
The C Compiler generating a Source file in VHDL for a Dynamic
Dataflow Machine being executed direct into a Hardware

JORGE LUIZ E SILVA
University of Sao Paulo

Department of Computer Systems
Av. Trabalhador Saocarlense, 400

BRAZIL
jsilva@icmc.usp.br

KELTON A.P. DA COSTA
University of Sao Paulo

School of Engineering of Sao Carlos
Av. Trabalhador Saocarlense, 400

BRAZIL
kelton@eesc.usp.br

VALENTIN OBAC RODA
University of Sao Paulo

School of Engineering of Sao Carlos
Av. Trabalhador Saocarlense, 400

BRAZIL
valentin@eesc.usp.br

Abstract: In order to convert High Level Language (HLL) into hardware, a Control Dataflow Graph (CDFG) is a
fundamental element to be used. Related to this, Dataflow Architecture, can be obtained directly from the CDFG.
The ChipCflow project is described as a system to convert HLL into a dynamic dataflow graph to be executed in
dynamic reconfigurable hardware, exploring the dynamic reconfiguration. The ChipCflow consists of various parts:
the compiler to convert the C program into a dataflow graph; the operators and its instances; the tagged-token; and
the matching data. In this paper, a C compiler to convert C into a dataflow graph and the graph implementation in
VHDL is described. Some results are presented in order to show a proof-of-concept for the project.

Key–Words: C Compiler; Dynamic Dataflow Architecture; Dynamic Reconfigurable Hardware; Tagged-token;
Matching-Data.

1 Introduction

A Dataflow Architecture is an architecture where
a natural parallelism is present. This kind of archi-
tecture was first researched in the 1970s and was dis-
continued in the 1990s (5; 10; 14). With the advance
of technology of microelectronics, the Field Program-
able Gate Array (FPGA) has been used, mainly be-
cause of its flexibility, the facilities to implement com-
plex systems and intrinsic parallelism. Thus, dataflow
architecture is a topic which has come to light again
(7; 13), especially because of the reconfigurable ar-
chitecture, which is totally based on FPGAs. On the
other hand, much work is being done to covert high
level language as a C language into hardware, in or-
der to help engineers to project their systems using
a high level of abstraction as well as a digital logic
level. In particular, the ChipCflow project is a system
where a C program is initially converted into a Dy-
namic Dataflow graph, followed by its execution in
Reconfigurable Hardware. Its flow diagram is shown
in Figure 1. As can be clearly seen in Figure 1, the
ChipCflow system begins in a host machine where a
C program is edited, to be converted into a control
dataflow graph (CDFG) generating a CDFG object
program. The CDFG object program is converted into
a VHDL where modules of CDFG are accessed from
a data base of VHDL modules. After generating the
complete VHDL program, an EDA tool to convert the

Figure 1: The Flow Diagram for ChipCflow tool.

VHDL program into a bitstream and to download it to
a FPGA is used.

2 The Operators and C statements
implemented in Dataflow Graphs

The operators to be used in the ChipCflow project
are: ”decider”, ”non deterministic merge”, ”determin-
istic merge”, ”branch”, ”copy” and ”operator”. They
are described in Figure 2.

As can be clearly seen in Figure 2, the ”decider”
operator will be used to generate a control signal

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1908 Issue 12, Volume 8, December 2009

”TRUE” or ”FALSE” after to execute a boolean op-
eration as ”<,>,=,=/,>=,<=”. The ”non determin-
istic merge” will be used to forward a item of data
coming into the operator. Otherwise, in ”determinis-
tic merge” the forward depends on the control signal.
The ”branch” operator will be used to forward a item
of data through the ”TRUE” or ”FALSE” arc. The
”copy” operator will duplicate a item of data. Finally
an ”operator” will be used to generate a result after to
execute arithmetic operations as ”+,-,*,/,**”.

The dataflow graph of the While statement was
implemented using these operators and is described in
Figure 3. In Figure 3 there are two branch operator;
two deterministic merge; five copy; one decider with
boolean operator ”>” and two operators with arith-
metic operation ”+”.

In the next section the basic structure for the C
compiler and some examples of graphs are presented.

Figure 2: Operators of the Dynamic Dataflow Model.

