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Abstract: - The Flexible Hypercube FHN is an important variant of the Hypercube Hn and possesses many 
desirable properties for interconnection networks. This paper proposes a novel algorithm of fault-tolerant 
method for mapping a mesh network in a Flexible Hypercube. The main results obtained (1) a searching path of 
a FHN is including approximate to (n+1) nodes, where n= 2log N⎢ ⎥⎣ ⎦ . Therefore, there are O( ) faults, 
which can be tolerated. (2) Our results for the mapping methods are optimized mainly for balancing the 
processor and communication link loads. These results mean that the parallel algorithms developed by the 
structure of mesh network can be executed in a faulty FHN. The useful properties revealed and the algorithm 
proposed in this paper can find their way when the system designers evaluate a candidate network’s 
competence and suitability, balancing regularity and other performance criteria, in choosing an interconnection 
network. 

2log N⎢⎣ ⎥⎦
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1 Introduction  

In the study of parallel computing, networks of 
processors are often organized into various 
configurations such as trees, rings, linear arrays, 
meshes and hypercubes[16]. These configurations 
can be represented as graphs. If the properties and 
structures of underlying graph used effectively, the 
computation and communication speeds can often 
improved. 

Hypercube multiprocessor has been the focus of 
many researchers over the past few years. Several 
prototypes and parallel systems have been 
constructed, such as Intel’s Paragon, Dash[17], 
Flash[15], and Alewife[1]. At the same time, 
Hypercube has been used as the interconnection 
network in a wide variety of commercial and 
experimental distributed memory multiprocessors 
such as the Cosmic Cube[25], the Intel “hypercube” 
systems (iPSC, iPSC/2), the Ametek/Symult S-series, 
the NCUBE and the Connection Machines (CM-1, 
CM-2). The popularity of the hypercube 
multiprocessor or multicomputer systems is due to 
their tempting properties such as logarithmic 
diameter and node degree, high bisection width, ease 
to embed other common structures, and many known 
efficient data communication schemes[24]. Although 

hypercubes possess many advantages for parallel and 
distributed computing, there are some limitations for 
constructing hypercubes. However, due to the 
power-of-2 size and logarithmic degree, hypercubes 
suffer two major disadvantages, namely, high cost 
extensibility and large internal fragmentation in 
partitioning. Limitations of the hypercube include its 
nonplanarity (which complicates the layout of 
hypercubes implemented within VLSI chips), and its 
inability to grow incrementally. The incremental 
extensibility is a very essential and desirable 
property in real world applications for designing 
interconnection networks. At the same time, the 
mesh[8, 10, 31, 39] interconnection network is very 
popular. And it substitutes the hypercube 
interconnection in parallel machine.  

Since hypercube architectures are very regular and 
scalable, programs for these computers are frequently 
designed with the dimension n of the host hypercube 
Hn treated as an input variable, so that the same 
program can be run without modification on 
hypercube of different sizes. This scalability property 
of hypercube architecture makes it possible to tolerate 
faults gracefully by confining a program to a 
fault-free subcube of the host hypercube. The 
reduction of the effective cube size due to faults is a 
tough indication of the performance degradation. In 
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order to conquer the difficulties associated with 
hypercubes and these generalizations of the 
hypercubes, the Flexible Hypercube[11] has been 
proposed during past years. The Flexible Hypercube 
unlike the hypercube, may be expanded (or designed) 
in a number of possible configurations while 
guaranteeing the same basic fault-tolerant properties 
and without a change in the communication. The 
existence of hypercube subgraphs in the Flexible 
Hypercube ensures that hypercube embedding 
algorithms developed for the hypercube may also be 
utilized in the Flexible Hypercube. The flexibility in 
node placement may possibly be utilized to aid in 
supporting a specific embedding. The Flexible 
Hypercube, while maintaining the fault-tolerant of the 
other topologies and the ease of communication, 
allows the placement of new nodes at any currently 
unused addresses in the system. 

