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Abstract: - Low encoding/decoding complexity is essential for practical RAID-6 storage systems. In this paper, 
we describe a new coding scheme, which we call Rotary-code, for RAID-6 disk arrays. We construct Rotary-
code based on a bit matrix-vector product similar to the Reed-Solomon coding, and provide the geometry 
encoding method and detailed non-recursive decoding algorithms. The capability of two-disk fault-tolerance 
and the property of Maximum Distance Separable (MDS) are proved in Rotary-code. The key novelty in 
Rotary-code is that the Rotary-code has optimal encoding complexity and optimal decoding complexity 
comparing with existing RAID-6 codes.  
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1 Introduction 
Disk arrays [11], such as redundant arrays of 
inexpensive disks (RAID), have been widely used in 
many companies, universities, and government 
organizations for a decade. Most of the existing 
RAID architectures, e.g., RAID-3 and RAID-5, use 
a simple parity scheme that can recover one disk 
failure, but now, disk and network storage systems 
have grown to the point where the fault-tolerance of 
RAID-5 is no longer enough. RAID-6 is a 
specification for storage systems composed of 
multiple storage devices to tolerate the failure of any 
two devices. In recent years, RAID-6 has become 
important when a failure of one disk drive occurs in 
tandem with the latent failure of a block on a second 
drive [4]. On a standard RAID-5 system, this 
combination of failures leads to permanent data loss. 
Hence, storage system designers have started 
turning to RAID-6.  

Numerous erasure coding techniques have been 
developed that can implement RAID-6; however, 
each has limitations. The well known Reed-
Solomon code [9] can tolerate more than one disk 
failure. However, the encoding and decoding of 
Reed-Solomon code involve operations over finite 
fields and are thus very slow. It would be desirable 
to have binary linear codes that only involve 
exclusive-OR (XOR) operations. For tolerating two 
disk failures, many good codes have been developed 
(e.g. [1,2,4,6-10,13,14]). Array codes are a class of 
binary linear codes, where information and parity 
bits are placed in a two-dimensional (or 
multidimensional) array instead of a one-

dimensional vector. The information and parity bits 
are defined over an Abelian group  with an 
addition operation. Usually, . The bits are just 
binary bits and addition is an XOR operation [3]. 
The best results are EVENODD codes [1], [3], X-
codes [6], and B-codes [7]. The X-Code [6] is an 
extremely elegant erasure code for two-disk systems 
that encodes, decodes and updates optimally. 
However, it is a vertical code that requires each 
device to hold two coding words for every k data 
words. It does not fit the RAID-6 specification of 
having coding devices P and Q, where P is a simple 
parity device. The B-code [7] is also a vertical code 
and does not fit the RAID-6 specification. 

( )G q
2q =

In this paper, we develop a new class of binary 
MDS array codes called Rotary-code, which can be 
efficiently used for RAID-6. The codes are similar 
to the Reed-Solomon codes and the EVENODD 
code. The binary MDS array codes are a class of 
binary linear codes, where information bits form an 
m n×  array and parity bits form an  array. In 
applications of these new codes in RAID, n denotes 
the number of information disks on which 
information “data” will be stored, m indicates the 
number of “data”, which can be bytes, computer 
words, or disk sectors, and are stored on a disk, 

2m×

( 1m )+ is a very large prime. The code rate is 
/ ( 2)n n + , i.e., it achieves the capacity of erasure 

channel. Rotary-code is a low-density parity-check 
code, but has a sparser parity-check matrix than the 
EVENODD code. This property leads to faster 
encoding and decoding procedures for the proposed 
code. 

This paper is organized as follows: In Section 2, 
we introduce the RAID-6 specification and current 
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2-erasure code schemes. In Section 3, we construct 
the Rotary-code based on a bit matrix-vector 
product similar to the Reed-Solomon coding and 
provide detailed decoding algorithms. We compare 
the encoding/decoding complexity with existing 
code scheme in Section 4. The MDS property of 
Rotary-code is proved in Section 5. We further 
share our implementation and performance tests of 
Rotary-code in Section 6 and conclude in Section 7. 
 
 
2 RAID-6 Specification And 2-erasure 
Codes 
RAID-6 is a specification for storage systems with 

 nodes to tolerate the failure of any two nodes, 
where k is the amount of data disk nodes. Logically, 
a typical RAID-6 system appears as depicted in 
Figure 1. There are  storage nodes, each of 
which holds B bytes, partitioned into m data nodes, 
D

2m +

2m +

0, . . . Dm−1, and two coding nodes P and Q. The 
entire system can store mB bytes of data, which are 
stored in the data nodes. The remaining 2B bytes of 
the system reside in nodes P and Q and are 
calculated from the data bytes. The calculations are 
made so that if any two of the  nodes fail, the 
data may be recovered from the surviving nodes. 

2m +

D1 D2 D(m-1) P Q
 

Fig. 1. Logical overview of a RAID-6 system. 
 

Actual implementations optimize this logical 
configuration by setting B to be smaller than each 
disk’s capacity, and then rotating the identity of the 
data and coding devices every B bytes. This helps 
remove hot spots in the system in a manner similar 
to RAID-5 systems. A pictorial example of this is in 
Fig. 2. For simplicity, in the remainder of this paper 
we assume that each storage node contains exactly B 
bytes as in Fig. 1 since the extrapolation to systems 
as in Fig. 2 is straightforward. 