Figure 3: Graph extracted from a while command.

3 The C Compiler to generate
dataflow graph

The compiler structure was implemented in C++
and it is made up of two main parts: lexical analysis
and VHDL code generator. The lexical analysis part is
performed over the original C code and for each letter,
number and reserved word, a code scanning generate
a token. After the lexical analysis, and code scanning,
a file with all the tokens are generated to be converted
into a VHDL file.

3.1 Generating a Binary Mapping File after
Lexical Analysis

To generate a Binary Mapping file, a token was
defined and its format is described in the Figure 4. As
can be clearly seen in the Figure 4, the first 4-bits of
the token has been used to identify the operator; the
second, the thirty and the fourth 5-bits have been used
to identify the three inputs (a,b and c) of the operator;
finally the sixth and the seventh 5-bits to identify the
outputs (s and z) of the operator. This is a generic
template for the operator with three inputs and two
outputs signal, however there are operators which less
than three inputs signals and just one output signal.

Figure 4: The format of token.

An example of the dataflow graph and its packets
of bits for a While C command is describes in Figure
5. It is shown in the Figure 5 that each operator has
a set of bits to identify its function, as well as each
arc has a set of bits to identify its interconnections. In
particular, in the left top of the figure has an opera-
tor with the code ”0001” and its arcs ”00000” (value
”0”), ”00001” (value ”i”), ”00010” (a control sig-
nal) and ”00011” (the output signal), corresponding
to three input signals and one output signal respec-
tively. The packet of bits for this particular operator
can be clearly seen in the first packet of bits in the
Figure 6, that is accorded on the format described in
Figure 4. The ”xxxxx” in the packet of bits represent
an arc with no connection signal. Thus, a file with
these packets of bits, is a binary representation for a
dataflow graph extracted from a while C statement in
the C pre-compiler.

The next step is to use the binary representation to

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1909 Issue 12, Volume 8, December 2009

Figure 5: A While C command and its tags.

identify the VHDL operators, what components will
be used and what instances and their interconnections
will be generated for the execution of the VHDL pro-
gram in the ISE Xilinx platform. This step is de-
scribed in the nest item.

3.2 Generating a VHDL file

The operators described for the ChipCflow
project were implemented and tested and are de-
scribed in (16). In order to generate a VHDL pro-
gram, the file with a C program is converted into a bi-
nary mapping representation and then converted into
a VHDL code. Various examples of C program and
their representations in VHDL, were implemented and
are described below.

In Algorithm 1 is described an IF command.

Algorithm 1 The IF Command
if x > 0 then

z ⇐ a + b
else

z ⇐ c− d
end if

The correspondent dataflow graph for the IF com-
mand is described in Figure 7 that is just a graphic
representation. The binary mapping file for the IF
command is described in Figure 8. Using the binary
mapping file it is relatively simple to generate a source

Figure 6: The Binary Mapping File generated for
While C command.

Figure 7: The Dataflow Graph for an IF command.

file in VHDL. The VHDL file for IF command is de-
scribed in Listing 1. As can be clearly seen in the
Listing 1, all the components and instances were gen-
erated as a source file in VHDL.

In Algorithm 2 is described an WHILE command;
the correspondent dataflow graph for the WHILE com-
mand is described in Figure 9; the respective binary
mapping file for the WHILE command is described in
Figure 10 and finally the VHDL file for WHILE com-
mand is described in Listing 2.

In Algorithm 3 is described an IF, FOR, and
WHILE command; the correspondent dataflow graph
for the IF, FOR, and WHILE command is described in
Figure 11; the respective binary mapping file for the
IF, FOR, and WHILE command is described in Fig-
ure 12 and the VHDL file for IF, FOR, and WHILE
command is described in Listing 3.

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1910 Issue 12, Volume 8, December 2009

Figure 8: The Binary Mapping File for IF command.

Algorithm 2 The WHILE Command
x ⇐ 3
while x > 1 do

x ⇐ x + 1
y ⇐ y + x
z ⇐ x + y

end while

Figure 9: The Dataflow Graph for an WHILE com-
mand.

Figure 10: The Binary Mapping File for WHILE com-
mand.