In order to execute a parallel program, tasks are 
to be mapped in a processor of parallel machine or 
interconnection network. It is possible to model this 
kind of problem in graph-theoretical terms of graph 
embedding[2, 20]. We model both the parallel 
algorithm and the parallel machine as graphs. Given 
two graphs, G(V,E) and G’(V’,E’), embedding the 
guest graph G into the host graph G’ maps each 
vertex in the set V in a vertex(or a set of vertices) in 
the set V’ and each edge in the set E in an edge(or a 
set of edges) in the set E’. Let these nodes in a graph 
correspond to processors and edges to 
communication links in an interconnection network. 
Embedding one graph into another is important 
because an algorithm may have been designed for a 
specific interconnection network, and it may be 
necessary to adapt it to another network. Four costs 
associated with graph embedding are dilation, 
expansion, load, and congestion. The maximum 
amount that we must stretch any edge to achieve an 
embedding is called the dilation of the embedding. 
By expansion, we mean the ratio of the number of 
nodes in the host graph to the number of nodes in the 
graph that is being embedded. The congestion of the 
embedding is the maximum number of edges of the 
of the guest graph that are embedded using any 
single edge of the host graph. The load of an 
embedding is the maximum number of nodes of the 
guest graph that are embedded in any single node of 
the host graph. An efficient simulation of one 
network on another network requires that these four 
costs be as small as possible. However, for most 
embedding problems, it is impossible to obtain an 
embedding that minimizes these costs 
simultaneously. Therefore, some tradeoffs among 
these costs must be made.  

The issue of computing with faulty hypercubes 

has been addressed in several recent papers [3, 7, 12, 
13, 23, 32, 35, 36, 39]. Particularly notable is the 
result by Hastad, Leighton and Newman [12]. They 
considered a faulty hypercube in which every node is 
faulty with constant probability p<1 and the faults 
are independently distributed. They proved that, with 
high probability, the faulty hypercube can simulate a 
fault-free hypercube with only a constant factor 
slowdown. Thus the hypercube is extremely tolerant 
of randomly distributed faults. 

Load Balancing, communication locality, 
communication congestion, and node utility in 
process graphs can be abstractly studies as the 
problem of embedding[2]. In a process graph, the 
nodes represent processes comprising a distributed 
program or a parallel program and the edges 
represent communications between processes. In a 
multiprocessor system, we follow two fault models 
defined in [16]. The first model assumes that, in a 
faulty node, the computational function of the node 
is lost while the communication function remains 
intact; this is the partial faulty model. The second 
model assumes that, in a faulty node, the 
communication function is lost too; this is the total 
faulty model. Conceptually, the network interface 
hardware operates independent of the computer’s 
processor. In this paper, our model is the partial 
faulty model. That is, when the computation nodes 
are faulty, the communication links are well and only 
the faulty nodes are remapped. 

One approach to achieve fault-tolerant in 
hypercubes is to introduce spare nodes or links[36], 
so that hypercube structure can still be maintained 
when nodes fail. This approach can be expensive and 
it is difficult to make hardware modifications on 
those machines already in the market place. Another 
approach exploits the inherent redundant nodes or 
links in hypercube to achieve fault-tolerant[16]; that 
is  no extra nodes or links are unused nodes as 
spares. In this paper, we consider only the second 
type of fault-tolerant design in a Flexible Hypercube. 

The paper presents novel algorithms to facilitate 
the embedding job when the Flexible Hypercube 
contains faulty nodes. Of particular concern are the 
network structures of the Flexible Hypercube that 
balance the load before as well as after faults starting 
to degrade the performance of the Flexible 
Hypercube. To obtain replaceable nodes of faulty 
nodes, 2-expansion is permitted such that up to (n+1) 
faults can be tolerated with congestion 1, dilation 2, 
and load 1, where n= 2log N⎢ ⎥⎣ ⎦  is the dimension of 
a Flexible Hypercube FHN. Results presented herein 
demonstrate that embedding methods are optimized. 

The rest of this paper is organized as follows. In 
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Section 2, definitions of these topologies are given. 
Notations and definitions of terms are also provided. 
Section 3 presents the method for mapping a mesh 
network. In Section 4, we describe the novel 
fault-tolerant method for mapping a mesh network in 
a Flexible Hypercube with 2-expansion. Conclusions 
are finally made in section 5. 
 
 
2 Preliminaries  

We briefly describe these definitions of these 
topologies of the hypercube, the mesh network, and 
the flexible hypercube.   

