
Fault-Tolerant Mapping of a Mesh Network in a Flexible
Hypercube

*Jen-Chih Lin

Department of Digital Technology Design,
National Taipei University of Education,

No.134, Sec. 2, Heping E. Rd., Da-an District,
＜Taiwan, R.O.C.

E-mail:*yachih@tea.ntue.edu.tw

Abstract: - The Flexible Hypercube FHN is an important variant of the Hypercube Hn and possesses many
desirable properties for interconnection networks. This paper proposes a novel algorithm of fault-tolerant
method for mapping a mesh network in a Flexible Hypercube. The main results obtained (1) a searching path of
a FHN is including approximate to (n+1) nodes, where n= 2log N⎢ ⎥⎣ ⎦ . Therefore, there are O() faults,
which can be tolerated. (2) Our results for the mapping methods are optimized mainly for balancing the
processor and communication link loads. These results mean that the parallel algorithms developed by the
structure of mesh network can be executed in a faulty FHN. The useful properties revealed and the algorithm
proposed in this paper can find their way when the system designers evaluate a candidate network’s
competence and suitability, balancing regularity and other performance criteria, in choosing an interconnection
network.

2log N⎢⎣ ⎥⎦

Key-Words: - Hypercube, Flexible Hypercube, Mesh Network, Fault-Tolerant, embedding

1 Introduction

In the study of parallel computing, networks of
processors are often organized into various
configurations such as trees, rings, linear arrays,
meshes and hypercubes[16]. These configurations
can be represented as graphs. If the properties and
structures of underlying graph used effectively, the
computation and communication speeds can often
improved.

Hypercube multiprocessor has been the focus of
many researchers over the past few years. Several
prototypes and parallel systems have been
constructed, such as Intel’s Paragon, Dash[17],
Flash[15], and Alewife[1]. At the same time,
Hypercube has been used as the interconnection
network in a wide variety of commercial and
experimental distributed memory multiprocessors
such as the Cosmic Cube[25], the Intel “hypercube”
systems (iPSC, iPSC/2), the Ametek/Symult S-series,
the NCUBE and the Connection Machines (CM-1,
CM-2). The popularity of the hypercube
multiprocessor or multicomputer systems is due to
their tempting properties such as logarithmic
diameter and node degree, high bisection width, ease
to embed other common structures, and many known
efficient data communication schemes[24]. Although

hypercubes possess many advantages for parallel and
distributed computing, there are some limitations for
constructing hypercubes. However, due to the
power-of-2 size and logarithmic degree, hypercubes
suffer two major disadvantages, namely, high cost
extensibility and large internal fragmentation in
partitioning. Limitations of the hypercube include its
nonplanarity (which complicates the layout of
hypercubes implemented within VLSI chips), and its
inability to grow incrementally. The incremental
extensibility is a very essential and desirable
property in real world applications for designing
interconnection networks. At the same time, the
mesh[8, 10, 31, 39] interconnection network is very
popular. And it substitutes the hypercube
interconnection in parallel machine.

Since hypercube architectures are very regular and
scalable, programs for these computers are frequently
designed with the dimension n of the host hypercube
Hn treated as an input variable, so that the same
program can be run without modification on
hypercube of different sizes. This scalability property
of hypercube architecture makes it possible to tolerate
faults gracefully by confining a program to a
fault-free subcube of the host hypercube. The
reduction of the effective cube size due to faults is a
tough indication of the performance degradation. In

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1587 Issue 9, Volume 8, September 2009

order to conquer the difficulties associated with
hypercubes and these generalizations of the
hypercubes, the Flexible Hypercube[11] has been
proposed during past years. The Flexible Hypercube
unlike the hypercube, may be expanded (or designed)
in a number of possible configurations while
guaranteeing the same basic fault-tolerant properties
and without a change in the communication. The
existence of hypercube subgraphs in the Flexible
Hypercube ensures that hypercube embedding
algorithms developed for the hypercube may also be
utilized in the Flexible Hypercube. The flexibility in
node placement may possibly be utilized to aid in
supporting a specific embedding. The Flexible
Hypercube, while maintaining the fault-tolerant of the
other topologies and the ease of communication,
allows the placement of new nodes at any currently
unused addresses in the system.

