
Rotary-code: Efficient MDS Array Codes for RAID-6 Disk Arrays

YULIN WANG, GUANGJUN LI
School of Computer Science and Engineering

University of Electronic Science and Technology of China
No.4, Section 2, North Jianshe Road, Chengdu

P.R.CHINA
wyl@uestc.edu.cn, gjli@uestc.edu.cn, http://www.uestc.edu.cn

Abstract: - Low encoding/decoding complexity is essential for practical RAID-6 storage systems. In this paper,
we describe a new coding scheme, which we call Rotary-code, for RAID-6 disk arrays. We construct Rotary-
code based on a bit matrix-vector product similar to the Reed-Solomon coding, and provide the geometry
encoding method and detailed non-recursive decoding algorithms. The capability of two-disk fault-tolerance
and the property of Maximum Distance Separable (MDS) are proved in Rotary-code. The key novelty in
Rotary-code is that the Rotary-code has optimal encoding complexity and optimal decoding complexity
comparing with existing RAID-6 codes.

Key-Words: - Array code; MDS; RAID; Two-disk fault-tolerance; Efficient decoding; Decoding complexity

1 Introduction
Disk arrays [11], such as redundant arrays of
inexpensive disks (RAID), have been widely used in
many companies, universities, and government
organizations for a decade. Most of the existing
RAID architectures, e.g., RAID-3 and RAID-5, use
a simple parity scheme that can recover one disk
failure, but now, disk and network storage systems
have grown to the point where the fault-tolerance of
RAID-5 is no longer enough. RAID-6 is a
specification for storage systems composed of
multiple storage devices to tolerate the failure of any
two devices. In recent years, RAID-6 has become
important when a failure of one disk drive occurs in
tandem with the latent failure of a block on a second
drive [4]. On a standard RAID-5 system, this
combination of failures leads to permanent data loss.
Hence, storage system designers have started
turning to RAID-6.

Numerous erasure coding techniques have been
developed that can implement RAID-6; however,
each has limitations. The well known Reed-
Solomon code [9] can tolerate more than one disk
failure. However, the encoding and decoding of
Reed-Solomon code involve operations over finite
fields and are thus very slow. It would be desirable
to have binary linear codes that only involve
exclusive-OR (XOR) operations. For tolerating two
disk failures, many good codes have been developed
(e.g. [1,2,4,6-10,13,14]). Array codes are a class of
binary linear codes, where information and parity
bits are placed in a two-dimensional (or
multidimensional) array instead of a one-

dimensional vector. The information and parity bits
are defined over an Abelian group with an
addition operation. Usually, . The bits are just
binary bits and addition is an XOR operation [3].
The best results are EVENODD codes [1], [3], X-
codes [6], and B-codes [7]. The X-Code [6] is an
extremely elegant erasure code for two-disk systems
that encodes, decodes and updates optimally.
However, it is a vertical code that requires each
device to hold two coding words for every k data
words. It does not fit the RAID-6 specification of
having coding devices P and Q, where P is a simple
parity device. The B-code [7] is also a vertical code
and does not fit the RAID-6 specification.

()G q
2q =

In this paper, we develop a new class of binary
MDS array codes called Rotary-code, which can be
efficiently used for RAID-6. The codes are similar
to the Reed-Solomon codes and the EVENODD
code. The binary MDS array codes are a class of
binary linear codes, where information bits form an
m n× array and parity bits form an array. In
applications of these new codes in RAID, n denotes
the number of information disks on which
information “data” will be stored, m indicates the
number of “data”, which can be bytes, computer
words, or disk sectors, and are stored on a disk,

2m×

(1m)+ is a very large prime. The code rate is
/ (2)n n + , i.e., it achieves the capacity of erasure

channel. Rotary-code is a low-density parity-check
code, but has a sparser parity-check matrix than the
EVENODD code. This property leads to faster
encoding and decoding procedures for the proposed
code.

This paper is organized as follows: In Section 2,
we introduce the RAID-6 specification and current

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1917 Issue 12, Volume 8, December 2009

mailto:wyl@uestc.edu.cn
mailto:gjli@uestc.edu.cn

2-erasure code schemes. In Section 3, we construct
the Rotary-code based on a bit matrix-vector
product similar to the Reed-Solomon coding and
provide detailed decoding algorithms. We compare
the encoding/decoding complexity with existing
code scheme in Section 4. The MDS property of
Rotary-code is proved in Section 5. We further
share our implementation and performance tests of
Rotary-code in Section 6 and conclude in Section 7.

2 RAID-6 Specification And 2-erasure
Codes
RAID-6 is a specification for storage systems with

 nodes to tolerate the failure of any two nodes,
where k is the amount of data disk nodes. Logically,
a typical RAID-6 system appears as depicted in
Figure 1. There are storage nodes, each of
which holds B bytes, partitioned into m data nodes,
D

2m +

2m +

0, . . . Dm−1, and two coding nodes P and Q. The
entire system can store mB bytes of data, which are
stored in the data nodes. The remaining 2B bytes of
the system reside in nodes P and Q and are
calculated from the data bytes. The calculations are
made so that if any two of the nodes fail, the
data may be recovered from the surviving nodes.