Algorithm 3 The IF, FOR,WHILE Command
a ⇐ 3
b ⇐ 0
y ⇐ 1
z ⇐ 2
for I = 0 to n do

if z > 1 then
z ⇐ a + b

else
x ⇐ 3
while x > 1 do

for j = 0 to n do
x ⇐ x + 1
y ⇐ y + x
z ⇐ z + i

end for
end while

end if
end for

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1911 Issue 12, Volume 8, December 2009

Figure 11: The Dataflow Graph for an IF, FOR,
WHILE command.

Figure 12: The Binary Mapping File for IF, FOR,
WHILE command.

Listing 1: The IF Command in VHDL
1 . −−−
2 . −− Company : P r o j e t o ChipCf low
3 . −− En g i n e e r : k e l t o n Augus to Pontara da Costa
4 . −−
5 . −− Cr ea t e Date : 1 7 : 4 1 : 2 7 0 3 / 2 6 / 2 0 0 9
6 . −− Design Name :
7 . −− Module Name : C i r c u i t o I F − B e h a v i o r a l
8 . −− P r o j e c t Name :
9 . −− T a r g e t D e v i c e s :
1 0 . −− Tool v e r s i o n s :
1 1 . −− D e s c r i p t i o n :
1 2 . −−
1 3 . −− Dependenc ie s :
1 4 . −−
1 5 . −− R e v i s i o n :
1 6 . −− R e v i s i o n 0 . 0 1 − F i l e Crea ted
1 7 . −− A d d i t i o n a l Comments :
1 8 . −−−
1 9 . l i b r a r y i e e e ;
2 0 . use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
2 1 . use i e e e . s t d l o g i c a r i t h . a l l ;
2 2 . use i e e e . s t d l o g i c s i g n e d . a l l ;
2 3 .
2 4 . −−−− uncomment t h e f o l l o w i n g l i b r a r y d e c l a r a t i o n
2 5 . i f i n s t a n t i a t i n g
2 6 . −−−− any x i l i n x p r i m i t i v e s i n t h i s code
2 7 . −−l i b r a r y UNISIM
2 8 . −−use UNISIM . VComponents . a l l
2 9 .
3 0 . ENTITY c i r c u i t o f i n a l IS
3 1 . port (a : in s t d l o g i c v e c t o r (31 downto 0) ;
3 2 . b : out s t d l o g i c v e c t o r (31 downto 0) ;
3 3 . END;
3 4 .
3 5 . ARCHITECTURE b e h a v i o r OF c i r c u i t o f i n a l IS
3 6 .
3 7 . Component d e c i d e r
3 8 . port (
3 9 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
4 0 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
4 1 . z : out s t d l o g i c v e c t o r (31 downto 0)
4 2 .) ;
4 3 . END Component ;
4 4 . Component o p e r a t o r
4 5 . port (
4 6 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
4 7 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
4 8 . z : out s t d l o g i c v e c t o r (31 downto 0)
4 9 .) ;
5 0 . END Component ;
5 1 .
5 2 . Component m e r g e d e t e r m i n i s t i c
5 3 . port (
5 4 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
5 5 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
5 6 . c : in s t d l o g i c v e c t o r (31 downto 0) ;
5 7 . z : out s t d l o g i c v e c t o r (31 downto 0)
5 8 .) ;
5 9 . END Component ;
6 0 .
6 1 . s i g n a l i10 , i14 , i11 , i15 , i12 , i16 , i18 , i13 ,
6 2 . i17 , i 1 9 : s t d l o g i c v e c t o r (31 downto 0) ;
6 3 .
6 4 . BEGIN
6 5 . u1 : d e c i d e r port map (i10 , i14 , i 1 8) ;
6 6 . u2 : o p e r a t o r port map (i11 , i15 , i 1 3) ;
6 7 . u3 : o p e r a t o r port map (i12 , i16 , i 1 7) ;
6 8 . u4 : m e r g e d e t e r m i n i s t i c port map (i13 , i17 , i18 , i 1 9) ;
6 9 . END b e h a v i o r ;