P Q
P

Q

Q

P

P

Q

B bytes

 
Fig. 2. In actual implementations, the identities of 
the data and coding nodes rotate every B bytes. This 
helps to alleviate hot spots on the various drives. 
 

The RAID-6 specification calls for two parity 
drives, P and Q. The contents of the P drive are 

calculated as the parity of the data drives, just as in 
RAID-5. The contents of the Q drive are defined by 
the particular code, but must be a Maximum 
Distance Separable (MDS) code. This means that 
any combination of two-disk failures may be 
tolerated without data loss. In this way, RAID-6 
systems extrapolate naturally from RAID-5 systems 
by simply adding a Q drive. It also means that the 
sole challenge in designing a RAID-6 coding 
methodology lies in the definition of the Q drive. 
There are several criteria to evaluate an erasure 
coding technique for a RAID-6 system: 
encode/decode complexity, update complexity and 
storage efficiency. 

There are a variety of codes that can tolerate 
two-disk failures (e.g. [1,2,4,6,7,8,9,10,13,14]). We 
divide the set of the known 2-erasure codes into 
different categories and give (non-exhaustive) 
examples in each category. In a category by 
themselves are the Reed-Solomon codes [9], which 
are MDS. This means optimal storage efficiency and 
optimal update penalty. But the computational 
complexity is a serious problem because Galois 
Field computation is used though optimized 
algorithms have been developed [10].Second are 
non-MDS codes that are XOR-based, such as 
WEAVER codes [13] and HoVer codes [14]. These 
have perfect computational complexity, but bad 
storage efficiency is their inherent drawback. Their 
property of non-MDS renders them inapplicable to 
the RAID-6 specification. 

Finally, in the last category are XOR-based 
MDS codes. These come in two types: vertical 
codes such as the X-code [6], B-code [7] and 
horizontal codes such as EVENODD [1,3], and 
Row-Diagonal Parity codes [4]. In a storage system 
based on horizontal codes, some disks contain 
nothing but data symbols, and the others contain 
only parity symbols. The opposite is vertical codes 
in which the parity symbols and the data symbols 
are stored together. The X-Code [6] is an extremely 
elegant erasure code for two-disk systems that 
encodes, decodes and updates optimally. However, 
it is a vertical code that requires each device to hold 
two coding words for every k data words. Vertical 
codes do not fit the RAID-6 specification of having 
coding devices P and Q, where P is a simple parity 
device.  

EVENODD [1] is the first MDS array code, 
perhaps also the most important one - many 
subsequent array codes are similar to it and its 
generalization [3], such as RDP [4], STAR-code [5], 
etc. It is a horizontal code and parity independent 
(none of the parity symbols participate in other 
parity groups). EVENODD organizes data as 
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symbols in an  array, referred to as 
a segment, where the first m columns correspond to 
data disks and columns m and are check disks. 
The first check disk is a horizontal parity disk, and 
the second is a skew diagonal parity disk. D

( 1) ( 2m m− × + )

1

1m +

i
* 

denotes a data symbol that participates in Pi and all 
Qs. Namely, the sum S (over GF[2]) of all of these 
kind of symbols is added into every diagonal parity 
symbol. Thus the computational performance and 
the update complexity of EVENODD are non-
optimal. RDP Coding is very similar to EVENODD 
coding, but improves upon it in several ways [4]. 
RDP calculates the bits of the Q device from both 
the data and parity bits, and in so doing achieves 
better performance. One important advantage of 
EVENODD and RDP is that they meet the RAID-6 
specification. Moreover their coding schemes are 
simple and are easy to implement.  

The proposed Rotary-codes are horizontal 
codes as well as EVENODD and share many good 
properties, such as optimal storage efficiency and 
simple encoding and decoding schemes. We 
describe the codes and analyze their performance 
below.  
 
 
3 Rotary-code Description 
Rotary-code encoding and decoding are based on a 
bit matrix-vector product very similar to those used 
in Reed-Solomon coding [9,10]. This product 
precisely defines how encoding and decoding are 
performed. More efficient decoding algorithms of 
Rotary-code are presented based on the observation 
of geometry property. We first define Rotary-code 
and then describe decoding, and prove the 
correctness. We discuss their encoding /decoding 
performance and compare Rotary-code to the other 
RAID-6 codes in Section 4.  
 
 
3.1 Rotary-code definition 
Before giving the definition of the proposed code, 
we first give the notation of some matrices. For a 
matrix , we always assume that 

, i.e., the order of rows (columns) is 
from 0 to . Let  be positive integer 
(not necessarily a prime). Let 

,( )i j l lM m ×=
0 , -i j l≤ ≤

1l − 1p m= +

mI  be an 
identity matrix and  be an  zero 

matrix. Now, we define the elemental right-cyclic 
matrix  as 

m m× mO m m×

pE

1

0

1 0

T

m
p m

I
E E

→

+ →

⎡ ⎤
⎢ ⎥= =
⎢ ⎥
⎣ ⎦

                               (1) 

where  is a 0
→

1 m× vector of 0s and  is an 0
T→

1m× vector of 0s. It can be easily checked that  

{ }2, , ,..., m
p p p pI E E E  

form a group with matrix multiplication over GF(2) 
and p

p pE I= . 
In the following, if no confusion arises, I and E 

are used in place of mI and  respectively. We 
also define 

mE

mod  a a p〈 〉 =  
Thus, 0 1a p≤ 〈 〉 ≤ − . 