2m +

D1 D2 D(m-1) P Q

Fig. 1. Logical overview of a RAID-6 system.

Actual implementations optimize this logical
configuration by setting B to be smaller than each
disk’s capacity, and then rotating the identity of the
data and coding devices every B bytes. This helps
remove hot spots in the system in a manner similar
to RAID-5 systems. A pictorial example of this is in
Fig. 2. For simplicity, in the remainder of this paper
we assume that each storage node contains exactly B
bytes as in Fig. 1 since the extrapolation to systems
as in Fig. 2 is straightforward.

P Q
P

Q

Q

P

P

Q

B bytes

Fig. 2. In actual implementations, the identities of
the data and coding nodes rotate every B bytes. This
helps to alleviate hot spots on the various drives.

The RAID-6 specification calls for two parity
drives, P and Q. The contents of the P drive are

calculated as the parity of the data drives, just as in
RAID-5. The contents of the Q drive are defined by
the particular code, but must be a Maximum
Distance Separable (MDS) code. This means that
any combination of two-disk failures may be
tolerated without data loss. In this way, RAID-6
systems extrapolate naturally from RAID-5 systems
by simply adding a Q drive. It also means that the
sole challenge in designing a RAID-6 coding
methodology lies in the definition of the Q drive.
There are several criteria to evaluate an erasure
coding technique for a RAID-6 system:
encode/decode complexity, update complexity and
storage efficiency.

There are a variety of codes that can tolerate
two-disk failures (e.g. [1,2,4,6,7,8,9,10,13,14]). We
divide the set of the known 2-erasure codes into
different categories and give (non-exhaustive)
examples in each category. In a category by
themselves are the Reed-Solomon codes [9], which
are MDS. This means optimal storage efficiency and
optimal update penalty. But the computational
complexity is a serious problem because Galois
Field computation is used though optimized
algorithms have been developed [10].Second are
non-MDS codes that are XOR-based, such as
WEAVER codes [13] and HoVer codes [14]. These
have perfect computational complexity, but bad
storage efficiency is their inherent drawback. Their
property of non-MDS renders them inapplicable to
the RAID-6 specification.

Finally, in the last category are XOR-based
MDS codes. These come in two types: vertical
codes such as the X-code [6], B-code [7] and
horizontal codes such as EVENODD [1,3], and
Row-Diagonal Parity codes [4]. In a storage system
based on horizontal codes, some disks contain
nothing but data symbols, and the others contain
only parity symbols. The opposite is vertical codes
in which the parity symbols and the data symbols
are stored together. The X-Code [6] is an extremely
elegant erasure code for two-disk systems that
encodes, decodes and updates optimally. However,
it is a vertical code that requires each device to hold
two coding words for every k data words. Vertical
codes do not fit the RAID-6 specification of having
coding devices P and Q, where P is a simple parity
device.

EVENODD [1] is the first MDS array code,
perhaps also the most important one - many
subsequent array codes are similar to it and its
generalization [3], such as RDP [4], STAR-code [5],
etc. It is a horizontal code and parity independent
(none of the parity symbols participate in other
parity groups). EVENODD organizes data as

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1918 Issue 12, Volume 8, December 2009

symbols in an array, referred to as
a segment, where the first m columns correspond to
data disks and columns m and are check disks.
The first check disk is a horizontal parity disk, and
the second is a skew diagonal parity disk. D

(1) (2m m− × +)

1

1m +

i
*

denotes a data symbol that participates in Pi and all
Qs. Namely, the sum S (over GF[2]) of all of these
kind of symbols is added into every diagonal parity
symbol. Thus the computational performance and
the update complexity of EVENODD are non-
optimal. RDP Coding is very similar to EVENODD
coding, but improves upon it in several ways [4].
RDP calculates the bits of the Q device from both
the data and parity bits, and in so doing achieves
better performance. One important advantage of
EVENODD and RDP is that they meet the RAID-6
specification. Moreover their coding schemes are
simple and are easy to implement.

The proposed Rotary-codes are horizontal
codes as well as EVENODD and share many good
properties, such as optimal storage efficiency and
simple encoding and decoding schemes. We
describe the codes and analyze their performance
below.

3 Rotary-code Description
Rotary-code encoding and decoding are based on a
bit matrix-vector product very similar to those used
in Reed-Solomon coding [9,10]. This product
precisely defines how encoding and decoding are
performed. More efficient decoding algorithms of
Rotary-code are presented based on the observation
of geometry property. We first define Rotary-code
and then describe decoding, and prove the
correctness. We discuss their encoding /decoding
performance and compare Rotary-code to the other
RAID-6 codes in Section 4.

