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Abstract: Image textural analysis technology has been widely used in the design of automated defect detection 
systems. Because the presence of defects may change the textural features of an image, a reference image 
without defects can be compared with the test image to detect whether there are any defects. However, besides 
defects, the deflection of the input test image could also change its textural features. When there is any angular 
difference between the reference and test images, their textural features would also be different, even if there is 
no defect in the test image. As a result, misjudgment of the defect detection system may occur. Most of the 
previous studies have focused on the development of textural analysis technology which could decrease the 
effect of test image deflection. This study aimed to estimate the deflection angle of test images through polar 
Fourier transform and phase correlation analysis, and rotate the reference image by the same angle to 
compensate for the deflection of the test image. After the angles of the reference and test images were brought 
into line, the textural analysis based on the gray level co-occurrence matrix was applied to analyze and compare 
the textural features of the two images. The results of actual texture defect detection demonstrated that the 
angular differences between the reference and test images could be estimated correctly, with an estimation error 
of only 0° to 0.5°. By compensating for the deflection of the test image, the accuracy of the texture defect 
detection could be effectively enhanced. 
 
Key-Words: - Texture defect detection, Image deflection compensation, Polar Fourier transform, Phase 
correlation analysis, Gray level co-occurrence matrix 
 
1 Introduction 

In automated production systems, defects are 
likely to occur in many products, such as textiles, 
steel products, discs, and glass and paper products, 
due to the abnormality of processing tools during 
processing. If the defect is too small to be identified 
by visual inspection, it would be time-consuming 
and strenuous to carry out manual inspection, and 
thus inspection may be neglected. Since the textural 
features of defects are different from those of the 
products, many studies have proposed image 
textural analysis technology to design an automated 
defect detection system. The main aim of textural 
analysis is to simulate human capability of 
distinguishing textures, and identify appropriate 
textural features to describe the image, so as to 
analyze textural differences. 

The main methods for textural analysis include 
the statistical method [1-9], the structural method 
[10] and the spectral method [11-15]. The statistical 
method can provide all sorts of statistical data about 
the relative positions among pixels, and then 
decrease the effects of textural image translation, 
rotation and noise, thus having inherent advantages 
for defect detection. It can be divided into first order, 
second order and higher order levels. Julesz [16] 

pointed out that human’s vision system is most 
appropriate for second-order statistics; thus, most 
researchers have adopted this kind of statistics. The 
second-order statistical method includes the gray 
level co-occurrence matrix (GLCM) [1-5], the 
neighboring gray level dependence matrix [6-8] and 
the neighborhood gray tone difference matrix [9]. 
The structural method considers that images are 
formed by textural primaries arranged based on 
specific rules. Accordingly, it identifies the 
arrangement rules by obtaining textural primaries in 
the image [10]. However, to analyze the images 
with inconspicuous textural rules, the structural 
method cannot effectively obtain the textural 
primaries and describe their arrangement rules. The 
spectral method uses Fourier transform to analyze 
the obtained spectrums and distinguish the features 
of periodic texture, such as main direction, spatial 
period and spectral energy [11-15].  

Moreover, there are some other textural analysis 
methods based on the Markov random field model 
[17,18], the directional Walsh-Hadamard transform 
[19], the random subspace neural classifier [20], the 
wavelet transform [21], and the optimized filter 
[22,23]. Chang et al. [17] observed that certain 
spatial and temporal features of the Markov random 
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field density function can be derived to model 
temporal textures. They proposed a texture 
descriptor based on spatial and temporal prediction 
residual of mean filtering to study the dynamic 
nature of textures for video indexing. Zimeras [18] 
further developed an auto-logistic model based on 
Markov random fields to simulate texture patterns. 
The method based on the directional Walsh-
Hadamard transform [19] can insert the basic 
advantages of multi-scale and multi-directional 
texture analysis into a fast modified Walsh-
Hadamard transform.  The random subspace neural 
classifier [20] was developed and used for image 
recognition in micromechanics, and can recognize 
different types of metal surfaces after mechanical 
processing. Ngan et al [21] proposed the method 
based on wavelet transform and golden image 
subtraction for defect detection on patterned fabric 
or repetitive patterned texture. The golden image 
subtraction can effectively segment out the defective 
regions on patterned fabric. The optimized filters 
using linear finite-impulse-response filters [22] and 
Gabor filters [23] were designed to automatically 
extract the defects in textured materials. 