In order to execute a parallel program, tasks are
to be mapped in a processor of parallel machine or
interconnection network. It is possible to model this
kind of problem in graph-theoretical terms of graph
embedding[2, 20]. We model both the parallel
algorithm and the parallel machine as graphs. Given
two graphs, G(V,E) and G’(V’,E’), embedding the
guest graph G into the host graph G’ maps each
vertex in the set V in a vertex(or a set of vertices) in
the set V’ and each edge in the set E in an edge(or a
set of edges) in the set E’. Let these nodes in a graph
correspond to processors and edges to
communication links in an interconnection network.
Embedding one graph into another is important
because an algorithm may have been designed for a
specific interconnection network, and it may be
necessary to adapt it to another network. Four costs
associated with graph embedding are dilation,
expansion, load, and congestion. The maximum
amount that we must stretch any edge to achieve an
embedding is called the dilation of the embedding.
By expansion, we mean the ratio of the number of
nodes in the host graph to the number of nodes in the
graph that is being embedded. The congestion of the
embedding is the maximum number of edges of the
of the guest graph that are embedded using any
single edge of the host graph. The load of an
embedding is the maximum number of nodes of the
guest graph that are embedded in any single node of
the host graph. An efficient simulation of one
network on another network requires that these four
costs be as small as possible. However, for most
embedding problems, it is impossible to obtain an
embedding that minimizes these costs
simultaneously. Therefore, some tradeoffs among
these costs must be made.

The issue of computing with faulty hypercubes

has been addressed in several recent papers [3, 7, 12,
13, 23, 32, 35, 36, 39]. Particularly notable is the
result by Hastad, Leighton and Newman [12]. They
considered a faulty hypercube in which every node is
faulty with constant probability p<1 and the faults
are independently distributed. They proved that, with
high probability, the faulty hypercube can simulate a
fault-free hypercube with only a constant factor
slowdown. Thus the hypercube is extremely tolerant
of randomly distributed faults.

Load Balancing, communication locality,
communication congestion, and node utility in
process graphs can be abstractly studies as the
problem of embedding[2]. In a process graph, the
nodes represent processes comprising a distributed
program or a parallel program and the edges
represent communications between processes. In a
multiprocessor system, we follow two fault models
defined in [16]. The first model assumes that, in a
faulty node, the computational function of the node
is lost while the communication function remains
intact; this is the partial faulty model. The second
model assumes that, in a faulty node, the
communication function is lost too; this is the total
faulty model. Conceptually, the network interface
hardware operates independent of the computer’s
processor. In this paper, our model is the partial
faulty model. That is, when the computation nodes
are faulty, the communication links are well and only
the faulty nodes are remapped.

One approach to achieve fault-tolerant in
hypercubes is to introduce spare nodes or links[36],
so that hypercube structure can still be maintained
when nodes fail. This approach can be expensive and
it is difficult to make hardware modifications on
those machines already in the market place. Another
approach exploits the inherent redundant nodes or
links in hypercube to achieve fault-tolerant[16]; that
is no extra nodes or links are unused nodes as
spares. In this paper, we consider only the second
type of fault-tolerant design in a Flexible Hypercube.

The paper presents novel algorithms to facilitate
the embedding job when the Flexible Hypercube
contains faulty nodes. Of particular concern are the
network structures of the Flexible Hypercube that
balance the load before as well as after faults starting
to degrade the performance of the Flexible
Hypercube. To obtain replaceable nodes of faulty
nodes, 2-expansion is permitted such that up to (n+1)
faults can be tolerated with congestion 1, dilation 2,
and load 1, where n= 2log N⎢ ⎥⎣ ⎦ is the dimension of
a Flexible Hypercube FHN. Results presented herein
demonstrate that embedding methods are optimized.

The rest of this paper is organized as follows. In

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1588 Issue 9, Volume 8, September 2009

Section 2, definitions of these topologies are given.
Notations and definitions of terms are also provided.
Section 3 presents the method for mapping a mesh
network. In Section 4, we describe the novel
fault-tolerant method for mapping a mesh network in
a Flexible Hypercube with 2-expansion. Conclusions
are finally made in section 5.