3.1 Rotary-code definition
Before giving the definition of the proposed code,
we first give the notation of some matrices. For a
matrix , we always assume that

, i.e., the order of rows (columns) is
from 0 to . Let be positive integer
(not necessarily a prime). Let

,()i j l lM m ×=
0 , -i j l≤ ≤

1l − 1p m= +

mI be an
identity matrix and be an zero

matrix. Now, we define the elemental right-cyclic
matrix as

m m× mO m m×

pE

1

0

1 0

T

m
p m

I
E E

→

+ →

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

 (1)

where is a 0
→

1 m× vector of 0s and is an 0
T→

1m× vector of 0s. It can be easily checked that

{ }2, , ,..., m
p p p pI E E E

form a group with matrix multiplication over GF(2)
and p

p pE I= .
In the following, if no confusion arises, I and E

are used in place of mI and respectively. We
also define

mE

mod a a p〈 〉 =
Thus, 0 1a p≤ 〈 〉 ≤ − .

From (1), let , we have ,()i j p pE eμ
×=

,

1 for
0 otherwise i j

j i
e

μ= 〈 + 〉⎧
= ⎨
⎩

 (2)

Clearly, these matrices form an Abelian group
with the traditional multiplication over GF(2).The
unity element is I, i.e., identity matrix. We have

() 0 i j j i i jE E E E E and E I+× = × = =
It can be easily checked that ()I E+ has rank

m. For any1 a m≤ ≤ , there is 1 such that b m≤ ≤
1ab〈 〉 = . Thus, we have

1

1
()()

b
a aj ab

j
I E I E I E I E

−

=

+ + = + =∑ +

)

Thus, the rank of (aI E+ is at least m. On
the other hand, each column and each row has
exactly two 1s. Therefore, the rank of ()aI E+ is m,
i.e., it is a singular p p× matrix.
Lemma 1. has rank m for . (a bE E+)

))

a b≠
Proof. There are two cases: 1) one of a and b is zero.

 is transformed to (a bE E+ (I Eμ+ , the rank of
which is m. So (has rank m.)a bE E+

2) Neither of a and b is zero. From a b≠ and
the definition of E, we know none of all is 1

simultaneously in and . Thus, the rank of
 is greater than or equal to the rank of

 over GF(2). It can be easily checked that
has rank m. The rank of (is at least m. On
the other hand, each column and each row has
exactly two 1s. Therefore, the rank of () is
m.

,i je
aE bE

(a bE E+)

)

aE aE
a bE E+

a bE E+

The proof is completed. □

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1919 Issue 12, Volume 8, December 2009

Now, we give the details of the proposed
construction. We first define the following binary
matrix:

2 -2m m

I I I I I
P

I I E I E I E I E
⎡

=⎢ -1

⎤

+ + + +⎢ ⎥⎣ ⎦

L

L

⎤
⎥
⎥
⎥

⎥
⎥

⎥
⎥

⎥(3)

This is a binary matrix. It can be
regarded as a 2 block matrix, where each
block-column contains m columns, and each block-
row contains m rows.

22m m×
m×

Example 1. Let , i.e. , and, we have 4m = 5p =
1 0 0 0
0 1 0 0

I
0 0 1 0
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

0 1 0 0
0 0 1 0

E
0 0 0 1
1 0 0 0

⎡
⎢
⎢=
⎢
⎢ ⎥
⎣ ⎦

2

0 0 1 0
0 0 0 1

E
1 0 0 0
0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 3

0 0 0 1
1 0 0 0

E
0 1 0 0
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

1 1 0 0
0 1 1 0

I E
0 0 1 1
1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 2

1 0 1 0
0 1 0 1

I E
1 0 1 0
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢+ =
⎢
⎢ ⎥
⎣ ⎦

3

1 0 0 1
1 1 0 0

I E
0 1 1 0
0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

P 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1
0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1

⎡ ⎤
⎢
⎢
⎢

⎥
⎥

⎢
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥

We have the following theorem:
Theorem 1. Any 2 block-columns form a full rank
submatrix, i.e., the columns of any 2 block-columns
are linearly independent.
Proof. Let us consider the submatrix P consisting
of two block columns 1x , 2x :

1 2x x

I I
P

I E I E
⎡ ⎤

= ⎢ ⎥+ +⎣ ⎦

Transforming P according to , 1
2 1()xr I E+ + r

P is reduced to the following matrix:

1 2x x

m

I I
O E E
⎡ ⎤
⎢ ⎥+⎣ ⎦

2

From Lemma 1, 1x xE E+ has rank m and the
submatrices in the diagonal block columns are full
rank, i.e., the ranks are all m. Thus, the reduced
matrix has rank 2m, i.e., P is a full rank matrix. □

Now, we are going to introduce the Rotary-
code definition. Let (, be an Abelian group
and let 0 be the identity element. Let

)G ⊕
{0,1}b∈ ,

g G∈ . We define

 (4)
0 0

1
b

b g g b
g b

=⎧
× = × = ⎨ =⎩

Let 0 1 1(, , ,)nv v v v −=
r

L be a vector over G and

0 1 1(, , ,)nb b b b −=
r

L be a vector over GF(2), we
define

0 0 1 1 1 1() () (n nb v v b b v b v b v− −× = × = × ⊕ × ⊕ ⊕ ×)
r r r r

L (5)
Definition 1. Let C be the following linear code
over an Abelian group defined by

0 1 1 1{ (, , , , ,) | 0
TT

m m mC c c c c c c Hc− += = = }
r

L ,

where 1 2(, , ,)i i i imc c c c=
ur

L , , and ijc G∈

2 -2 -1
m

m m
m

I I I I I I O
H

I I E I E I E I E O I
⎡ ⎤

=⎢ ⎥+ + + +⎣ ⎦

L

L

 *|P I⎡ ⎤≡ ⎣ ⎦ (6)

For these codes, the last 2 vectors, and mc 1mc + ,
are parity-check vectors, and the other m vectors,
i.e., for 0jc 1j m≤ ≤ − , are information vectors.