Listing 2: The WHILE Command in VHDL
1 . −−−
2 . −− Company : P r o j e t o ChipCf low
3 . −− En g i n e e r : k e l t o n Augus to Pontara da Costa
4 . −−
5 . −− Cr ea t e Date : 1 2 : 4 5 : 2 8 0 4 / 0 2 / 2 0 0 9
6 . −− Design Name :
7 . −− Module Name : VHDL WHILE − B e h a v i o r a l
8 . −− P r o j e c t Name :
9 . −− T a r g e t D e v i c e s :
1 0 . −− Tool v e r s i o n s :
1 1 . −− D e s c r i p t i o n :
1 2 . −−
1 3 . −− Dependenc ie s :
1 4 . −−
1 5 . −− R e v i s i o n :
1 6 . −− R e v i s i o n 0 . 0 1 − F i l e Crea ted
1 7 . −− A d d i t i o n a l Comments :
1 8 . −−
1 9 . −−−
2 0 . l i b r a r y i e e e ;
2 1 . use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
2 2 . use i e e e . s t d l o g i c a r i t h . a l l ;

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1912 Issue 12, Volume 8, December 2009

2 3 . use i e e e . s t d l o g i c s i g n e d . a l l ;
2 4 .
2 5 . −−−− uncomment t h e f o l l o w i n g l i b r a r y d e c l a r a t i o n
2 6 . i f i n s t a n t i a t i n g
2 7 . −−−− any x i l i n x p r i m i t i v e s i n t h i s code
2 8 . −−l i b r a r y UNISIM
2 9 . −−use UNISIM . VComponents . a l l
3 0 .
3 1 . ENTITY c i r c u i t o f i n a l IS
3 2 . port (a : in s t d l o g i c v e c t o r (31 downto 0) ;
3 3 . b : out s t d l o g i c v e c t o r (31 downto 0) ;
3 4 . END;
3 5 .
3 6 . ARCHITECTURE b e h a v i o r OF c i r c u i t o f i n a l IS
3 7 .
3 8 . Component m e r g e d e t e r m i n i s t i c
3 9 . port (
4 0 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
4 1 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
4 2 . z : out s t d l o g i c v e c t o r (31 downto 0)
4 3 .) ;
4 4 . END Component ;
4 5 .
4 6 . Component copy
4 7 . port (
4 8 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
4 9 . z : out s t d l o g i c v e c t o r (31 downto 0) ;
5 0 . y : out s t d l o g i c v e c t o r (31 downto 0)
5 1 .) ;
5 2 . END Component ;
5 3 .
5 4 . Component d e c i d e r
5 5 . port (
5 6 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
5 7 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
5 8 . z : out s t d l o g i c v e c t o r (31 downto 0)
5 9 .) ;
6 0 . END Component ;
6 1 . Component o p e r a t o r
6 2 . port (
6 3 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
6 4 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
6 5 . z : out s t d l o g i c v e c t o r (31 downto 0)
6 6 .) ;
6 7 . END Component ;
6 8 .
6 9 . s i g n a l i10 , i15 , i16 , i17 , i11 , i12 , i13 ,
7 0 . i14 , i18 , i19 , i111 , i112 , i121 , i122 ,
7 1 . i141 , i 142 : s t d l o g i c v e c t o r (31 downto 0) ;
7 2 .
7 3 . BEGIN
7 4 . u1 : m e r g e d e t e r m i n i s t i c port map (i10 , i15 , i 1 1) ;
7 5 . u2 : copy port map (i11 , i111 , i 112) ;
7 6 . u3 : d e c i d e r port map (i111 , i16 , i 1 2) ;
7 7 . u4 : copy port map (i12 , i121 , i 122) ;
7 8 . u5 : m e r g e d e t e r m i n i s t i c port map (i112 , i121 , i 1 3) ;
7 9 . u6 : o p e r a t o r port map (i13 , i16 , i 1 4) ;
8 0 . u7 : copy port map (i14 , i141 , i 142) ;
8 1 . u8 : o p e r a t o r port map (i141 , i17 , i 1 8) ;
8 2 . u9 : o p e r a t o r port map (i142 , i18 , i 1 9) ;
8 3 . END b e h a v i o r ;