Since the presence of defects can change the 
textural features of an image, a reference image 
without defects can be used to compare with the test 
image to detect whether there are any defects. 
However, besides defects, the image deflection can 
also change textural features and affect the accuracy 
of defect detection. When there is any angular 
difference between the reference image and the test 
image, their textural features are accordingly 
different, even if there is no defect in the test image. 
As a result, misjudgment of the detection system 
may occur. Although the current methods of textural 
analysis can extract various useful features in 
textured materials, they are all sensitive to image 
deflection. This study aimed to compensate for the 
deflection angle of the test image, so as to enhance 
the accuracy of texture defect detection. It 
transformed the rotation relationship between the 
test and reference images into a displacement 
relationship in the frequency domain through polar 
Fourier transform [24-27], and estimated the 
displacement vector in the frequency domain 
through phase correlation analysis [28] to obtain the 
angular difference between the two images. Then, 
the reference image was rotated by the same angle 
to compensate for the deflection of the test image. 
When the angles of the test and reference images 
were brought into line, the GLCM-based statistical 
method was applied to analyze and compare the 
textural features of the two images. 

The remainder of this paper is organized as 
follows.  Sections 2 and 3 introduce the estimation 
methods for the deflection angle of the test image 
and the GLCM-based texture analysis, respectively. 
Section 4 establishes the texture defect detection 
rules, and defines the performance indexes of the 
texture defect detection system. Section 5 explains 
the detection results of the texture defect detection 
system for all defect images. Section 6 gives the 
conclusions. 
 
 
2 Estimation methods for the deflection 
angle of the test image 
According to the properties of Fourier transform, 
spatial signal displacement or rotation has specific 
corresponding relationships in the frequency domain. 
Therefore, the spatial displacement vector or 
rotation angle can be calculated from the frequency 
domain.  Kuglin and Hines [28] used the translation 
property of Fourier transform to propose a phase 
correlation analysis to calculate the displacement 
vector between two images, and applied this 
analysis in image registration. Other research on 
image registration [24-27] combined polar Fourier 
transform and phase correlation analysis to further 
calculate the difference of rotation angles between 
two images.  Through polar Fourier transform, the 
original spatial rotation relationship of these two 
images before and after rotating could be expressed 
as a displacement relationship in the frequency 
domain. Therefore, phase correlation analysis can be 
further used to calculate the displacement vector in 
the frequency domain, and to obtain the angle 
difference of these two images. 

In this study, the estimation method for the 
deflection angle of the test image is described in 
detail as follows. Suppose that 1f and 2f are the 
images before and after a displacement of ),( 00 yx , 
the relationship between which is as follows: 
 

),(),( 0012 yyxxfyxf −−=  (1) 
 
According to the translation property of Fourier 
transform, the relationship between Fourier 
transforms ),(1 vuF and ),(2 vuF  of image 1f  and 

2f  is as follows: 
 

),(),( 1
)(2

2
00 vuFevuF vyuxj ×= +− π  (2) 

 
Moreover, 
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2 00
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),( vyuxje

vuF
vuF +−= π  (3) 

 
Accordingly, image displacement in frequency 
domain can only change the phase correlation 
of )(2 00 vyuxje +− π . After Eq. (3) taken on inverse 
Fourier transform, ),( 00 yyxx −−δ  can be obtained. 
The position of maximum ),( 00 yyxx −−δ  is then 
the displacement vector ( 0x , 0y ). The inverse 
Fourier transform of Eq. (3) is defined as a phase 
correlation function as follows [28]: 

 

)
),(
),((),(

1

21

vuF
vuFyxCorr −ℑ=  

)),((maxarg),(
),(00 yxCorryx

yx
=  (4) 

 
where 1−ℑ  is the inverse Fourier transform, and 0x  
and 0y  are the positions of the maximum phase 
correlation function. Therefore, in phase correlation 
analysis, two images with a displacement 
relationship undergo Fourier transform first, and 
then their phase correlation function is calculated, 
and the position of the maximum phase correlation 
function is obtained, in order to find the 
displacement vector between the two images.  

Figures 1(a) and (b) are the images of a rectangle 
before and after a displacement of (30, 10). The 
corresponding phase correlation function is shown 
in Figure 2. As seen, the maximum value of this 
function appears at (30, 10). Therefore, the spatial 
displacement vector of the images is (30, 10). 

Image rotation also has a specific corresponding 
relationship in the frequency domain [24-27]. 
Supposing that 2f  can be obtained through rotating 

1f   by 0θ , then the relationship between 1f  and 2f  
can be described as follows: 
 

,sincos(),( 0012 θθ yxfyxf +=  
)sincos 00 θθ yx +−  (5) 

 
According to the rotation properties of Fourier 
transform, the relationship between spectrums  

),(1 vuF  and ),(2 vuF  after 1f  and 2f undergo 
Fourier transform is as follows: 
 

,sincos(),( 0012 θθ vuFvuF +=  
)sincos 00 θθ vu +−  (6) 

 

 
(a)  (b)  

 
Fig. 1 A rectangle image, (a) before displacement; 
(b) after a displacement of (30, 10). 

 

 
Fig. 2 The phase correlation function corresponding 
to a displacement of (30, 10). 
 
 

Therefore, when the image rotates by 0θ , the 
spectrum also rotates by 0θ . Figures 3(a) and (b) are 
the images of a rectangle before and after rotating 
by 45°. Figures 3(c) and (d) show the spectrums of 
the image before and after rotating. The rotation 
angles of the spectrum in the frequency domain and 
the image in the spatial domain are both 45°. 