In disk array applications, the Abelian group G
can be computer words with bit-XOR operations.

The encoding process is to find mc
uur

, 1mc +

uuur
,

given 0c
uur

, 1c
ur

, …, 1mc −

uuur
, by

0

1

1

1

m

m

m

c
c cP

c
c

+

−

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

uur

uur ur

uuur
M
uuur

 (7)

In the sequel, 1p m= + denotes a prime. Each
codeword of the code C is represented by an array

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1920 Issue 12, Volume 8, December 2009

as in the case of the EVENODD code. Let
be a array of the code C,

where column j, , represents an
information symbol and columns

, 0 1
0

()i j i p
j p

a ≤ ≤ −
≤ ≤

(1p p× +)

20 j p≤ ≤ −
1p − and p

represent parity symbols, and we assume that there
is an imaginary 0-row, i.e., , 0, 0ja = 0 j p≤ ≤ .
Although the parity-check matrix given by (6) is not
systematic, the encoding procedure is very simple.
First, we compute column 1p − by using the
information bits in column j, 0 2 : j p≤ ≤ −

2

, 1 ,0

p

i p i kk
a a

−

− =
= ⊕ ，1 (8) 1i p≤ ≤ −

and next compute column p by using data in
information columns and the parity bits in column

1p − :
1

, ,0

p

i p i k kk
a a

−

< + >=
= ⊕ , 1 (9) 1i p≤ ≤ −

Equations (8) and (9) cannot be computed in
parallel, but in software implementation this is not a
problem. The proposed code, C, has a geometric
description similar to that of the EVENODD code.
Consider the code with , for example. Fig. 3a
and 3b show the horizontal parities given by (8) and
the diagonal parities given by (9), respectively. Note
that we do not compute the parity check of the
imaginary 0-row depicted by the symbol ◇.

5p =

◇ ◇ ◇ ◇ ◇

▲ ▲ ▲ ▲ ▲
■ ■ ■ ■ ■
● ● ● ● ●
★ ★ ★ ★ ★

(a)
◇ ★ ● ■ ▲ ◇

▲ ◇ ★ ● ■ ▲
■ ▲ ◇ ★ ● ■
● ■ ▲ ◇ ★ ●
★ ● ■ ▲ ◇ ★

 (b)
Fig. 3. (a) Horizontal and (b) diagonal parities of

Rotary-code.

3.2 Erasure Decoding
According to Theorem 1, Rotary-code can correct
up to any two erased columns. In other words, the
minimum distance of the code is 3. Using the
geometric description of the proposed code, we can
give an efficient erasure decoding algorithm for the

proposed code. It will be executed when a disk fails,
or when two disks fail simultaneously.

Consider the (1p p)× + array of symbols ,
such that the last two columns are redundant
according to Equations (8) and (9). If one column
(disk) has failed, say column (disk) j,

,i ja

j p≠ , then it
can be retrieved using Equations (8). If column p
fails, then the symbols can be retrieved using
Equations (9).

Next, assume that columns (disks) 1j and 2j
have failed, where 1 20 j j p≤ < ≤ . We have two
cases:

Case 1: 2j p= . Namely, the diagonal
redundant disk and one other data disk have failed.
We can reconstruct disk 1j using Equation (8) and
subsequently disk 2j using Equation (9).

Case 2: 2j p< . This is the main case. We
cannot retrieve them using the parities separately, as
in the previous case. We analyze this case in detail.
We retrieve the symbols in columns 1j and 2j as
follows:

1. Set 2 1s j j← − 2j← −, t p , 0h ← and
0r ← .

2. Calculate w, w satisfies and 1w s j< × >=
w p< .

3. For(0l = ; l w< ; l){ + +
(a) h h s←< + > ;

(b)
2

2

1

, ,
0,

p

h j h t p h t k k
k k j

a a a
−

,< + > < + + >
= ≠

← ⊕ ∑ ;

(c) .}
1

1

1

, ,
0,

p

h j h k
k k j

a a
−

= ≠

← ∑
4. For(0l = ; 1l p w< − − ; l){ + +

(a) r r s←< − > ;

(b)
1

1

, 1 , ,
0,

p

r j r s t p r s t k k
k k j

a a a
−

< + + > < + + + >
= ≠

← ⊕ ∑ ;

(c) .}
2

2

1

, ,
0,

p

r j r k
k k j

a a
−

= ≠

← ∑
Step 3 and step 4 can be computed in parallel to

reduce the reconstruction time. The algorithm is not
recursive and very simple to implement in software
or in hardware.