From (1), let , we have ,( )i j p pE eμ
×=

,

1     for 
0        otherwise    i j

j i
e

μ= 〈 + 〉⎧
= ⎨
⎩

                      (2) 

Clearly, these matrices form an Abelian group 
with the traditional multiplication over GF(2).The 
unity element is I, i.e., identity matrix. We have 

( ) 0  i j j i i jE E E E E and E I+× = × = =  
It can be easily checked that ( )I E+  has rank 

m. For any1 a m≤ ≤  , there is 1  such that b m≤ ≤
1ab〈 〉 = . Thus, we have 

 
1

1
( )( )

b
a aj ab

j
I E I E I E I E

−

=

+ + = + =∑ +

)

 

Thus, the rank of ( aI E+  is at least m. On 
the other hand, each column and each row has 
exactly two 1s. Therefore, the rank of ( )aI E+  is m, 
i.e., it is a singular p p×  matrix. 
Lemma 1.  has rank m for . ( a bE E+ )

) )

a b≠
Proof. There are two cases: 1) one of a and b is zero. 

 is transformed to ( a bE E+ (I Eμ+ , the rank of 
which is m. So (  has rank m. )a bE E+

2) Neither of a and b is zero. From a b≠ and 
the definition of E, we know none of all  is 1 

simultaneously in  and . Thus, the rank of 
 is greater than or equal to the rank of 

 over GF(2). It can be easily checked that  
has rank m. The rank of (  is at least m. On 
the other hand, each column and each row has 
exactly two 1s. Therefore, the rank of ( )  is 
m. 

,i je
aE bE

( a bE E+ )

)

aE aE
a bE E+

a bE E+

The proof is completed.                         □ 
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Now, we give the details of the proposed 
construction. We first define the following binary 
matrix: 
 

2 -2m m

I I I I I
P

I I E I E I E I E
⎡

=⎢ -1

⎤

+ + + +⎢ ⎥⎣ ⎦

L

L

⎤
⎥
⎥
⎥

⎥
⎥

⎥
⎥

⎥(3) 

This is a  binary matrix. It can be 
regarded as a 2  block matrix, where each 
block-column contains m columns, and each block-
row contains m rows. 

22m m×
m×

Example 1. Let , i.e. , and, we have 4m = 5p =
1 0 0 0
0 1 0 0

I
0 0 1 0
0 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

                

0 1 0 0
0 0 1 0

E
0 0 0 1
1 0 0 0

⎡
⎢
⎢=
⎢
⎢ ⎥
⎣ ⎦

2

0 0 1 0
0 0 0 1

E
1 0 0 0
0 1 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

            3

0 0 0 1
1 0 0 0

E
0 1 0 0
0 0 1 0

⎡ ⎤
⎢ ⎥
⎢=
⎢
⎢ ⎥
⎣ ⎦

1 1 0 0
0 1 1 0

I E
0 0 1 1
1 0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

       2

1 0 1 0
0 1 0 1

I E
1 0 1 0
0 1 0 1

⎡ ⎤
⎢ ⎥
⎢+ =
⎢
⎢ ⎥
⎣ ⎦

3

1 0 0 1
1 1 0 0

I E
0 1 1 0
0 0 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥+ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

P 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1
0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 0
0 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0
0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1

⎡ ⎤
⎢
⎢
⎢

⎥
⎥

⎢
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥
⎥
 

We have the following theorem: 
Theorem 1. Any 2 block-columns form a full rank 
submatrix, i.e., the columns of any 2 block-columns 
are linearly independent. 
Proof. Let us consider the submatrix P  consisting 
of two block columns 1x , 2x : 

 
1 2x x

I I
P

I E I E
⎡ ⎤

= ⎢ ⎥+ +⎣ ⎦
 

Transforming P  according to ,  1
2 1( )xr I E+ + r

P  is reduced to the following matrix: 

 
1 2x x

m

I I
O E E
⎡ ⎤
⎢ ⎥+⎣ ⎦

2

 

From Lemma 1, 1x xE E+ has rank m and the 
submatrices in the diagonal block columns are full 
rank, i.e., the ranks are all m. Thus, the reduced 
matrix has rank 2m, i.e., P  is a full rank matrix.    □ 

Now, we are going to introduce the Rotary-
code definition. Let ( ,  be an Abelian group 
and let 0 be the identity element. Let 

)G ⊕
{0,1}b∈ , 

g G∈ . We define 

               (4) 
0 0

1
b

b g g b
g b

=⎧
× = × = ⎨ =⎩

Let 0 1 1( , , , )nv v v v −=
r

L  be a vector over G and 

0 1 1( , , , )nb b b b −=
r

L  be a vector over GF(2), we 
define 

0 0 1 1 1 1( ) ( ) ( n nb v v b b v b v b v− −× = × = × ⊕ × ⊕ ⊕ × )
r r r r

L  (5) 
Definition 1. Let C be the following linear code 
over an Abelian group defined by 

0 1 1 1{ ( , , , , , ) | 0
TT

m m mC c c c c c c Hc− += = = }
r

L , 

where 1 2( , , , )i i i imc c c c=
ur

L , , and ijc G∈

2 -2 -1
m

m m
m

I I I I I I O
H

I I E I E I E I E O I
⎡ ⎤

=⎢ ⎥+ + + +⎣ ⎦

L

L

  
 *|P I⎡ ⎤≡ ⎣ ⎦                                       (6) 

For these codes, the last 2 vectors,  and mc 1mc + , 
are parity-check vectors, and the other m vectors, 
i.e.,  for 0jc 1j m≤ ≤ − , are information vectors. 

