 1 has the lowest 

recognition percentage of 54%, and most of the 

errors occur between digits 1 and 4, 1 and 7 and 1 

and 8. To investigate the reasons, samples of digit 

one were examined, and it was discovered that the 

size and rotation variations are likely reasons 

because the rotated digit 1 and digits 4, 7 and 8 have 

majority of contour points that are lying at the right 

side boundary are common, while other contour 

points in digit one may have not contributed 

significant discriminatory features. Training set size 

might have contributed to the error. So, to measure 

the effect of the larger training set size, the 2500 test 

samples were used as training set, and 1000 sample 

that were used in training set were used as the test 

set. The confusion of table of the training set and 

test set are shown in Table-III & IV. 

The recognition percentage on the training set is 

96.06% and test set is 98.3%.  The training set 

percentage is low because of the size and shape 

variations in digit one.  

 

 

 

Table-III: Confusion Table Training Set 

(2500 Samples) 

 Recognized As 

U
n
k
n
o
w
n
  
d
ig
it
 

 0 1 2 3 4 5 6 7 8 9 

0 250 0 0 0 0 0 0 0 0 0 

1 0 185 2 0 13 9 0 19 22 0 

2 0 0 250 0 0 0 0 0 0 0 

3 0 0 0 250 0 0 0 0 0 0 

4 0 1 1 0 243 0 0 1 2 2 

5 0 0 0 0 0 250 0 0 0 0 

6 0 0 0 0 0 0 250 0 0 0 

7 0 0 2 2 0 0 0 245 0 1 

8 0 0 0 0 3 0 0 0 241 6 

9 0 0 1 0 3 0 0 2 6 238 

 

Table-IV: Confusion Table Test Set 

(1000 Test samples) 

 Recognized As 

U
n
k
n
o
w
n
  
d
ig
it
 

 0 1 2 3 4 5 6 7 8 9 

0 100 0 0 0 0 0 0 0 0 0 

1 0 100 0 0 0 0 0 0 0 0 

2 0 0 100 0 0 0 0 0 0 0 

3 0 0 0 100 0 0 0 0 0 0 

4 0 0 0 0 98 0 0 0 2 0 

5 0 0 0 0 0 100 0 0 0 0 

6 0 0 0 0 0 0 100 0 0 0 

7 0 0 1 0 0 0 0 99 0 0 

8 0 2 0 0 1 0 0 0 91 6 

9 0 0 0 0 0 0 0 0 5 95 

 

6 Conclusion 
This research started with a simple experiment that 

was designed to measure the effectiveness of the 

TAR features in recognizing the totally 

unconstrained handwritten digits.  Initially, a little 

success was achieved but it was observed that TAR 

features can be defined in many ways. Thus, it can 
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be used as an exploratory technique to explore the 

best possible combination of TAR features.  

In the process, a series of experiments were 

conducted and every experiment yielded an 

encouraging result that reached close to 98.5% 

correct recognition score which is an excellent score 

in the light of the data quality of the test and training 

sets.   

The data was obtained from the totally 

unconstrained handwritten postal zip codes. These 

zip codes were collected by the US postal service 

department from the dead letter envelops at offices 

across the United Sates of America. The data 

reflects expected variations in writing styles, stroke 

thickness, writing material, ink other similar 

attributes.  The zip-codes were digitized on the 16 

gray levels using very rudimentary scanning 

technology that produced some structurally 

damaged images. 

The TAR features are structural features. 

Extraction of these features from the broken images 

may not reflect the true situation. Therefore their 

performance on the structurally damaged samples is 

expected to deteriorate. However, the experimental 

results show that on the structurally undamaged 

samples having almost all the natural variations 

except the breaks in shapes, the technique yielded 

excellent results.  
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