2 Preliminaries

We briefly describe these definitions of these
topologies of the hypercube, the mesh network, and
the flexible hypercube.

A hypercube Hn of order n, is defined to be a
symmetric graph G= (V, E) where V is the set of 2n
vertices, each representing a distinct n-bit binary
number and E is the set of symmetric edges such that
two nodes are connected by an edge iff the number

of positions where the bits differ in the binary labels
of the two nodes is 1.

There are many topologies can be mapped in
hypercubes or hypercube-like computers. One of
these is mesh network. It is very popular network
interconnection. One of the most attractive properties
of the binary n-cube topology is that meshes of
arbitrary dimensions can be mapped in it. This is one
of the main reasons for the success of hypercube
architectures. Because of these, we consider the
mesh size in each direction is a power of 2. The
figure 1 and the figure 2 show us two examples. First
example, a 2×2 2-dimensional mesh has 4 nodes
which are bi-directional connection between two
nodes. Second example, A 22 21 2-dimensional
mesh has 8 nodes which are bi-directional
connection between two nodes.

×

Fig. 1: A 2×2 2-dimensional mesh

Fig. 2: A 22×21 2-dimensional mesh

For example, a 2-bit Gray Code can be
constructed by the sequence, defined in definition 3,
and insert a cipher in front of each codeword in C1,
then insert an one in front of each codeword in (C1)R .
We get the code C2={00, 01, 11, 10}. Now, we can
then repeat the procedure to built a 3-bit Gray Code,
and also get the code C3=0C2∪1(C2)R={000, 001,
011, 010, 110, 111, 101, 100}.

Definition 1[16] mesh is a 2-dimension
mesh that the mesh size in each direction is a power
of 2. i.e., it is such that .

21 mm ×

m1 =
sr m 2,2 2 =

Definition 2[16] Higher dimension mesh is a
 mesh in d-dimension, and

assume that the mesh size in each direction is a
power of 2.

dmmm ××× L21

The Flexible Hypercube is constructed by any
number of nodes and based on a hypercube. A
Flexible Hypercube, denoted by FHN, is defined as
an undirected graph FHN=(V,E) ,where V is the set of
processors (called nodes) and E is the set of

Definition 3[18] The Binary-Reflected Gray Code
(BRGC) is defined recursively as follows.
 Cn+1={0Cn, 1(Cn)R}, where C1={0 , 1} and
 C2={0C1 , 1(C1)R}

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1589 Issue 9, Volume 8, September 2009

Addressing of nodes in a Flexible Hypercube is
constructed as follows. As discussed above,
addresses consist of binary strings of (n+1)-bits. The
first 2n-1 addresses correspond to nodes in H1 and
must be the binary representations of 0 through 2n-1.
Each of the remaining nodes (up to 2n-1 nodes) in the
set V3=H2 -H1 may be placed adjacent to any node x
in H1 and is given the addressing I(x). Any node in
H1 is a hamming distance of 1 from at most one node
in V3. This method of node addressing effectively
relaxes the constraint that all nodes in the network
must be numbered consecutively. This is unique
among the hypercube topologies mentions above.
Notably, hypercubes are special cases of a Flexible
Hypercube; it can also be expanded flexibly with
respect to the placement of new nodes in the system
while maintaining fault-tolerant. When a new node is
added to a Flexible Hypercube system, (n+1) new
connections should be added and at most n existing
edges must be removed.

bidirectional communication links between the
processors (called edges). In an n-dimensional
Flexible Hypercube with N nodes where 2n ≤ N <
2n+1 (n is a positive integer), each node can be
expressed by an (n+1)-bit binary string in.....i0 where
ip∈{0 ,1} and 0 ≤ p ≤ n
Definition 4[19] A (2n+1 -t)-node Flexible Hypercube
is a lack of t nodes, which are referred to herein as
virtual nodes. For any virtual node y, denoted as I(x)
where x is any node of Flexible Hypercube, if the
function I(x) exists, then n nx y= and xi=yi for 0 ≤
i ≤ n-1
Definition 5[18, 21] The Hamming distance of two
nodes x and y, denoted by HD(x ,y), is the number of
1's in the bit set of resulting sequence of the bitwise
XOR of x and y.
Definition 6[19] For any two nodes x and y in a
Flexible Hypercube, let x=xn ... x0, y=yn ... y0, then
Dim(x ,y)={i in (0 ... n) | xi≠yi}.
Definition 7[11] Suppose FHN=(V, E) is an
n-dimensional Flexible Hypercube ,then the node
sets H1, H2, V1, V2, V3 are defined as follows