Next we illustrate the decoding algorithm with
an example.
Example 2. Let us now consider that the codeword
of the array code with shown in Fig.4a. 5p =

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1921 Issue 12, Volume 8, December 2009

Assume that columns (disks) 1 and 3 have been
erased (lost). See Fig.4b.

0 1 0 1 0 0
1 1 1 0 1 0
0 0 1 1 0 0
1 0 1 0 0 1

(a)

0 ? 0 ? 0 0
1 ? 1 ? 1 0
0 ? 1 ? 0 0
1 ? 1 ? 0 1

(b)

Fig.4 (a) The codeword of the proposed code (b)
Columns 1 and 3 have been erased.

We apply Case 2 of the erasure decoding

algorithm. In this case, 2s = , and 2t = 3w = .
The decoding process in the first loop is shown in
Table 1.

Table 1. The decoding process in the first loop.
l h Calculations Results

2,3 4,5 4,0 1,2 3,4a a a a a= ⊕ ⊕ ⊕ 0
0 2

2,1 2,4 2,0 2,2 2,3a a a a a= ⊕ ⊕ ⊕ 1

4,3 1,5 1,0 2,1 3,2a a a a a= ⊕ ⊕ ⊕ 0
1 4

4,1 4,4 4,0 4,2 4,3a a a a a= ⊕ ⊕ ⊕ 0

1,3 3,5 3,0 4,1 2,4a a a a a= ⊕ ⊕ ⊕ 1
2 1

1,1 1,4 1,0 1,2 1,3a a a a a= ⊕ ⊕ ⊕ 1

0, ja (0 j p≤ ≤) doesn’t participate in
calculations in the above table, the same hereinafter,
because it is part of the imaginary 0-row, which has
no effect on the results. After the first loop, we
obtain , , , 2,3 0a = 2,1 1a = 4,3 0a = 4,1 0a = ,

 and . Next, we proceed to the
second loop. The decoding process in the second
loop is shown in Table 2.

1,3 1a = 1,1 1a =

Table 2. The decoding process in the second loop.
l r Calculations Results

3,1 2,5 2,0 4,2 1,4a a a a a= ⊕ ⊕ ⊕ 0
0 3

3,3 3,4 3,0 3,1 3,2a a a a a= ⊕ ⊕ ⊕ 1

After the second loop, we obtain a3,1 0= and

. The decoding algorithm ends and the two
erased columns (disks) are reconstructed
successfully.

3,3 1a =

4 Complexity Comparison with
Existing Schemes
There are mainly two existing schemes applicable to
the RAID-6 specification. One is the Reed-Solomon
(RS) codes [9], the other is EVENODD [1]. The
results [1] show that EVENODD outperforms the
RS codes because EVENODD does not require
finite field computations. Hence, in this section, we
compare the complexity of Rotary-code only with
EVENODD from encoding, and decoding.

Both Rotary-code and EVENODD only need
exclusive-OR (XOR) operations in encoding,
decoding. The complexity can be measured by the
numbers of XOR operations. In order to perform
fair comparison, we assume that Rotary-code and
EVENODD have the same array size for a given
parameter p (p is a prime number greater than 2) by
assuming the array for EVENODD has one
imaginary data 0-column. The assumption is
reasonable because the imaginary 0-column does
not change the numbers of XOR operations in
encoding, decoding for EVENODD.

4.1 Encoding complexity
At the encoding of Rotary-code, one parity symbol
in the first parity column needs (p-2) XOR
operations and the total of the first parity column is
(- 2) (-1)p p× using Equation (8). One parity
symbol in the second parity column also needs (p-2)
XOR operations because the imaginary 0-row
symbol does not need XOR operations using
Equation (9). The total of the second parity column
is also (- 2) (-1)p p× . The total of XOR operations
in the encoding of Rotary-code is

2(- 2) (-1) (- 2) (-1) 2 6 4p p p p p p× + × = − −

)

Theorem 2. For a 2-columns-erased tolerant array
with n data columns and 2 parity columns, the lower
bound of XOR operations per data symbol is

. 2 - 2 / n
Proof: Assume that the coding array contains m
rows. We have a minimum of two parity symbols
per row of n data symbols, from the Singleton
bound. The array size is . Each data
symbol must contribute to at least two different
parity symbols, one on each parity column, to
ensure that we can recover if the data symbol and
one parity symbol is lost. Therefore, we need to
construct 2m parity symbols from equations that in
the minimal formulation contain no common pairs
of data symbols. The minimum number of

(2m n× +

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1922 Issue 12, Volume 8, December 2009

separately XORed input terms required to construct
the 2m parity symbols is 2mn. Accordingly, the
minimum number of XOR operations is 2 (.
Therefore, the lower bound of XOR operations per
data symbol to ensure 2-columns-erased tolerance is:

-1)m n

2 (-1) 2(1) 22m n n

mn n n
−

= = −

4

 □

Rotary-code protects data symbols
using XOR operations. Let

2(1)p −
22 6p p− + 1n p= − ,

the count of XOR operations per each symbol is
2

2

2 2 2n n
n n
−

= −
2

2

=

⎛ ⎞= ⊕ ⊕⎜ ⎟
⎝ ⎠

0 2i p≤ ≤ −

, which meets the lower bound.