Listing 3: The IF, FOR, WHILE Command in VHDL
1 . −−−
2 . −− Company : P r o j e t o ChipCf low
3 . −− En g i n e e r : k e l t o n Augus to Pontara da Costa
4 . −−
5 . −− Cr ea t e Date : 0 8 : 4 3 : 2 0 0 3 / 2 7 / 2 0 0 9
6 . −− Design Name :
7 . −− Module Name : C i r c u i t o c o m p l e t o − B e h a v i o r a l
8 . −− P r o j e c t Name :
9 . −− T a r g e t D e v i c e s :
1 0 . −− Tool v e r s i o n s :
1 1 . −− D e s c r i p t i o n :
1 2 . −−
1 3 . −− Dependenc ie s :
1 4 . −−
1 5 . −− R e v i s i o n :
1 6 . −− R e v i s i o n 0 . 0 1 − F i l e Crea ted
1 7 . −− A d d i t i o n a l Comments :
1 8 . −−
1 9 . −−
2 0 . l i b r a r y i e e e ;
2 1 . use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
2 2 . use i e e e . s t d l o g i c a r i t h . a l l ;
2 3 . use i e e e . s t d l o g i c s i g n e d . a l l ;
2 4 .
2 5 . −−−− uncomment t h e f o l l o w i n g l i b r a r y d e c l a r a t i o n
2 6 . i f i n s t a n t i a t i n g
2 7 . −−−− any x i l i n x p r i m i t i v e s i n t h i s code
2 8 . −−l i b r a r y UNISIM
2 9 . −−use UNISIM . VComponents . a l l
3 0 .
3 1 . ENTITY c i r c u i t o f i n a l IS