An inevitable consequence of the flexible of
construction and the fault-tolerant of a Flexible
Hypercube is an uneven distribution of the utilized
communication ports over system nodes. Although
the Flexible Hypercube loses its property of
regularity, more links help obtain the replacement
nodes of the faulty nodes of the Flexible Hypercube.
The Flexible Hypercube with 14-node is shown in
the figure 3. In the figure 3, H1 = {0000, 0001, 00010,
0011, 0100, 0101, 0110, 0111}, H2 = {0001, 0011,
1000, 1010, 1100, 1101, 1110, 1111}, V1 = {0000,
0010, 0100, 0101, 0110, 0111}, V2 = {0001, 0011},
and V3 = {1000, 1010, 1100, 1101, 1110, 1111}.

1. H1 ={x | x∈V and xn = 0},
2. H2 ={x | x∈V and (xn = 1 or I(x)∉ V)},
3. V1 =H1-H2
4. V2 =H1∩H2
5. V3 =H2 -H1
Definition 8[11] Suppose FHN=(V, E) is an n-
dimensional Flexible Hypercube ,then the edge set E
is the union of E1, E2, E3, and E4 ,where
1. E1 ={(x ,y) | x, y∈H1 and HD(x ,y) =1},
2. E2 ={(x ,y) | x, y∈V3 and HD(x ,y) =1},
3. E3 ={(x ,y) | x∈V3 , y∈V1 and HD(x ,y) =1},
4. E4 ={(x ,y) | x∈V3 , y∈V2 and HD(x ,y) =2}.

Fig. 3: A Flexible Hypercube contains 14-nodes

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1590 Issue 9, Volume 8, September 2009

3 Mapping of Meshes
We describe our approach that maps a mesh

network in a Flexible Hypercube with 2-expansion in
this section.
Lemma 1[16] mesh is a 2-dimensional
mesh, where can be mapped in
an n-dimensional hypercube where n = r+ s.

21 mm ×
r m,21 =

sm 22 =

Lemma 2[16] Any dmmm ××× L21 mesh in the

d-dimensional space Rd, where mi = can be
mapped in an n-dimensional hypercube where n = p1
+ p2+…+ pd. The numbering of the mesh nodes is
any numbering such that its restriction to each ith
variable is a Gray sequence which is described in
definition 3. Note that the assumption that all mi’s be
power of 2.

ip2

Our proposition is best illustrated by an example.
Consider a 2-dimensional 8×4 mesh i.e., d = 2, p1 =
3, p2 = 2, n = p1 + p2 = 5. A binary number M of any
node of the 3-dimensional hypercube can be
regarded as consisting of two parts: its first 3 bits and
its last 2 bits, which we write in the form

M = 1 2 3 1 2α α α β β , where iα and iβ are bits
0 or 1. It is clear from the definition of n-dimensional
hypercube that when the last 2 bits are fixed, then the
resulting nodes form a p1-dimensional
hypercube (with p1 = 3). Whenever we fix the first
3 bits we obtain a p2-dimensional hypercube (with p2
= 2). The mapping then becomes clear. Choosing a
3-bit BRGC for the x direction and 2-bit BRGC for
the y direction, the point () of the mesh is
assigned to the node

12 p

iy,

3 1

ix

1 2 2α α α β β where 1 2 3α α α

1 2

is the 3-bit BRGC for dimension of p1 while β β
is the 2-bit BRGC for dimension of p2.

The binary node number of any mesh node is
obtained by concatenation its binary x coordinate and
its binary y coordinate. Therefore, if we call Gray
sequence any subsequence of a BRGC, we observe
that any column of mesh nodes forms a Gray
sequence and any row of mesh nodes forms a Gray

sequence. Thus, we will refer to the codes defined
above as 2-D Gray codes. Generalizations to higher
dimensions are straightforward and one can state the
above lemma 2.
Lemma 3 For any given N, a Hypercube Hn must be
a subgraph of a Flexible Hypercube FHN, where

12 2n nN +≤ < .
Proof. A FHN must contain a hypercube Hn. That is
trivially by the generation schema of a FHN graph. It
must contain the maximum hypercube Hn.