A hypercube Hn of order n, is defined to be a 
symmetric graph G= (V, E) where V is the set of 2n 
vertices, each representing a distinct n-bit binary 
number and E is the set of symmetric edges such that 
two nodes are connected by an edge iff the number 

of positions where the bits differ in the binary labels 
of the two nodes is 1.  

There are many topologies can be mapped in 
hypercubes or hypercube-like computers. One of 
these is mesh network. It is very popular network 
interconnection. One of the most attractive properties 
of the binary n-cube topology is that meshes of 
arbitrary dimensions can be mapped in it. This is one 
of the main reasons for the success of hypercube 
architectures. Because of these, we consider the 
mesh size in each direction is a power of 2. The 
figure 1 and the figure 2 show us two examples. First 
example, a 2×2 2-dimensional mesh has 4 nodes 
which are bi-directional connection between two 
nodes. Second example, A 22 21 2-dimensional 
mesh has 8 nodes which are bi-directional 
connection between two nodes. 

×

 

 
 

Fig. 1: A 2×2 2-dimensional mesh 
 

 
 

Fig. 2: A 22×21 2-dimensional mesh 
 

For example, a 2-bit Gray Code can be 
constructed by the sequence, defined in definition 3, 
and insert a cipher in front of each codeword in C1, 
then insert an one in front of each codeword in (C1)R . 
We get the code C2={00, 01, 11, 10}. Now, we can 
then repeat the procedure to built a 3-bit Gray Code, 
and also get the code C3=0C2∪1(C2)R={000, 001, 
011, 010, 110, 111, 101, 100}. 

Definition 1[16]  mesh is a 2-dimension 
mesh that the mesh size in each direction is a power 
of 2. i.e., it is such that .  

21 mm ×

m1 =
sr m 2,2 2 =

Definition 2[16] Higher dimension mesh is a 
 mesh in d-dimension, and 

assume that the mesh size in each direction is a 
power of 2.  

dmmm ××× L21

The Flexible Hypercube is constructed by any 
number of nodes and based on a hypercube. A 
Flexible Hypercube, denoted by FHN, is defined as 
an undirected graph FHN=(V,E) ,where V is the set of 
processors (called nodes) and E is the set of 

Definition 3[18] The Binary-Reflected Gray Code 
(BRGC) is defined recursively as follows. 
 Cn+1={0Cn, 1(Cn)R}, where C1={0 , 1} and 
 C2={0C1 , 1(C1)R}  
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Addressing of nodes in a Flexible Hypercube is 
constructed as follows. As discussed above, 
addresses consist of binary strings of (n+1)-bits. The 
first 2n-1 addresses correspond to nodes in H1 and 
must be the binary representations of 0 through 2n-1. 
Each of the remaining nodes (up to 2n-1 nodes) in the 
set V3=H2 -H1 may be placed adjacent to any node x 
in H1 and is given the addressing I(x). Any node in 
H1 is a hamming distance of 1 from at most one node 
in V3. This method of node addressing effectively 
relaxes the constraint that all nodes in the network 
must be numbered consecutively. This is unique 
among the hypercube topologies mentions above. 
Notably, hypercubes are special cases of a Flexible 
Hypercube; it can also be expanded flexibly with 
respect to the placement of new nodes in the system 
while maintaining fault-tolerant. When a new node is 
added to a Flexible Hypercube system, (n+1) new 
connections should be added and at most n existing 
edges must be removed. 

bidirectional communication links between the 
processors (called edges). In an n-dimensional 
Flexible Hypercube with N nodes where 2n ≤ N < 
2n+1 (n is a positive integer), each node can be 
expressed by an (n+1)-bit binary string in.....i0 where 
ip∈{0 ,1} and 0 ≤ p ≤ n 
Definition 4[19] A (2n+1 -t)-node Flexible Hypercube 
is a lack of t nodes, which are referred to herein as 
virtual nodes. For any virtual node y, denoted as I(x) 
where x is any node of Flexible Hypercube, if the 
function I(x) exists, then  n nx y=  and xi=yi for 0 ≤ 
i ≤ n-1 
Definition 5[18, 21] The Hamming distance of two 
nodes x and y, denoted by HD(x ,y), is the number of 
1's in the bit set of resulting sequence of the bitwise 
XOR of x and y. 
Definition 6[19] For any two nodes x and y in a 
Flexible Hypercube, let x=xn ... x0, y=yn ... y0, then 
Dim(x ,y)={i in (0 ... n) | xi≠yi}. 
Definition 7[11] Suppose FHN=(V, E) is an 
n-dimensional Flexible Hypercube ,then the node 
sets H1, H2, V1, V2, V3 are defined as follows 