In disk array applications, the Abelian group G 
can be computer words with bit-XOR operations. 

The encoding process is to find mc
uur

, 1mc +

uuur
, 

given 0c
uur

, 1c
ur

, …, 1mc −

uuur
, by 

 

0

1

1

1

m

m

m

c
c cP

c
c

+

−

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

uur

uur ur

uuur
M
uuur

                            (7) 

In the sequel, 1p m= +  denotes a prime. Each 
codeword of the code C is represented by an array 
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as in the case of the EVENODD code. Let 
be a  array of the code C, 

where column j, , represents an 
information symbol and columns 

, 0 1
0

( )i j i p
j p

a ≤ ≤ −
≤ ≤

( 1p p× + )

20 j p≤ ≤ −
1p −  and p 

represent parity symbols, and we assume that there 
is an imaginary 0-row, i.e., , 0, 0ja = 0 j p≤ ≤ . 
Although the parity-check matrix given by (6) is not 
systematic, the encoding procedure is very simple. 
First, we compute column 1p −  by using the 
information bits in column j, 0 2 : j p≤ ≤ −

2

, 1 ,0

p

i p i kk
a a

−

− =
= ⊕ ，1                (8) 1i p≤ ≤ −

and next compute column p by using data in 
information columns and the parity bits in column 

1p − : 
1

, ,0

p

i p i k kk
a a

−

< + >=
= ⊕ , 1               (9) 1i p≤ ≤ −

Equations (8) and (9) cannot be computed in 
parallel, but in software implementation this is not a 
problem. The proposed code, C, has a geometric 
description similar to that of the EVENODD code. 
Consider the code with , for example. Fig. 3a 
and 3b show the horizontal parities given by (8) and 
the diagonal parities given by (9), respectively. Note 
that we do not compute the parity check of the 
imaginary 0-row depicted by the symbol ◇. 

5p =

◇ ◇ ◇ ◇ ◇

▲ ▲ ▲ ▲ ▲
■ ■ ■ ■ ■
● ● ● ● ●
★ ★ ★ ★ ★       

(a) 
◇ ★ ● ■ ▲ ◇

▲ ◇ ★ ● ■ ▲
■ ▲ ◇ ★ ● ■
● ■ ▲ ◇ ★ ●
★ ● ■ ▲ ◇ ★  

 (b) 
Fig. 3. (a) Horizontal and (b) diagonal parities of 

Rotary-code. 
 
 
3.2 Erasure Decoding 
According to Theorem 1, Rotary-code can correct 
up to any two erased columns. In other words, the 
minimum distance of the code is 3. Using the 
geometric description of the proposed code, we can 
give an efficient erasure decoding algorithm for the 

proposed code. It will be executed when a disk fails, 
or when two disks fail simultaneously. 

Consider the ( 1p p )× +  array of symbols , 
such that the last two columns are redundant 
according to Equations (8) and (9). If one column 
(disk) has failed, say column (disk) j, 

,i ja

j p≠ , then it 
can be retrieved using Equations (8). If column p 
fails, then the symbols can be retrieved using 
Equations (9). 

Next, assume that columns (disks) 1j  and 2j  
have failed, where 1 20 j j p≤ < ≤ . We have two 
cases: 

Case 1: 2j p= . Namely, the diagonal 
redundant disk and one other data disk have failed. 
We can reconstruct disk 1j  using Equation (8) and 
subsequently disk 2j using Equation (9). 

Case 2: 2j p< . This is the main case. We 
cannot retrieve them using the parities separately, as 
in the previous case. We analyze this case in detail. 
We retrieve the symbols in columns 1j  and 2j  as 
follows: 

1. Set 2 1s j j← − 2j← −, t p , 0h ←  and 
0r ← . 

2. Calculate w, w satisfies  and 1w s j< × >=
w p< . 

3. For( 0l = ; l w< ; l ){ + +
(a) h h s←< + > ; 

(b) 
2

2

1

, ,
0,

p

h j h t p h t k k
k k j

a a a
−

,< + > < + + >
= ≠

← ⊕ ∑ ; 

(c) .} 
1

1

1

, ,
0,

p

h j h k
k k j

a a
−

= ≠

← ∑
4. For( 0l = ; 1l p w< − − ; l ){ + +

(a) r r s←< − > ; 

(b) 
1

1

, 1 , ,
0,

p

r j r s t p r s t k k
k k j

a a a
−

< + + > < + + + >
= ≠

← ⊕ ∑ ; 

(c) .} 
2

2

1

, ,
0,

p

r j r k
k k j

a a
−

= ≠

← ∑
Step 3 and step 4 can be computed in parallel to 

reduce the reconstruction time. The algorithm is not 
recursive and very simple to implement in software 
or in hardware. 

Next we illustrate the decoding algorithm with 
an example. 
Example 2. Let us now consider that the codeword 
of the array code with  shown in Fig.4a. 5p =
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Assume that columns (disks) 1 and 3 have been 
erased (lost). See Fig.4b.  