The mapping approach that a mesh can be
mapped in a FHN with 2-expansion is as follows.

Mapping approach
M , , , NFH 2logr s N∀ + = ⎢ ⎥⎣ ⎦ 1, ≥sr

(,)NFH G V E= , ' '
2 *2

(,)r sM G V E= ,
Vν ∈ ' 'Vν ∈

(Denoted by unique binary string)
1 2 1r s r s r sv X X X X X+ + − + − 0= L

011 XXX sr L−+=′ν
'Vν ′∈ can be mapped in denote as V

01210 XXXX srsrsr L−+−++

Theorem 1 A sr 22 × 2-dimensional mesh can be
mapped in FHN where that n = r + s
with load 1, dilation 1, congestion 1 and expansion 2.

12n N +≤ < 2n

Proof. This is trivial by lemma 2, lemma 3 and the
above mapping approach.
Theorem 2 Any dmmm ××× L21

ip2
12

d-dimensional

mesh, where mi = can be mapped in a FHN,
where 2n nN +≤ < , that = p1 + p2+…+ pd with
load 1, dilation 1, congestion 1 and expansion 2.

n

Proof. It is similarly with above approach.
This is the best illustrated by two examples in the

figure 4 and the figure 5. That is a 2×2 mesh (with 4
nodes) can be mapped in a FH7 with 2-expansion.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1591 Issue 9, Volume 8, September 2009

Fig. 4: A 2×2 mesh can be mapped in FH7 with 2-expansion

The second example is a 22×21 mesh (with 8

nodes) can be mapped in a FH14 with 2-expansion.

Fig. 5: A 22

N ⎥⎦

×21 mesh can be mapped in FH14 with 2-expansion

4 Fault-Tolerant mapping of meshes

In session 3, we show that a mesh network can be
mapped in a FHN graph with expansion 2, load 1,
congestion 1, and dilation 1. Hence, in this section,
we consider a mesh network can be mapped in a FHN
with 2-expansion graph which contains faulty node.

The algorithm design described in this section
mainly accorded with the idea the search of highest
dimension first. By applying the bit-flip in the
leading bit in order from left to right, the searching
path can reach the higher half node immediately and
then expand out to its neighbors in any (n-1)
directions till we find the replaceable node, where

 is the dimension of the graph. This

kind of strategy is called the strategy in higher
dimension of precedence in this session. We also
propose a novel algorithm for mapping a mesh
network in a faulty FHN with 2-expansion as follows.

2logn = ⎢⎣

Algorithm MtoFH(x)

Input: x /*the faulty node*/,
 FHN,
 Mesh sr 22 × , where

 2log+ =r s N⎢ ⎥⎣ ⎦
Output: y /*the replaceable node*/

1. i=0
2. if a node x is faulty
3. then
4. {
5. search the node p

 /* HD(x, p)=1, Dim(x, p)={n}*/

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1592 Issue 9, Volume 8, September 2009

By the algorithm MtoFH(), the searching path of
the faulty node is shown as follows.

6. if p is a exist node and it is free
7. then
8. return(p) /*replace x with p*/
9. exit()
10. else
11. while i < n do
12. {
13. search the node q

/* HD(x, q)=2, Dim(x, q)={n, i}*/
14. if q is a exist node and it is free
15. then
16. return(q) /*replace x with q*/
17. exit()
18. }
19. i=i+1
20. }

 21. return(“Failure”)
 22. end

 node0=0Xn-1Xn-2…X1X0
 node1=1Xn-1Xn-2…X1X0
 node2=1Xn-1Xn-2…X1 X’0
 node3=1Xn-1Xn-2…X’1 X0

 M
 node(n+1)=1X’n-1Xn-2…X1 X0

We illustrate two examples of finding a

replaceable node in a FH14 as shown the figure 6 and
the figure 7. The first example is a 2×2 mesh (with 8
nodes) can be mapped in a FH14 with 2-expansion.

When the faulty node (000) exists, we execute
the operations of the MtoFH().