Now, we count the XOR operations in the
encoding of EVENODD. The equations for
computing the parity symbols are given below [1]:

1

, ,0

p

i p i kk
a a

−

=
= ⊕ ，0 (10) i p≤ ≤ −

1

, 1 ,0
S

p

i p i k kk
a a

−

+ < − > , (11)

1

1 ,1

p

p k kk
S a

−

− −=
= ⊕ (12)

Equation (10) equals to Equation (8)
considering that the array for EVENODD has one
imaginary data 0-column. The XOR operation count
of the first parity column is also (- 2) (-1)p p×
using Equation (10). The adaptor S is computed
before computing the parity symbols in the second
parity column. (- XOR operations are required
to obtain the adaptor S using Equation (12) and the
assumption. In computing the second parity column
using Equation (11) and the assumption,

3)p

(- 2) (-1)p p× XOR operations are needed because
each parity symbol needs 2p − valid data symbols
and the adaptor S. Therefore, the total of XOR
operations in the encoding of EVENODD is

2(-2) (-1) (p 3) (-2) (-1) 2 5 7p p p p p p× + − + × = − − (13)
As we can see, Rotary-code has faster encoding

procedure than EVENODD by less than
XOR operations for a given parameter p and the
same array size. Table 3 compares Rotary-code to
EVENODD for different values of p, assuming that
p is prime (This is not a hard constraint, since the
codes can be shortened to cover cases in which p is
not a prime). The last column of Table 1 contains
the reduced number of XOR operations between the
number in column 2 (i.e., the number of operations
needed in Rotary-code) and the number in column 3
(i.e., the number of operations needed in
EVENODD). For instance, we can see that for p =
43 (last row), Rotary-code requires less 40

operations than EVENODD at the encoding. We can
see from Table 1 that the number of XOR
operations needed for encoding Rotary-code
decreases accordingly with respect to EVENODD
when the parameter p increases.

3p -

Table 3. Number of XOR operations needed to

encode with the parameter p.
p Rotary-

code
EVENODD Improvement

5 18 20 2
7 56 60 4
11 180 188 8
13 266 276 10
17 486 500 14
19 620 636 16
23 936 956 20
29 1530 1556 26
31 1760 1788 28
37 2546 2580 34
41 3150 3188 38
43 3476 2516 40

4.2 Decoding complexity
Rotary-code has optimal decoding complexity after
any one column failure. Reconstruction from any
one column failure requires exactly

 XOR operations,
since each last symbol is reconstructed by XORing
the surviving (p−1) symbols in the first parity set or
in the second parity set and the last column has (p-1)
symbols. Let n=p−1, we construct n symbols with

 XOR operations, which is (n−1) XOR
operations per parity symbol. It is already shown
that it has the minimum number of XOR operations
for construction of an array that double protects
parity, and since all parity sets are the same size, the
cost to repair any one lost column is the same and is
also a lower bound.

2(1)(2) 3p p p p- - = - + 2

)

2

2(n n-

Reconstructing from any double failure that
includes the second parity column is exactly the
same cost as parity construction. Reconstructing any
of the data columns from the first parity column has
the same cost as constructing the first parity column.
The cost of reconstructing any combination of two
columns can also be determined by

22 6 4 2 2p p n n− + = − XOR operations required
to reconstruct 2(1)p − data symbols. Therefore,
Rotary-code has optimal decoding complexity after
any two column failure.

Comparing again to EVENODD, using the data
reconstruction algorithm described in the

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1923 Issue 12, Volume 8, December 2009

EVENODD paper, we see that different failure
mode has different reconstruction cost. To compare
the complexity fairly, we classify the columns into
three types: data columns denoted by D, the first
parity column denoted by P, the second parity
column denoted by Q. There are three types: D, P
and Q for any one column failure. And (D, D), (D,
P), (D, Q) and (P, Q) are all the possible types for
any two column failures. Assume that ach column
has the same failure probability. It is calculated
from the array with one imaginary 0-column that the

average of XOR operations is
3 22

1
p p

p
− −
+

1
 for one

column failure and
4 3 22 2 9 13 2

(1)
p p p p

p p
− − + −

+
4

for two column failures.

Table 4. Number of XOR operations needed to
decode from two failures with the parameter p.

p Rotary-code EVENODD Improvement
5 18 27.2 9.2
7 56 66.8 10.8
11 180 194.3 14.3
13 266 282.2 16.2
17 486 505.9 19.9
19 620 641.8 21.8
23 936 961.7 25.7
29 1530 1561.6 31.6
31 1760 1793.5 33.5
37 2546 2585.5 39.5
41 3150 3193.4 43.4
43 3476 2521.4 45.4

It is obvious that Rotary-code needs less XOR
operations to reconstruct from one column failure
than EVENODD. Table 4 compares the decoding
complexity of Rotary-code from two column failure
to EVENODD for different values of p. We can see
from Table 4 that the number of XOR operations
needed for decoding Rotary-code from two failures
decreases accordingly with respect to EVENODD
when the parameter p increases.