An inevitable consequence of the flexible of 
construction and the fault-tolerant of a Flexible 
Hypercube is an uneven distribution of the utilized 
communication ports over system nodes. Although 
the Flexible Hypercube loses its property of 
regularity, more links help obtain the replacement 
nodes of the faulty nodes of the Flexible Hypercube. 
The Flexible Hypercube with 14-node is shown in 
the figure 3. In the figure 3, H1 = {0000, 0001, 00010, 
0011, 0100, 0101, 0110, 0111}, H2 = {0001, 0011, 
1000, 1010, 1100, 1101, 1110, 1111}, V1 = {0000, 
0010, 0100, 0101, 0110, 0111}, V2 = {0001, 0011}, 
and V3 = {1000, 1010, 1100, 1101, 1110, 1111}.

1. H1 ={x | x∈V and xn = 0}, 
2. H2 ={x | x∈V and ( xn = 1 or I(x)∉ V)}, 
3. V1 =H1-H2 
4. V2 =H1∩H2 
5. V3 =H2 -H1 
Definition 8[11] Suppose FHN=(V, E) is an n- 
dimensional Flexible Hypercube ,then the edge set E 
is the union of E1, E2, E3, and E4 ,where 
1. E1 ={(x ,y) | x, y∈H1 and HD(x ,y) =1}, 
2. E2 ={(x ,y) | x, y∈V3 and HD(x ,y) =1}, 
3. E3 ={(x ,y) | x∈V3 , y∈V1 and HD(x ,y) =1}, 
4. E4 ={(x ,y) | x∈V3 , y∈V2 and HD(x ,y) =2}. 

 
 

  
 

Fig. 3: A Flexible Hypercube contains 14-nodes 
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3 Mapping of Meshes   
We describe our approach that maps a mesh 

network in a Flexible Hypercube with 2-expansion in 
this section. 
Lemma 1[16]  mesh is a 2-dimensional 
mesh, where  can be mapped in 
an n-dimensional hypercube where n = r+ s.  

21 mm ×
r m,21 =

sm 22 =

Lemma 2[16] Any dmmm ××× L21  mesh in the 

d-dimensional space Rd, where mi = can be 
mapped in an n-dimensional hypercube where n = p1 
+ p2+…+ pd. The numbering of the mesh nodes is 
any numbering such that its restriction to each ith 
variable is a Gray sequence which is described in 
definition 3. Note that the assumption that all mi’s be 
power of 2.  

ip2

Our proposition is best illustrated by an example. 
Consider a 2-dimensional 8×4 mesh i.e., d = 2, p1 = 
3, p2 = 2, n = p1 + p2 = 5. A binary number M of any 
node of the 3-dimensional hypercube can be 
regarded as consisting of two parts: its first 3 bits and 
its last 2 bits, which we write in the form 

M = 1 2 3 1 2α α α β β , where iα  and iβ  are bits 
0 or 1. It is clear from the definition of n-dimensional 
hypercube that when the last 2 bits are fixed, then the 
resulting  nodes form a p1-dimensional 
hypercube ( with p1 = 3 ). Whenever we fix the first 
3 bits we obtain a p2-dimensional hypercube ( with p2 
= 2 ). The mapping then becomes clear. Choosing a 
3-bit BRGC for the x direction and 2-bit BRGC for 
the y direction, the point ( ) of the mesh is 
assigned to the node 

12 p

iy,

3 1

ix

1 2 2α α α β β  where 1 2 3α α α

1 2

 
is the 3-bit BRGC for dimension of p1 while β β  
is the 2-bit BRGC for dimension of p2. 