All node of the searching path is listed as {(100},
(101), (110)}.

Fig. 6: Mapping a 22×21 mesh in a faulty FH14

The second example is a 4 2 mesh (with 8 nodes)

can be mapped in a FH14 with 2-expansion.
×

When the faulty node (0100) exists, we explain

the operations of the MtoFH(). All node of the
searching path is listed as {(1100, (1101), (1110),
(1000)}.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1593 Issue 9, Volume 8, September 2009

Fig. 7: Mapping a 22×21 mesh in a faulty FH14

Theorem 3 A 2-dimensional mesh can be
mapped in a faulty FHN that with
load 1, dilation 2, congestion 1 and expansion 2.

sr 22 ×

2logr s N+ = ⎢⎣ ⎥⎦

⎥⎦

Proof. By executing the MtoFH method, allowing us
to get congestion 1 and load 1. And we allow
2-expansion to obtain the replace node of faulty node.
When a node is faulty, the dilation maybe become
1+1=2 at most by the MtoFH method in a worst case.
Because these nodes and links of searching paths are
not replicated from the MtoFH method, four costs
associated with graph mapping are dilation 2,
expansion 2, load 1 and congestion 1.
Theorem 4 A searching path of the MtoFH method
is including approximate to (n+1) nodes, where
n= . 2log N⎢ ⎥⎣ ⎦
Proof. Every node can be represented by a n+1-bit
binary string where . First, we
change the most significant bit from 0 to 1. Then, a
bit can be changed from to sequentially by
the MtoFH method. But FHN graph may be having
virtual nodes. Hence, a searching path of the MtoFH
method is including approximate to (n+1) nodes.

0iinL { }1,0∈pi

1−ni0i

Theorem 5 There are O() faults, which
can be tolerated.

2log N⎢⎣

Proof. It is trivial by theorem 4.
Theorem 6 Our results for the mapping methods are
optimized mainly for balancing the processor and
communication link loads.
Proof. Our results demonstrate that a mesh network
can be mapped in a faulty flexible hypercube with
load 1, dilation 2, congestion 1 and expansion 2.
These nodes and links of these replacing nodes are
not replicated from the algorithm MtoFH(). This

observation implies that the primary optimization
objective of mapping is minimizing the
interprocessor communication cost and to balance
the workload of processors have reached.

5 Conclusions

This paper develops a new algorithm to facilitate
the mapping(embedding) job when the Flexible
Hypercube contains faulty nodes. The replaceable
node of the faulty node is obtained, allowing us
2-expansion. Our results demonstrate that
O(2log N⎢ ⎥⎣ ⎦) faults can be tolerated. Also, the
methodology is proven and an algorithm is presented
to solve them. These existent parallel algorithms on
mesh architectures to be easily transformed to or
implemented on Flexible Hypercube architectures
with load 1, congestion 1 and dilation 2.

After any mesh networks can be reconfiguring in
a Flexible Hypercube with faulty nodes, we are also
interested in the mapping of arbitrary
multi-dimensional mesh networks in a faulty flexible
hypercube with unbounded expansion.

According to the result, we can embed the
parallel algorithms developed by the structure of
mesh in a FHN. These methods of reconfiguring
enable extremely high-speed parallel computation
and internet computing. Therefore, we can easily
port the parallel or distributed algorithms developed
for these structures to the FHN graphs.

References:
[1] A. Agrawal, et al., The MIT Alewife Machine:

Architecture and Performance, Proceedings of
the 22nd Annual International Symposium on

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1594 Issue 9, Volume 8, September 2009

Computer Architecture, 1995. pp. 2-13.
[2] S. B. Akers, and B. Krishnamurthy, A

Group-Theoretic Model for Symmetric
Interconnection Networks, IEEE Trans. on
Computers, Vol. 38, 1989, pp. 555-565.

[3] J. R. Armstromg and F. G. Gray, Fault-
diagnosis in n-Cube array of microprocessor,
IEEE Trans. on Computers, Vol. C-30, No. 4,
1992, pp. 587-590.

[4] D. P. Bertsekas and J. N. Tsitsiklis, Parallel
and Distributed Computation: numerical
methods, Prentice Hall, Englewood Ciffs, New
Jersey, 1989.