3 2 . port (a : in s t d l o g i c v e c t o r (31 downto 0) ;
3 3 . b : out s t d l o g i c v e c t o r (31 downto 0) ;
3 4 . END;
3 5 .
3 6 . ARCHITECTURE b e h a v i o r OF c i r c u i t o f i n a l IS
3 7 .
3 8 . Component m e r g e d e t e r m i n i s t i c
3 9 . port (
4 0 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
4 1 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
4 2 . c : out s t d l o g i c v e c t o r (31 downto 0) ;
4 3 . z : out s t d l o g i c v e c t o r (31 downto 0)
4 4 .) ;
4 5 . END Component ;
4 6 .
4 7 . Component copy
4 8 . port (
4 9 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
5 0 . z : out s t d l o g i c v e c t o r (31 downto 0) ;
5 1 . y : out s t d l o g i c v e c t o r (31 downto 0)
5 2 .) ;
5 3 . END Component ;
5 4 .
5 5 . Component d e c i d e r
5 6 . port (
5 7 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
5 8 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
5 9 . z : out s t d l o g i c v e c t o r (31 downto 0)
6 0 .) ;
6 1 . END Component ;
6 2 .
6 3 . Component o p e r a t o r
6 4 . port (a : in s t d l o g i c v e c t o r (31 downto 0) ;
6 5 . b : in s t d l o g i c v e c t o r (31 downto 0) ;
6 6 . z : out s t d l o g i c v e c t o r (31 downto 0)
6 7 .) ;
6 8 . END Component ;
6 9 .
7 0 . Component b ra nc h
7 1 . port (
7 2 . a : in s t d l o g i c v e c t o r (31 downto 0) ;
7 3 . c : in s t d l o g i c v e c t o r (31 downto 0) ;
7 4 . z : out s t d l o g i c v e c t o r (31 downto 0) ;
7 5 . y : out s t d l o g i c v e c t o r (31 downto 0)
7 6 .) ;
7 7 . END Component ;
7 8 .
7 9 . s i g n a l i10 , i36 , i12 , i30 , i15 , i33 , i18 , i37 , i20 ,
8 0 . i38 , i39 , i40 , i11 , i13 , i14 , i41 , i16 , i17 , i19 , i42 ,
8 1 . i21 , i26 , i22 , i23 , i24 , i25 , i27 , i28 , i29 , i31 , i32 ,
8 2 . i43 , i34 , i35 , i44 , i111 , i112 , i131 , i132 , i171 , i172 ,
8 3 . i211 , i212 , i221 , i222 , i231 , i232 , i231 , i232 ,
8 4 . i231 , i232 , i231 , i232 , i231 , i232 , i231 , i232 , i251 ,
8 5 . i252 , i291 , i 292 : s t d l o g i c v e c t o r (31 downto 0) ;
8 6 .
8 7 . BEGIN
8 8 . u1 : m e r g e d e t e r m i n i s t i c port map (i10 , i36 , i 1 1) ;
8 9 . u2 : copy port map (i11 , i111 , i 112) ;
9 0 . u3 : d e c i d e r port map (i12 , i111 , i 1 3) ;
9 1 . u4 : copy port map (i13 , i131 , i 132) ;
9 2 . u5 : m e r g e d e t e r m i n i s t i c port map (i112 , i131 , i 1 4) ;
9 3 . u6 : o p e r a t o r port map (i14 , i30 , i 4 1) ;
9 4 . u7 : m e r g e d e t e r m i n i s t i c port map (i15 , i33 , i132 , i 1 6) ;
9 5 . u8 : d e c i d e r port map (i16 , i30 , i 1 7) ;
9 6 . u9 : copy port map (i17 , i171 , i 172) ;
9 7 . u10 : o p e r a t o r port map (i18 , i37 , i 1 9) ;
9 8 . u11 : m e r g e d e t e r m i n i s t i c port map (i19 , i15 , i171 , i 4 2) ;
9 9 . u12 : m e r g e d e t e r m i n i s t i c port map (i20 , i38 , i172 , i 2 1) ;
1 0 0 . u13 : copy port map (i21 , i211 , i 212) ;
1 0 1 . u14 : d e c i d e r port map (i211 , i30 , i 2 6) ;
1 0 2 . u15 : m e r g e d e t e r m i n i s t i c port map (i10 , i39 , i26 , i 2 2) ;
1 0 3 . u16 : copy port map (i22 , i221 , i 222) ;
1 0 4 . u17 : d e c i d e r port map (i221 , i12 , i 2 3) ;
1 0 5 . u18 : copy port map (i23 , i231 , i 232) ;
1 0 6 . u19 : copy port map (i23 , i231 , i 232) ;
1 0 7 . u20 : copy port map (i23 , i231 , i 232) ;
1 0 8 . u21 : copy port map (i23 , i231 , i 232) ;
1 0 9 . u22 : copy port map (i23 , i231 , i 232) ;
1 1 0 . u23 : copy port map (i23 , i231 , i 232) ;
1 1 1 . u24 : m e r g e d e t e r m i n i s t i c port map (i222 , i231 , i 2 4) ;
1 1 2 . u25 : o p e r a t o r port map (i24 , i30 , i 2 5) ;
1 1 3 . u26 : copy port map (i25 , i251 , i 252) ;
1 1 4 . u27 : m e r g e d e t e r m i n i s t i c port map (i26 , i38 , i232 , i 2 7) ;
1 1 5 . u28 : b r a nc h port map (i27 , i233 , i28 , i 2 8) ;
1 1 6 . u29 : o p e r a t o r port map (i28 , i30 , i 2 9) ;
1 1 7 . u30 : copy port map (i29 , i291 , i 292) ;
1 1 8 . u31 : m e r g e d e t e r m i n i s t i c port map (i30 , i40 , i234 , i 3 1) ;
1 1 9 . u32 : b r a nc h port map (i31 , i235 , i32 , i 3 2) ;
1 2 0 . u33 : o p e r a t o r port map (i32 , i291 , i 4 3) ;
1 2 1 . u34 : m e r g e d e t e r m i n i s t i c port map (i33 , i15 , i236 , i 3 4) ;
1 2 2 . u35 : b r a nc h port map (i34 , i237 , i35 , i 3 5) ;
1 2 3 . u36 : o p e r a t o r port map (i35 , i251 , i 4 4) ;
1 2 4 . END b e h a v i o r ;

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1913 Issue 12, Volume 8, December 2009

4 The Implementation of a dataflow
graph

An operator is a complex element in ChipCflow
which consists of various different parts: the inter-
communication system; the matching data; the in-
stances generator; and the control to execute the in-
stances. The schematic of the operators is described
in Figure 13.

Figure 13: The Schematic of one Operator.