The binary node number of any mesh node is 
obtained by concatenation its binary x coordinate and 
its binary y coordinate. Therefore, if we call Gray 
sequence any subsequence of a BRGC, we observe 
that any column of mesh nodes forms a Gray 
sequence and any row of mesh nodes forms a Gray 

sequence. Thus, we will refer to the codes defined 
above as 2-D Gray codes. Generalizations to higher 
dimensions are straightforward and one can state the 
above lemma 2. 
Lemma 3 For any given N, a Hypercube Hn must be 
a subgraph of a Flexible Hypercube FHN, where 

12 2n nN +≤ < .  
Proof. A FHN must contain a hypercube Hn. That is 
trivially by the generation schema of a FHN graph. It 
must contain the maximum hypercube Hn.  

The mapping approach that a mesh can be 
mapped in a FHN with 2-expansion is as follows.  

Mapping approach 
M , , ,  NFH 2logr s N∀ + = ⎢ ⎥⎣ ⎦ 1, ≥sr

( , )NFH G V E= , ' '
2 *2

( , )r sM G V E= ,  
Vν ∈  ' 'Vν ∈  

(Denoted by unique binary string) 
1 2 1r s r s r sv X X X X X+ + − + − 0= L  

011 XXX sr L−+=′ν   
'Vν ′∈  can be mapped in  denote as V

01210 XXXX srsrsr L−+−++  

Theorem 1 A sr 22 × 2-dimensional mesh can be 
mapped in FHN where  that n = r + s 
with load 1, dilation 1, congestion 1 and expansion 2. 

12n N +≤ < 2n

Proof. This is trivial by lemma 2, lemma 3 and the 
above mapping approach.   
Theorem 2 Any dmmm ××× L21

ip2
12

d-dimensional 

mesh, where mi =  can be mapped in a FHN, 
where 2n nN +≤ < , that = p1 + p2+…+ pd with 
load 1, dilation 1, congestion 1 and expansion 2. 

n

Proof. It is similarly with above approach.   
This is the best illustrated by two examples in the 

figure 4 and the figure 5. That is a 2×2 mesh (with 4 
nodes) can be mapped in a FH7 with 2-expansion.  
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Fig. 4: A 2×2 mesh can be mapped in FH7 with 2-expansion 

 
The second example is a 22×21 mesh (with 8 

nodes) can be mapped in a FH14 with 2-expansion.  
 

 
 

Fig. 5: A 22

N ⎥⎦

×21 mesh can be mapped in FH14 with 2-expansion 
 

 
 
4 Fault-Tolerant mapping of meshes 

In session 3, we show that a mesh network can be 
mapped in a FHN graph with expansion 2, load 1, 
congestion 1, and dilation 1. Hence, in this section, 
we consider a mesh network can be mapped in a FHN 
with 2-expansion graph which contains faulty node. 

The algorithm design described in this section 
mainly accorded with the idea the search of highest 
dimension first. By applying the bit-flip in the 
leading bit in order from left to right, the searching 
path can reach the higher half node immediately and 
then expand out to its neighbors in any (n-1) 
directions till we find the replaceable node, where 

 is the dimension of the graph. This 

kind of strategy is called the strategy in higher 
dimension of precedence in this session. We also 
propose a novel algorithm for mapping a mesh 
network in a faulty FHN with 2-expansion as follows. 

2logn = ⎢⎣

 
Algorithm MtoFH(x) 

Input:  x  /*the faulty node*/,  
  FHN,  
  Mesh sr 22 × , where   

  2log+ =r s N⎢ ⎥⎣ ⎦  
Output: y /*the replaceable node*/ 

1. i=0  
2. if a node x is faulty 
3. then 
4.   { 
5.    search the node p 

    /* HD(x, p)=1, Dim(x, p)={n}*/ 
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By the algorithm MtoFH( ), the searching path of 
the faulty node is shown as follows. 