5 The MDS Property
In this section, we state and prove the MDS property
of Rotary-code.
Theorem 3—MDS Property: Rotary-code has
column distance of 3, i.e., it is MDS, if and only if p
is a prime number.
Proof: Let us start with the sufficient condition,
namely, to prove that for any prime number p,
Rotary-code is MDS.

First observe that Rotary-code is a linear code,
thus proving that the code has distance of 3 is
equivalent to proving that the code has minimum
column weight wmin of 3, i.e., a valid codeword of
Rotary-code has at least three nonzero columns. (A
column is called a nonzero column if at least one
symbol in the column is nonzero.) We will prove it
by contradiction.

From the definition of Rotary-code, it is
impossible to have only one nonzero column, thus
wmin > 1.

Now suppose wmin=2, then without loss of
generality, we can assume that and , iv jv
0 i j p≤ < ≤ , are nonzero vectors and the others
are the all-zero vectors in a codeword

0 1(, , ,)pv v v v= L of weight 2. If j p= , then we

have 0iv = since . Thus, we get a
contradiction. Next, we assume that j<p. In this case,
we have

0TvH =

iv v j= and . From these
equations, we have

iT jT
i jv E v E=

(,0) (,0) (0,)iT jT
i p i pv E v E a= + (14)

where “+” denotes component wise modulo 2
addition and (2)a GF∈ . Let S be the sum of all the
components in . From (14), we have S Siv a= +

since and are permutation matrices. So, we

get

i
pE j

pE

0a = . Hence, (14) becomes .

We have for .

Since

()(,0) (,0)j i T
i p iv E v− =

()(,0) (,0)l j i T
i p iv E v− = 1 1l p≤ ≤ −

0 j i p< − < and p is a prime, we have
 for . Especially,

. It is known that, for w, a binary

vector of length p, , if and only if w is the

all-zero or all-one vector. Since (, is a nonzero
vector whose last component is zero, we get a
contradiction. Thus , but it is easy to see
there is a codeword of column weight 3, so w

(,0) (,0)kT
i p iv E v= 1 k p< < -1

(,0) (,0)T
i p iv E v=

T
pwE w=

0)iv

min 3w ≥
min = 3.

This concludes the proof for the sufficient condition.
On the other hand, if p were not a prime

number, then there exists a positive integer d,
1 d p< < , such that d divides p. We define a binary
vector 0 1 2(, , ,)pu u u u −= L as follows:

 (15)
1 if is multiple of
0 otherwise i

i d
u ⎧
= ⎨
⎩

Then, 0 1(, , ,)pv v v v= L , where and

,
i pv v u= =

jv 1 v p≤ ≤ , j d≠ , is the all-zero vector, is a

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1924 Issue 12, Volume 8, December 2009

codeword of C with weight 2, or the distance of the
code is no greater than 2, which contradicts with the
fact that the code is of distance 3. So p being a
prime number is a necessary condition to the MDS
property of Rotary-code. □

6 Implementation and Performance
The implementation of the Rotary-code encoding is
straightforward and simply follows the procedure
described in Section 3.1. Thus, in this part, our main
focus is on the erasure decoding procedure. As
stated in Section 4.2, the decoding complexity is
also optimal. The decoding algorithm in Section 3.2
is not recursive and very simple to implement in
software or in hardware. To achieve the maximum
performance, we apply the parallel technique in the
decoding procedure as described in the earlier
section.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

6 9 12 15 18 21 24 27 30

number of information disks

t
h
r
o
u
g
h
p
u
t
(
G
b
p
s
)

Rotary-code

EVENODD

RS code

Fig. 5. Throughput performance (2 erasures are
randomly generated among information disks).

We have implemented the Rotary-code in

C/C++ and apply it to a reliable storage platform
[17]. The throughput performance is measured and
compared to the publicly available implementation
of the XOR-based RS code [16], the EVENODD
code [15]. The results are shown in Fig. 5, where the
size of a single data block from each disk is 2,880
bytes and the number of information disks varies
from 6 to 31. Note that our focus is on decoding
erasures that all occur at information columns since,
otherwise, Rotary-code just reduces to RAID-5
(when there is the second parity column erasure), so
we only simulate random information column
erasures in Fig. 5. Recall that a single data block
from each disk corresponds to a single column in
Rotary-code and is divided into 1p − symbols, so
the block size needs to be a multiple of 1p − . For
comparison purposes, we use 2,880 here since it is a
common multiple of 1p − for most p values in the
range. In real applications, we are free to choose the

block size to be any multiple of 1p − once p, as a
system parameter, is determined. These results are
obtained from experiments on a Pentium 4 1.6 GHz
Linux machine with 512 Mbytes of memory running
Redhat 9.0. It is clear that Rotary-code achieves
throughput that is about twice that of the RS code
and is more than that of the EVENODD code. Note
that there are jigsaw effects in the throughputs of
both EVENODD and Rotary-code. This happens
mainly due to the shortening technique. When the
number of storage nodes is not prime, the codes are
constructed using the closest larger prime number.
A larger prime number means that each column
(data block here) is divided into more pieces, which
in turn incurs additional control overhead. As the
number of information disks increases, the overhead
is then amortized, reflected by the performance
ramping up after each dip. (Similarly, the
performance of the RS code shows jigsaw effects
too, which happens at the change of L due to the
increment of total disks n.)