0 1 0 1 0 0
1 1 1 0 1 0
0 0 1 1 0 0
1 0 1 0 0 1

 
(a) 

 

0 ? 0 ? 0 0
1 ? 1 ? 1 0
0 ? 1 ? 0 0
1 ? 1 ? 0 1

 
(b) 

Fig.4 (a) The codeword of the proposed code (b) 
Columns 1 and 3 have been erased. 

 
We apply Case 2 of the erasure decoding 

algorithm. In this case, 2s = ,  and 2t = 3w = . 
The decoding process in the first loop is shown in 
Table 1. 
 

Table 1. The decoding process in the first loop. 
l h Calculations Results

2,3 4,5 4,0 1,2 3,4a a a a a= ⊕ ⊕ ⊕  0 
0 2 

2,1 2,4 2,0 2,2 2,3a a a a a= ⊕ ⊕ ⊕  1 

4,3 1,5 1,0 2,1 3,2a a a a a= ⊕ ⊕ ⊕  0 
1 4 

4,1 4,4 4,0 4,2 4,3a a a a a= ⊕ ⊕ ⊕  0 

1,3 3,5 3,0 4,1 2,4a a a a a= ⊕ ⊕ ⊕  1 
2 1 

1,1 1,4 1,0 1,2 1,3a a a a a= ⊕ ⊕ ⊕  1 

0, ja ( 0 j p≤ ≤ ) doesn’t participate in 
calculations in the above table, the same hereinafter, 
because it is part of the imaginary 0-row, which has 
no effect on the results. After the first loop, we 
obtain , , , 2,3 0a = 2,1 1a = 4,3 0a = 4,1 0a = , 

 and . Next, we proceed to the 
second loop. The decoding process in the second 
loop is shown in Table 2.  

1,3 1a = 1,1 1a =

 
Table 2. The decoding process in the second loop. 
l r Calculations Results

3,1 2,5 2,0 4,2 1,4a a a a a= ⊕ ⊕ ⊕  0 
0 3 

3,3 3,4 3,0 3,1 3,2a a a a a= ⊕ ⊕ ⊕  1 

After the second loop, we obtain a3,1 0=  and 

. The decoding algorithm ends and the two 
erased columns (disks) are reconstructed 
successfully. 

3,3 1a =

 
 
4 Complexity Comparison with 
Existing Schemes 
There are mainly two existing schemes applicable to 
the RAID-6 specification. One is the Reed-Solomon 
(RS) codes [9], the other is EVENODD [1]. The 
results [1] show that EVENODD outperforms the 
RS codes because EVENODD does not require 
finite field computations. Hence, in this section, we 
compare the complexity of Rotary-code only with 
EVENODD from encoding, and decoding. 

Both Rotary-code and EVENODD only need 
exclusive-OR (XOR) operations in encoding, 
decoding. The complexity can be measured by the 
numbers of XOR operations. In order to perform 
fair comparison, we assume that Rotary-code and 
EVENODD have the same array size for a given 
parameter p (p is a prime number greater than 2) by 
assuming the array for EVENODD has one 
imaginary data 0-column. The assumption is 
reasonable because the imaginary 0-column does 
not change the numbers of XOR operations in 
encoding, decoding for EVENODD. 
 
 
4.1 Encoding complexity 
At the encoding of Rotary-code, one parity symbol 
in the first parity column needs (p-2) XOR 
operations and the total of the first parity column is 
( - 2) ( -1)p p×  using Equation (8). One parity 
symbol in the second parity column also needs (p-2) 
XOR operations because the imaginary 0-row 
symbol does not need XOR operations using 
Equation (9). The total of the second parity column 
is also ( - 2) ( -1)p p× . The total of XOR operations 
in the encoding of Rotary-code is 

2( - 2) ( -1) ( - 2) ( -1) 2 6 4p p p p p p× + × = − −

)

 
Theorem 2. For a 2-columns-erased tolerant array 
with n data columns and 2 parity columns, the lower 
bound of XOR operations per data symbol is 

. 2 - 2 / n
Proof: Assume that the coding array contains m 
rows. We have a minimum of two parity symbols 
per row of n data symbols, from the Singleton 
bound. The array size is .  Each data 
symbol must contribute to at least two different 
parity symbols, one on each parity column, to 
ensure that we can recover if the data symbol and 
one parity symbol is lost. Therefore, we need to 
construct 2m parity symbols from equations that in 
the minimal formulation contain no common pairs 
of data symbols. The minimum number of 

( 2m n× +
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separately XORed input terms required to construct 
the 2m parity symbols is 2mn. Accordingly, the 
minimum number of XOR operations is 2 ( . 
Therefore, the lower bound of XOR operations per 
data symbol to ensure 2-columns-erased tolerance is: 

-1)m n

 
2 ( -1) 2( 1) 22m n n

mn n n
−

= = −

4

                  □ 

Rotary-code protects  data symbols 
using  XOR operations. Let 

2( 1)p −
22 6p p− + 1n p= − , 

the count of XOR operations per each symbol is 
2

2

2 2 2n n
n n
−

= −
2

2

=

⎛ ⎞= ⊕ ⊕⎜ ⎟
⎝ ⎠

0 2i p≤ ≤ −

, which meets the lower bound. 