6.    if p is a exist node and it is free 
7.    then 
8.  return(p) /*replace x with p*/ 
9.  exit() 
10.    else 
11.  while i < n do 
12.  { 
13.  search the node q 

/* HD(x, q)=2, Dim(x, q)={n, i}*/    
14.  if q is a exist node and it is free 
15.  then 
16.  return(q) /*replace x with q*/ 
17.  exit() 
18.       } 
19.       i=i+1 
20.   } 

   21.  return(“Failure”) 
   22.  end 

 
 node0=0Xn-1Xn-2…X1X0 
 node1=1Xn-1Xn-2…X1X0  
 node2=1Xn-1Xn-2…X1 X’0  
 node3=1Xn-1Xn-2…X’1 X0 

  M
 node(n+1)=1X’n-1Xn-2…X1 X0 
 
We illustrate two examples of finding a 

replaceable node in a FH14 as shown the figure 6 and 
the figure 7. The first example is a 2×2 mesh (with 8 
nodes) can be mapped in a FH14 with 2-expansion.  

When the faulty node (000) exists, we execute 
the operations of the MtoFH( ).  

All node of the searching path is listed as {(100}, 
(101), (110)}.  

 

 
Fig. 6: Mapping a 22×21 mesh in a faulty FH14  

 
The second example is a 4 2 mesh (with 8 nodes) 

can be mapped in a FH14 with 2-expansion.  
×

When the faulty node (0100) exists, we explain 

the operations of the MtoFH( ). All node of the 
searching path is listed as {(1100, (1101), (1110), 
(1000)}. 
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Fig. 7: Mapping a 22×21 mesh in a faulty FH14  

 
Theorem 3 A 2-dimensional mesh can be 
mapped in a faulty FHN that  with 
load 1, dilation 2, congestion 1 and expansion 2. 

sr 22 ×

2logr s N+ = ⎢⎣ ⎥⎦

⎥⎦

Proof. By executing the MtoFH method, allowing us 
to get congestion 1 and load 1. And we allow 
2-expansion to obtain the replace node of faulty node. 
When a node is faulty, the dilation maybe become 
1+1=2 at most by the MtoFH method in a worst case. 
Because these nodes and links of searching paths are 
not replicated from the MtoFH method, four costs 
associated with graph mapping are dilation 2, 
expansion 2, load 1 and congestion 1.  
Theorem 4 A searching path of the MtoFH method 
is including approximate to (n+1) nodes, where 
n= . 2log N⎢ ⎥⎣ ⎦
Proof. Every node can be represented by a n+1-bit 
binary string  where . First, we 
change the most significant bit from 0 to 1. Then, a 
bit can be changed from to  sequentially by 
the MtoFH method. But FHN graph may be having 
virtual nodes. Hence, a searching path of the MtoFH 
method is including approximate to (n+1) nodes.  

0iinL { }1,0∈pi

1−ni0i

Theorem 5 There are O( ) faults, which 
can be tolerated. 

2log N⎢⎣

Proof. It is trivial by theorem 4.  
Theorem 6 Our results for the mapping methods are 
optimized mainly for balancing the processor and 
communication link loads. 
Proof. Our results demonstrate that a mesh network 
can be mapped in a faulty flexible hypercube with 
load 1, dilation 2, congestion 1 and expansion 2. 
These nodes and links of these replacing nodes are 
not replicated from the algorithm MtoFH( ). This 

observation implies that the primary optimization 
objective of mapping is minimizing the 
interprocessor communication cost and to balance 
the workload of processors have reached.  
 
 
5 Conclusions  

This paper develops a new algorithm to facilitate 
the mapping(embedding) job when the Flexible 
Hypercube contains faulty nodes. The replaceable 
node of the faulty node is obtained, allowing us 
2-expansion. Our results demonstrate that 
O( 2log N⎢ ⎥⎣ ⎦ ) faults can be tolerated. Also, the 
methodology is proven and an algorithm is presented 
to solve them. These existent parallel algorithms on 
mesh architectures to be easily transformed to or 
implemented on Flexible Hypercube architectures 
with load 1, congestion 1 and dilation 2. 

After any mesh networks can be reconfiguring in 
a Flexible Hypercube with faulty nodes, we are also 
interested in the mapping of arbitrary 
multi-dimensional mesh networks in a faulty flexible 
hypercube with unbounded expansion. 

According to the result, we can embed the 
parallel algorithms developed by the structure of 
mesh in a FHN. These methods of reconfiguring 
enable extremely high-speed parallel computation 
and internet computing. Therefore, we can easily 
port the parallel or distributed algorithms developed 
for these structures to the FHN graphs. 
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