[5] L. Bhuyan and D.P. Agrawal, Generalized
Hypercubes and Hyperbus structure for a
computer network, IEEE Trans. on Computers,
Vol. 33, 1984, pp. 323-333.

[6] C. Chartand and O. R. Oellermann, Applied and
Algorithmic Graph Theory, McGRAW-HILL
Inc., 1993.

[7] K. Day and A. E. Al-Ayyoub, Fault Diameter
of k-ary n-cube Networks, IEEE Trans. on
parallel and distributed systems, Vol. 8, No. 9,
1997, pp. 903-907.

[8] Q. Dong, X. Yang, J. Zhao, and Y. Y. Tang,
Embedding a family of disjoint 3D meshes into
a crossed cube, Information Sciences, Vol. 178,
No. 11, 2008, pp. 2396-2405.

[9] S. Dutt and J. P. Hayes, An automorphic
approach to the design of fault-tolerance
Multiprocessor, Proc. 19th Inter. Symp. on
Fault-Tolerant Computing, 1989.

[10] J. Fan, and X. Jia, Embedding meshes into
crossed cubes, Information Sciences, Vol. 177,
No. 15, 2007, pp. 3151-3160.

[11] T. Hameenanttila, X.-L. Guan, J. D. Carothers,
and J.-X. Chen, The Flexible Hypercube: A
New Fault-Tolerant Architecture for Parallel
Computing, Journal of Parallel and
Distributed Computing, Vol. 37, 1996, pp.
213-220.

[12] J. Hastad, T. Leighton, and M. Newman,
Reconfiguring a Hypercube in the Presence of
Faults, ACM Theory of Computing, , 1987, pp.
274-284.

[13] J. P. Hayes, and T.N. Mudge, Hypercube
supercomputing, Proc. IEEE, Vol. 77, 1989, pp.
1829-1842.

[14] H.P. Katseff, Incomplete Hypercubes, IEEE
Trans. on Computers, Vol. 37, No. 5, 1988, pp.
604-608.

[15] J. Kuskin, et al., The Stanford FLASH
Multiprocessor, Proceedings of the 21st Annual
International Symposium on Computer
Architecture, 1994, pp. 302~313.

[16] F. T. Leighton, Introduction to parallel
algorithms and architectures: Arrays, Trees,
Hypercubes, MORGAN KAUFMANN
PUBLISHERS, Inc., 1992.

[17] D. Lenoski, et al., The StanfordDASH
Multiprocessor, Computer, Vol. 224, 1971, pp.
63-79.

[18] J.-C. Lin, Simulation of Cycles in the IEH
Graph, International Journal of High Speed
Computing, Vol. 10, 1999, pp. 327-342.

[19] J.-C. Lin, T.-H. Chi, H.-C. Keh and A.-H. A.
Liou, Embedding of Complete Binary Tree
with 2-expansion in a Faulty Flexible
Hypercube, Journal of Systems Architecture,
Vol. 47, No. 6 , 2001, pp. 543-548.

[20] J.-C. Lin, Load-Balance and Fault-Tolerance
for embedding a Complete Binary Tree in an
IEH with N-expansion, WSEAS Transactions
on Computers, Vol. 7, No. 7, 2008, pp.
919-928.

[21] C.D. Park, and K.-Y. Chwa, Hamiltonian
properties on the class of hypercube-like
networks, Information Processing Letters, Vol.
91, 2004, pp. 11-17.

[22] F. P. Preparata and J. Vuillemin, The
cube-connected cycles: A versatile network for
parallel computation, Commun. ACM, Vol. 24,
No. 5, , 1981, pp. 300-309.

[23] D. A. Rennels, On Implemanting
Fault-tolerance in binary hypercubes, Proc.
16th Inter . Symp. on Fault-tolerant Computing,
1986, pp. 344-349.

[24] Y. Saad, and M. Schultz, Topological
properties of Hypercube, IEEE Trans. on
Computers, Vol. 37, 1988, pp. 867-871.

[25] C. Seitz, The Cosmic Cube, Commun. ACM,
Vol. 28, 1985, pp. 22-33.

[26] A. Sen, Supercube: An Optimally Fault
Tolerant Network Architecture, Acta
Informatica, Vol. 26, 1989, pp. 741-748.