As can be clearly seen in Figure 13, the operator
has six input signals astr, bstr, clkin, a(15:0), b(15:0),
and zack. The astr and bstr are used to indicate the
current operator that it has an item of data coming
through the input a(15:0) or b(15:0) respectively. The
clkin is an internal clock for the operator. Although
the operator has an internal clock, the communication
system between the operator characterizes the asyn-
chronism for the dataflow system.

The operator has four output signals aack, back,
zstr, z(15:0). The aack and back are used to indicate
the previous operators that the current operator has
received an item of data through its input a(15:0) or
b(15:0) respectively.

The zstr is used to indicate the next operator that
the current operator has an item of data going through
an input in the next operator.

The difference between the operators are in the
function that the operator has to execute and the num-
ber of input and output signals that can be different
for each operator. In Figure 14 an ASM Chart of the
operator is described.

As can be clearly seen in Figure 14, the protocol
of the operator for all input signals are verified and if
all items of data are present in the operator, it is exe-

Figure 14: The ASM chart of the Operator.

cuted and the protocol concludes its execution with an
acknowledge signal for each input signal. The strobe
and result signal also are sent by the operator.

The IF command is a simple interconnection of
various operators and in Figure 15, a simulation of its
operation is presented. In Table 1 a set of data used
in the simulation is described, where the value for the
items of input data are 2(a), 3(b), 4(c), 1(d), 2(x); the
z is 5; and 3(a), 4(b), 9(c), 9(d), 0(x); the z is 0.

Figure 15: The Simulation Result for the IF Com-
mand.

Table 1: The Result of If Command
Inputs Output

a b c d x z
2 3 4 1 2 5
3 4 9 9 0 0

The WHILE command is also a simple intercon-
nection of various operators and in Figure 16 a simu-
lation of its operation is presented. In Table 2, a set
of data used in the simulation is described, where the

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1914 Issue 12, Volume 8, December 2009

Figure 16: The Simulation Result for the WHILE
Command.

value for the items of input data are 0(a), 1(b), 2(iinit),
1(incr), 3(n); the z is 8.

Table 2: The Result Data of WHILE command
Inputs Output

a b iinit incr n while
0 1 2 1 3 8

The Fibonacci sequence is a more complex con-
struction than a simple IF command or WHILE com-
mand. It is an iterative construction where each ele-
ment consist of adding two previous elements, except
for the two first elements that are respectively 0 and
1. In Figure 17 the dataflow graph for the Fibonacci

Figure 17: The Fibonacci Sequence.

sequence is described and in Figure 18 a simulation of
its operation is presented.

As can be clearly seen in Figure 18, the result
of the simulation for the Fibonacci sequence is 987,
that corresponds to the 16th number of the sequence.

In Table 3 a set of data used in the simulation is de-
scribed, where the value for the two first sets of data
are 0(a) and 1(b); the n is 16; the value for i is 0 iinit
and the increment value is 1 incr.

Table 3: The Result Data of Fibonacci sequence
Inputs Output

a b iinit incr n fibonacci
0 1 0 1 16 987

Figure 18: The simulation result for the Fibonacci se-
quence.

In Figure 19 the execution result for the Fibonacci
sequence that was executed in C in a desktop com-
puter is described and it proves the correctness of
the Fibonacci sequence which was executed in the
dataflow graph.

Figure 19: The Fibonacci sequence result in a desktop
computer.

In Table 4, the delay and utilization summary for
the Fibonacci sequence implemented in a platform
Xilinx II Pro are presented.

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1915 Issue 12, Volume 8, December 2009

Table 4: The Virtex II Pro - Delay and Utilization
summary

C Device Clock RAM Minimum Period
IF xc2vp2 224MHz 17% 4.451 ns
While xc2vp2 224MHz 34% 4.451 ns
DoWhile xc2vp2 224MHz 34% 4.451 ns
For xc2vp2 224MHz 34% 4.451 ns
Fibonacci xc2vp2 224MHz 41% 4.451 ns