Now, we count the XOR operations in the 
encoding of EVENODD. The equations for 
computing the parity symbols are given below [1]: 

1

, ,0

p

i p i kk
a a

−

=
= ⊕ ，0                      (10) i p≤ ≤ −

1

, 1 ,0
S

p

i p i k kk
a a

−

+ < − > ,    (11) 

1

1 ,1

p

p k kk
S a

−

− −=
= ⊕                                             (12) 

Equation (10) equals to Equation (8) 
considering that the array for EVENODD has one 
imaginary data 0-column. The XOR operation count 
of the first parity column is also ( - 2) ( -1)p p×  
using Equation (10). The adaptor S is computed 
before computing the parity symbols in the second 
parity column. ( -  XOR operations are required 
to obtain the adaptor S using Equation (12) and the 
assumption. In computing the second parity column 
using Equation (11) and the assumption, 

3)p

( - 2) ( -1)p p×  XOR operations are needed because 
each parity symbol needs 2p −  valid data symbols 
and the adaptor S. Therefore, the total of XOR 
operations in the encoding of EVENODD is 

2( -2) ( -1) (p 3) ( -2) ( -1) 2 5 7p p p p p p× + − + × = − −  (13) 
As we can see, Rotary-code has faster encoding 

procedure than EVENODD by less than  
XOR operations for a given parameter p and the 
same array size. Table 3 compares Rotary-code to 
EVENODD for different values of p, assuming that 
p is prime (This is not a hard constraint, since the 
codes can be shortened to cover cases in which p is 
not a prime). The last column of Table 1 contains 
the reduced number of XOR operations between the 
number in column 2 (i.e., the number of operations 
needed in Rotary-code) and the number in column 3 
(i.e., the number of operations needed in 
EVENODD). For instance, we can see that for p = 
43 (last row), Rotary-code requires less 40 

operations than EVENODD at the encoding. We can 
see from Table 1 that the number of XOR 
operations needed for encoding Rotary-code 
decreases accordingly with respect to EVENODD 
when the parameter p increases. 

3p -

 
Table 3. Number of XOR operations needed to 

encode with the parameter p. 
p Rotary-

code 
EVENODD Improvement

5 18 20 2 
7 56 60 4 
11 180 188 8 
13 266 276 10 
17 486 500 14 
19 620 636 16 
23 936 956 20 
29 1530 1556 26 
31 1760 1788 28 
37 2546 2580 34 
41 3150 3188 38 
43 3476 2516 40 
 
 

4.2 Decoding complexity 
Rotary-code has optimal decoding complexity after 
any one column failure. Reconstruction from any 
one column failure requires exactly 

 XOR operations, 
since each last symbol is reconstructed by XORing 
the surviving (p−1) symbols in the first parity set or 
in the second parity set and the last column has (p-1) 
symbols. Let n=p−1, we construct n symbols with 

 XOR operations, which is (n−1) XOR 
operations per parity symbol. It is already shown 
that it has the minimum number of XOR operations 
for construction of an array that double protects 
parity, and since all parity sets are the same size, the 
cost to repair any one lost column is the same and is 
also a lower bound. 

2( 1)( 2) 3p p p p- - = - + 2

)

2

2(n n-

Reconstructing from any double failure that 
includes the second parity column is exactly the 
same cost as parity construction. Reconstructing any 
of the data columns from the first parity column has 
the same cost as constructing the first parity column. 
The cost of reconstructing any combination of two 
columns can also be determined by 

22 6 4 2 2p p n n− + = −  XOR operations required 
to reconstruct 2( 1)p −  data symbols. Therefore, 
Rotary-code has optimal decoding complexity after 
any two column failure. 

Comparing again to EVENODD, using the data 
reconstruction algorithm described in the 
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EVENODD paper, we see that different failure 
mode has different reconstruction cost. To compare 
the complexity fairly, we classify the columns into 
three types: data columns denoted by D, the first 
parity column denoted by P, the second parity 
column denoted by Q. There are three types: D, P 
and Q for any one column failure. And (D, D), (D, 
P), (D, Q) and (P, Q) are all the possible types for 
any two column failures. Assume that ach column 
has the same failure probability. It is calculated 
from the array with one imaginary 0-column that the 

average of XOR operations is 
3 22

1
p p

p
− −
+

1
 for one 

column failure and 
4 3 22 2 9 13 2

( 1)
p p p p

p p
− − + −

+
4

 

for two column failures.  
 

Table 4. Number of XOR operations needed to 
decode from two failures with the parameter p. 

p Rotary-code EVENODD Improvement
5 18 27.2 9.2 
7 56 66.8 10.8 
11 180 194.3 14.3 
13 266 282.2 16.2 
17 486 505.9 19.9 
19 620 641.8 21.8 
23 936 961.7 25.7 
29 1530 1561.6 31.6 
31 1760 1793.5 33.5 
37 2546 2585.5 39.5 
41 3150 3193.4 43.4 
43 3476 2521.4 45.4 

It is obvious that Rotary-code needs less XOR 
operations to reconstruct from one column failure 
than EVENODD. Table 4 compares the decoding 
complexity of Rotary-code from two column failure 
to EVENODD for different values of p. We can see 
from Table 4 that the number of XOR operations 
needed for decoding Rotary-code from two failures 
decreases accordingly with respect to EVENODD 
when the parameter p increases. 
 