[27] A. Sen, A. Sengupta and S. Bandyopadhyay,
Generalized Supercube: An incrementally
expandable interconnection network,
Proceedings of the Third Symposium on
Frontiers of Massively Parallel
Computation-Frontiers'90, 1990, pp. 384-387.

[28] H. Sullivan, T. Bashkow, A large scale,
homogeneous, fully distributed parallel
machine, I, Proc. 4th Symp. Computer
Architecture, ACM, 1977, pp. 105-177.

[29] S. Sur and P. K. Srimani, Incrementally
Extensible Hypercube Networks and Their
Fault Tolerance, Mathematical and Computer
Modelling, Vol 23, 1996, pp. 1-15.

[30] S. Sur, and P. K. Srimani, IEH graphs: A novel

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1595 Issue 9, Volume 8, September 2009

http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235643%232007%23998229984%23653400%23FLA%23&_cdi=5643&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b2d001a211da69c42a13f0f40a838c44
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235643%232007%23998229984%23653400%23FLA%23&_cdi=5643&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b2d001a211da69c42a13f0f40a838c44

generalization of hypercube graphs, Acta
Informatica, Volume 32, 1995, pp 597-609.

[31] C.-H. Tsai, Embedding of meshes in Möbius
cubes, Theoretical Computer Science, Vol. 401,
No. 1, 2008, pp. 181-190.

[32] Y.-C. Tseng and T.-H. Lai, On the Embedding
of a class of Regular Graphs in a Faulty
Hypercube, J. Parallel and Distrib. Comput.,
Vol. 37, 1996, pp. 200-206.

[33] L. W. Tucker and G. G. Robertson,
Architecture and applications of the connection
machine, IEEE Comput., Vol. 21, 1988,
pp.26-38.

[34] N.-F. Tzeng and H.-L. Chen, An Effective
Approach to the Enhancement of Incomplete
Hypercube Computers, J. Parallel and Distrib.
Comput., Vol. 14, 1992, pp. 163-174.

[35] N.-F. Tzeng and H.-L. Chen, Fast Compaction
in Hypercubes, IEEE Trans. on parallel and
distributed systems, Vol. 9, No. 1, 1998, pp.
50-55.

[36] S.-H. Wang, Y.-R. Leu, and S.-Y. Kuo,
Distributed Fault-Tolerant Embedding of
Several Topologies in Hypercubes, Journal of
Information Science and Engineering, Vol. 20,
No. 4, 2004, pp. 707-732.

[37] L.D.Wittie, Communications structures for
largenetworks of microcomputers, IEEE Trans.
Comput., Vol. C-30, 1981, pp.264-273.

[38] C. Xu and F. C. M. Lau, Load Balancing in
Parallel Computers-Theory and Practice,
Kluwer Academic Publishers, Inc., 1997.

[39] P.-J. Yang, S.-B. Tien, and C.S. Raghavendra,
Embedding of Rings and Meshes onto Faulty
Hypercube Using Free Dimensions, IEEE
Trans. on Computers, Vol. 43, No. 5, 1994, pp.
608-618.

[40] S.-M. Yuan, Topological properties of
supercube, Information Processing Letters, Vol.
37, 1991, pp. 241-245.

[41] I. Zelina, P. Pop, C. P. Sitar, and I. Tascu,
A parallel algorithm for interpolation in
Pancake graph, Proceedings of the 6th
WSEAS International Conference on
SOFTWARE ENGINEERING, PARALLEL and
DISTRIBUTED SYSTEMS (SEPADS '07),
2007, pp.98-101.

WSEAS TRANSACTIONS on COMPUTERS Jen-Chih Lin

ISSN: 1109-2750 1596 Issue 9, Volume 8, September 2009

http://www.sciencedirect.com/science/journal/03043975

	29-631
	29-641
	29-644
	29-645
	29-648
	29-649
	29-657
	29-659
	29-662
	31-466
	32-405
	

	32-418
	[12] H. P. Ong and M. N. Kamarudin, Calculation in Estimating Total Electron Content GPS, Universiti Teknologi Malaysia, 2006.

	32-427
	32-428
	32-490
	32-519
	32-557