7 Conclusion
In this paper, we have presented a class of MDS
array codes, called Rotary-code, which are based on
a low-density parity-check matrix. The codes have a
sparser parity-check matrix than the EVENODD
code and have two major advantages over the other
2-erasure codes. One is that Rotary-code has
optimal storage efficiency and applicable to the
RAID-6 specification. The other is that Rotary-code
uses only simple XOR and cyclic shift operations
and has optimal encoding and decoding complexity.

From the perspective of error-correcting codes,
we have constructed a new code that is capable for
correcting two erasures. The natural generalization
works of Rotary-code is to construct the codes for
the case of 3 erasures as well as for 4 erasures. In a
sequel paper, we will present an extension of
Rotary-code to a more than two erasures case.

References:
[1] M. Blaum, J. Brady, J. Bruck, and J. Menon,

EVENODD: An Efficient Scheme for
Tolerating Double Disk Failures in RAID
Architectures, IEEE Trans. Computers, vol. 44,
no. 2, pp. 192-202, Feb. 1995.

[2] J. S. Plank. The RAID-6 Liberation codes. In
FAST-2008: 6th Usenix Conference on File and
Storage Technologies, pp. 97–110, San Jose,
February 2008.

[3] M. Blaum, J. Bradt, J. Bruck, J. Menon, and A.
Vardy, The EVENODD Code and Its

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1925 Issue 12, Volume 8, December 2009

Generalization: An Efficient Scheme for
Tolerating Multiple Disk Failures in RAID
Architectures, High Performance Mass Storage
and Parallel I/O, chapter 14, 2002.

[4] CORBETT, P., ENGLISH, B., GOEL, A.,
GRCANAC, T., KLEIMAN, S., LEONG, J.,
AND SANKAR, S. Row diagonal parity for
double disk failure correction. In 4th Usenix
Conference on File and Storage Technologies ,
San Francisco, CA,March 2004.

[5] Cheng Huang, Lihao Xu, STAR: An Efficient
Coding Scheme for Correcting Triple Storage
Node Failures. IEEE Trans. Computers, vol. 57,
no. 7, pp. 889-901, July 2008.

[6] L. Xu and J. Bruck, X-Code: MDS Array Codes
with Optimal Encoding, IEEE Trans.
Information Theory, pp. 272-276, Jan. 1999.

[7] L. Xu, V. Bohossian, J. Bruck, and D. Wagner,
Low Density MDS Codes and Factors of
Complete Graphs, IEEE Trans. Information
Theory, vol. 45, no. 1, pp. 1817-1826, Nov.
1999.

[8] J. Blomer, M. Kalfane, M. Karpinski, R. Karp,
M. Luby, and D. Zuckerman. An XOR-based
erasure-resilient coding scheme. Technical
Report TR-95-048, International Computer
Science Institute, August 1995.

[9] J. S. Plank. A tutorial on Reed-Solomon coding
for faulttolerance in RAID-like systems.
Software – Practice & Experience, vol. 27, no.
9, pp. 995–1012, September 1997.

[10] J. S. Plank and Y. Ding. Note: Correction to the
1997 tutorial on Reed-Solomon coding.
Software – Practice & Experience, vol. 35, no.
2, pp.189–194, February 2005.

[11] D. Patterson, G. Gibson, and R. Katz, A Case
for Redundant Arrays of Inexpensive Disks
(RAID), Proc. ACM SIGMOD ’88, pp. 109-116,
June 1988.

[12] G.-L. Feng, R.H. Deng, F. Bao, and J.-C. Shen,
New Efficient MDS Array Codes for RAID Part
I: Reed-Solomon-Like Codes for Tolerating
Three Disk Failures, IEEE Trans. Computers,
vol. 54, no. 9, pp. 1071-1080, Sept. 2005.

[13] J. L. Hafner. WEAVER Codes: Highly fault
tolerant erasure codes for storage systems. In
FAST-2005: 4th Usenix Conference on File and
Storage Technologies, pp. 211–224, San
Francisco, December 2005.

[14] J. L. Hafner. HoVer erasure codes for disk
arrays. In DSN-2006: The International
Conference on Dependable Systemsand
Networks, Philadelphia, June 2006.

[15] PLANK, J. S. Jerasure: A library in C/C++
facilitating erasure coding for storage

applications. Tech. Rep. CS-07-603, University
of Tennessee, September 2007.

[16] J. Blomer, M. Kalfane, R. Karp, M. Karpinski,
M. Luby, and D. Zuckerman,
http://www.icsi.berkeley.edu/~luby/cauchy.tar.u
u, 2007.

[17] L. Xu, Hydra: A Platform for Survivable and
Secure Data Storage Systems, Proc. Int’l
Workshop Storage Security and Survivability,
Nov. 2005.

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1926 Issue 12, Volume 8, December 2009

	29-829
	32-121
	32-368
	6. Acknowledgment

	32-419
	32-420
	32-633
	32-739
	32-812
	32-866
	