5 Conclusion

Research to convert High Level Language (HLL)
into hardware has put forward various possibilities
mainly with the flexibility and capacity of the recon-
figurable architectures. A Control Dataflow Graph
(CDFG) is a fundamental element in this process.
Otherwise, a Dataflow Architecture, which was the fo-
cus in the 1980s, can be obtained directly from the
CDFG. In particular, dynamic dataflow architecture
can be generated in order to produce a high level of
parallelism. In this paper, the ChipCflow project was
described as a system to convert HLL into a dynamic
dataflow graph to be executed in dynamic reconfig-
urable hardware, exploring the dynamic reconfigura-
tion. The operator, which is the main element in the
dataflow graph, was implemented, and spent 4ns to
execute all the process. Examples of C program were
converted into a VHDL language and some of them
were implemented and simulated using the basic op-
erator that was initially implemented and simulated.
The next steps of the ChipCflow project are to imple-
ment the complete model of instances and generate an
analysis with benchmarks to verify the impact of this
approach.

References:

[1] Ali, F. M. and Das, A. S.Azme, Hardware-
software co-synthesis of hard real-time systems
with reconfigurable FPGAs, ELSEVIER - Com-
puter and Electrical Engineering(2004), vol-
ume=30,pg 471-489

[2] Arnold, J, The SPLASH 2 Software Eviron-
ment,IEEE Workshop on FPGAs for Custom
Computing Machines,(1993),88-93

[3] Arnold, J. and D. Buell and E. Davis, SPLASH
2, Proceedings of the 4th Annual ACM Sympo-

sium on Parallel Algorithms and Architectures
(1992), 316-324

[4] Cardoso J. M. P, Compilação de Algoritmos
em JAVA para Sistemas Computacionais Recon-
figuráveis com Exploração de Paralelismo ao
Nı́vel das Operações, PhD thesis, Universidade
Técnica de Lisboa (2000)

[5] Arvind, Dataflow: Passing the token, ISCA
Keynote (2005)

[6] Celoxica Limited, DK Design Suite Datasheet,
see http://www.celoxica.com (2007)

[7] Capelli, A, A Dataflow Control Unit for C-
to-Configurable Pipelines Compilation Flow,
IEEE Sumposium on Field-Programmable Cus-
tom Computing Machines FCCM’04 (2004)

[8] Impulse Inc, see http://www.impulsec.com
(2005)

[9] Joelmir Jose Lopes and Jorge Luiz e Silva, A
Benchmark Approach for Compilers in Recon-
figurable Hardware, The 6th International Work-
shop System-on-Chip for Real-Time Applica-
tions IWSOC’06 (2006).

[10] Dennis, J. B., A preliminary architecture for a
basic dataflow processor, Proceedings of the 2nd
Annual Symposium on Computer Architecture,
(1975)

[11] Silva, J.L., Executing Algorithms for Dynamic
Dataflow Reconfigurable Hardware - A Purpose
for Matching Data The 6th IEEE International
Workshop System-on-Chip for Real-Time Appli-
cations - IWSOC’06,(2006)

[12] Pellerin, D. and Thibault, S, Practical FPGA
Programming in C, Prentice Hall PTR (2005
)

[13] Swanson, S., Wavescalar, 36th Annual Interna-
tional Symposium on Microarchitecture (2003)

[14] Veen, A. H., Dataflow Machine Architecture,
ACM Computing Surveys, n.4, (1986), v.18, pp
365-396

[15] Astolfi, V. F. A., Silva, J. L., Execution of algo-
rithms using a Dynamic Dataflow Model for Re-
configurable Hardware - Commands in Dataflow
Graph., The 3th IEEE Southern Conference on
Programmable Logic - SPL2007, Mar del Plata,
Argentina. pp 225-230. (2007)

[16] Silva, J. L., Correia, V. M., C commands Im-
plemented direct into the hardware using the
ChipCflow Machine. The 9th IEEE Interna-
tional Reconfigurable Computing and Applica-
tions Conference - JCRA2009, Alcalá, Espanha,
(2009).

[17] Davis D., Beeravolu S and Jaganathan, R, Hard-
ware/Software Codesign for Platform FPGAs -
Xilinx Xilinx, (2005)

WSEAS TRANSACTIONS on COMPUTERS Jorge Luiz E. Silva, Kelton A. P. Da Costa, Valentin Obac Roda

ISSN: 1109-2750 1916 Issue 12, Volume 8, December 2009