 
5 The MDS Property 
In this section, we state and prove the MDS property 
of Rotary-code. 
Theorem 3—MDS Property: Rotary-code has 
column distance of 3, i.e., it is MDS, if and only if p 
is a prime number. 
Proof: Let us start with the sufficient condition, 
namely, to prove that for any prime number p, 
Rotary-code is MDS. 

First observe that Rotary-code is a linear code, 
thus proving that the code has distance of 3 is 
equivalent to proving that the code has minimum 
column weight wmin of 3, i.e., a valid codeword of 
Rotary-code has at least three nonzero columns. (A 
column is called a nonzero column if at least one 
symbol in the column is nonzero.) We will prove it 
by contradiction. 

From the definition of Rotary-code, it is 
impossible to have only one nonzero column, thus 
wmin > 1. 

Now suppose wmin=2, then without loss of 
generality, we can assume that  and , iv jv
0 i j p≤ < ≤ , are nonzero vectors and the others 
are the all-zero vectors in a codeword 

0 1( , , , )pv v v v= L  of weight 2. If j p= , then we 

have 0iv =  since . Thus, we get a 
contradiction. Next, we assume that j<p. In this case, 
we have 

0TvH =

iv v j=  and . From these 
equations, we have 

iT jT
i jv E v E=

( ,0) ( ,0) (0, )iT jT
i p i pv E v E a= +                 (14) 

where “+” denotes component wise modulo 2 
addition and (2)a GF∈ . Let S be the sum of all the 
components in . From (14), we have S Siv a= +  

since  and  are permutation matrices. So, we 

get 

i
pE j

pE

0a = . Hence, (14) becomes . 

We have  for . 

Since 

( )( ,0) ( ,0)j i T
i p iv E v− =

( )( ,0) ( ,0)l j i T
i p iv E v− = 1 1l p≤ ≤ −

0 j i p< − <  and p is a prime, we have 
 for . Especially, 

. It is known that, for w, a binary 

vector of length p, , if and only if w is the 

all-zero or all-one vector. Since ( ,  is a nonzero 
vector whose last component is zero, we get a 
contradiction. Thus , but it is easy to see 
there is a codeword of column weight 3, so w

( ,0) ( ,0)kT
i p iv E v= 1 k p< < -1

( ,0) ( ,0)T
i p iv E v=

T
pwE w=

0)iv

min 3w ≥
min = 3. 

This concludes the proof for the sufficient condition. 
On the other hand, if p were not a prime 

number, then there exists a positive integer d, 
1 d p< < , such that d divides p. We define a binary 
vector 0 1 2( , , , )pu u u u −= L  as follows: 

            (15) 
1    if  is multiple of 
0      otherwise             i

i d
u ⎧
= ⎨
⎩

Then, 0 1( , , , )pv v v v= L , where  and 

, 
i pv v u= =

jv 1 v p≤ ≤ , j d≠ , is the all-zero vector, is a 
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codeword of C with weight 2, or the distance of the 
code is no greater than 2, which contradicts with the 
fact that the code is of distance 3. So p being a 
prime number is a necessary condition to the MDS 
property of Rotary-code.                             □ 
 
 
6 Implementation and Performance 
The implementation of the Rotary-code encoding is 
straightforward and simply follows the procedure 
described in Section 3.1. Thus, in this part, our main 
focus is on the erasure decoding procedure. As 
stated in Section 4.2, the decoding complexity is 
also optimal. The decoding algorithm in Section 3.2 
is not recursive and very simple to implement in 
software or in hardware. To achieve the maximum 
performance, we apply the parallel technique in the 
decoding procedure as described in the earlier 
section. 
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Fig. 5. Throughput performance (2 erasures are 
randomly generated among information disks). 

 
We have implemented the Rotary-code in 

C/C++ and apply it to a reliable storage platform 
[17]. The throughput performance is measured and 
compared to the publicly available implementation 
of the XOR-based RS code [16], the EVENODD 
code [15]. The results are shown in Fig. 5, where the 
size of a single data block from each disk is 2,880 
bytes and the number of information disks varies 
from 6 to 31. Note that our focus is on decoding 
erasures that all occur at information columns since, 
otherwise, Rotary-code just reduces to RAID-5 
(when there is the second parity column erasure), so 
we only simulate random information column 
erasures in Fig. 5. Recall that a single data block 
from each disk corresponds to a single column in 
Rotary-code and is divided into 1p −  symbols, so 
the block size needs to be a multiple of 1p − . For 
comparison purposes, we use 2,880 here since it is a 
common multiple of 1p −  for most p values in the 
range. In real applications, we are free to choose the 

block size to be any multiple of 1p −  once p, as a 
system parameter, is determined. These results are 
obtained from experiments on a Pentium 4 1.6 GHz 
Linux machine with 512 Mbytes of memory running 
Redhat 9.0. It is clear that Rotary-code achieves 
throughput that is about twice that of the RS code 
and is more than that of the EVENODD code. Note 
that there are jigsaw effects in the throughputs of 
both EVENODD and Rotary-code. This happens 
mainly due to the shortening technique. When the 
number of storage nodes is not prime, the codes are 
constructed using the closest larger prime number. 
A larger prime number means that each column 
(data block here) is divided into more pieces, which 
in turn incurs additional control overhead. As the 
number of information disks increases, the overhead 
is then amortized, reflected by the performance 
ramping up after each dip. (Similarly, the 
performance of the RS code shows jigsaw effects 
too, which happens at the change of L due to the 
increment of total disks n.)  
 
 
7 Conclusion 
In this paper, we have presented a class of MDS 
array codes, called Rotary-code, which are based on 
a low-density parity-check matrix. The codes have a 
sparser parity-check matrix than the EVENODD 
code and have two major advantages over the other 
2-erasure codes. One is that Rotary-code has 
optimal storage efficiency and applicable to the 
RAID-6 specification. The other is that Rotary-code 
uses only simple XOR and cyclic shift operations 
and has optimal encoding and decoding complexity. 

From the perspective of error-correcting codes, 
we have constructed a new code that is capable for 
correcting two erasures. The natural generalization 
works of Rotary-code is to construct the codes for 
the case of 3 erasures as well as for 4 erasures. In a 
sequel paper, we will present an extension of 
Rotary-code to a more than two erasures case. 
 
References: 
[1] M. Blaum, J. Brady, J. Bruck, and J. Menon, 

EVENODD: An Efficient Scheme for 
Tolerating Double Disk Failures in RAID 
Architectures, IEEE Trans. Computers, vol. 44, 
no. 2, pp. 192-202, Feb. 1995. 

[2] J. S. Plank. The RAID-6 Liberation codes. In 
FAST-2008: 6th Usenix Conference on File and 
Storage Technologies, pp. 97–110, San Jose, 
February 2008. 

[3] M. Blaum, J. Bradt, J. Bruck, J. Menon, and A. 
Vardy, The EVENODD Code and Its 

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1925 Issue 12, Volume 8, December 2009



Generalization: An Efficient Scheme for 
Tolerating Multiple Disk Failures in RAID 
Architectures, High Performance Mass Storage 
and Parallel I/O, chapter 14, 2002. 

[4] CORBETT, P., ENGLISH, B., GOEL, A., 
GRCANAC, T., KLEIMAN, S., LEONG, J., 
AND SANKAR, S. Row diagonal parity for 
double disk failure correction. In 4th Usenix 
Conference on File and Storage Technologies , 
San Francisco, CA,March 2004. 

[5] Cheng Huang, Lihao Xu, STAR: An Efficient 
Coding Scheme for Correcting Triple Storage 
Node Failures. IEEE Trans. Computers, vol. 57, 
no. 7, pp. 889-901, July 2008. 

[6] L. Xu and J. Bruck, X-Code: MDS Array Codes 
with Optimal Encoding, IEEE Trans. 
Information Theory, pp. 272-276, Jan. 1999. 

[7] L. Xu, V. Bohossian, J. Bruck, and D. Wagner, 
Low Density MDS Codes and Factors of 
Complete Graphs, IEEE Trans. Information 
Theory, vol. 45, no. 1, pp. 1817-1826, Nov. 
1999. 

[8] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, 
M. Luby, and D. Zuckerman. An XOR-based 
erasure-resilient coding scheme. Technical 
Report TR-95-048, International Computer 
Science Institute, August 1995. 

[9] J. S. Plank. A tutorial on Reed-Solomon coding 
for faulttolerance in RAID-like systems. 
Software – Practice & Experience, vol. 27, no. 
9, pp. 995–1012, September 1997. 

[10]  J. S. Plank and Y. Ding. Note: Correction to the 
1997 tutorial on Reed-Solomon coding. 
Software – Practice & Experience, vol. 35, no. 
2, pp.189–194, February 2005. 

[11]  D. Patterson, G. Gibson, and R. Katz, A Case 
for Redundant Arrays of Inexpensive Disks 
(RAID), Proc. ACM SIGMOD ’88, pp. 109-116, 
June 1988. 

[12]  G.-L. Feng, R.H. Deng, F. Bao, and J.-C. Shen, 
New Efficient MDS Array Codes for RAID Part 
I: Reed-Solomon-Like Codes for Tolerating 
Three Disk Failures, IEEE Trans. Computers, 
vol. 54, no. 9, pp. 1071-1080, Sept. 2005. 

[13]  J. L. Hafner. WEAVER Codes: Highly fault 
tolerant erasure codes for storage systems. In 
FAST-2005: 4th Usenix Conference on File and 
Storage Technologies, pp. 211–224, San 
Francisco, December 2005. 

[14]  J. L. Hafner. HoVer erasure codes for disk 
arrays. In DSN-2006: The International 
Conference on Dependable Systemsand 
Networks, Philadelphia, June 2006. 

[15]  PLANK, J. S. Jerasure: A library in C/C++ 
facilitating erasure coding for storage 

applications. Tech. Rep. CS-07-603, University 
of Tennessee, September 2007. 

[16]  J. Blomer, M. Kalfane, R. Karp, M. Karpinski, 
M. Luby, and D. Zuckerman, 
http://www.icsi.berkeley.edu/~luby/cauchy.tar.u
u, 2007. 

[17]  L. Xu, Hydra: A Platform for Survivable and 
Secure Data Storage Systems, Proc. Int’l 
Workshop Storage Security and Survivability, 
Nov. 2005. 

WSEAS TRANSACTIONS on COMPUTERS Yulin Wang, Guangjun Li

ISSN: 1109-2750 1926 Issue 12, Volume 8, December 2009


	29-829
	32-121
	32-368
	6. Acknowledgment

	32-419
	32-420
	32-633
	32-739
	32-812
	32-866
	 