Although the rotation angles in the frequency and 
spatial domains are the same, they cannot be 
calculated directly in the frequency domain. The 
spatial rotation relationship needs to be transformed 
into a displacement relationship in the frequency 
domain. Polar Fourier transform transforms the 
spectrum represented by the rectangular coordinate 
after Fourier transform into that represented by 
polar coordinate. Supposing that 2f  is obtained 
through translating 1f  by ),( 00 yx and rotating it by 

0θ , then the relationship between 1f  and 2f  can be 
described as follows: 

 
,sincos(),( 00012 xyxfyxf −+= θθ  

)sincos 000 yyx −+− θθ  (7) 

M
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(a) (b) 

 

 
(c) (d) 

 
Fig. 3 Image and spectrum of a rectangle: (a) and 
(b): images before and after rotating by 45°; (c) and 
(d): spectrums before and after rotating. 
 
 
Through Fourier transform, the following equation 
can be obtained: 
 

,sincos(),( 001
)(2

2
00 θθπ vuFevuF vyuxj += +−  

)sincos 00 θθ vu +−  (8) 
 
If considering the magnitude spectrum only, the 
relationship among them is as follows: 
 

,sincos(),( 0012 θθ vuMvuM +=  
)sincos 00 θθ vu +−  (9) 

 
where 1M  and 2M  are the magnitude spectrums of 
images 1f  and 2f ; parameters r and θ that 
transform the rectangular coordinate into the polar 
coordinate system are defined as follows: 
 

22 vur +=   (10) 
 

)(tan 1

u
v−=θ  (11) 

 
Then the relationship between magnitude spectrums 
can be transformed as: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Flow chart for estimating the deflection angle 
of the test image. 
 
 

),(),( 012 θθθ −= rMrM  (12) 
 
As a result, the spatial rotation relationship between 
images can be transformed as the translation 
relationship in the frequency domain through polar 
Fourier transform. Then, phase correlation analysis 
is used to calculate the translation vector in this 
frequency domain. This study applied polar Fourier 
transform and phase correlation analysis to calculate 
the deflection angle of the test image. Figure 4 is the 
calculation flow chart of the deflection angle of this 
test image. After applying polar Fourier transform to 
the reference and test images, and calculating the 
magnitude spectrum, if there is any angular 
difference between the images, the magnitude 
spectrums would have a displacement relationship. 
Phase correlation analysis is then applied to 
calculate the displacement vector between 
magnitude spectrums, in order to obtain the 
deflection angle of the test image. 
 
 
3 GLCM-based texture analysis  
GLCM-based texture analysis is a second-order 
statistical method that can be used to calculate the 
emergency frequency of pixels conforming to the 
relative angle and distance in a specific position [1-

Deflection 
Angle 0θ  

Reference 
Image 1f  

Test Image
2f  

Polar Fourier
Transform

Magnitude 
Spectrum 

Calculation

Polar Fourier
Transform

Phase 
Correlation 

Analysis 

Magnitude 
Spectrum 

Calculation

),(1 θrM ),(2 θrM
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5]. The corresponding GLCM is different due to the 
difference of the relative position angle of the 
detected pixels. Each image has four GLCMs under 
different angles, 0°, 45°, 90° and 135°. ),( lkI  
and ),( nmI are two pixels in the two-dimension 
image I, then GLCMs under different angles can be 
described as follows [1]: 
 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==

=−=−

∈

=

jnmIilkI
dnlmk

Inmlk
djiP

),(,),(
,0

),(),,(
#)0,,,(  (13) 
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where, d is the distance between pixels, # is the 
quantity of collection elements, and i and j are the 
pixel values of ),( lkI  and ),( nmI . Figure 5 is an 
8×8 image example, the gray level values of which 
are 2,1,0=j . Figure 6 is the GLCM schematic 
diagram of this 8×8 image example. Supposing that 

1=d , then GLCM in four directions can be 
calculated according to Eqs. (13), (14), (15) and 
(16), as shown in Figure 7. 

Figure 8 is an image example with vertical texture. 
Figures 9(a), (b), (c) and (d) are the GLCMs at  0°, 
45°, 90° and 135°, respectively, where a larger 
GLCM indicates higher brightness. As shown in 
Figure 9, the numerical value distribution is related 
to textural structure. The GLCM value of structures 
with fewer gray level interfaces tends to be 
distributed near the diagonal line, while that of 
structures with more gray level interfaces spreads 
from the diagonal line and distributes uniformly.  
 

0 0 2 2 0 0 2 2

2 2 1 1 2 2 1 1

0 0 2 2 0 0 2 2

2 2 1 1 2 2 1 1

0 0 2 2 0 0 2 2

2 2 1 1 2 2 1 1

0 0 2 2 0 0 2 2

2 2 1 1 2 2 1 1
 
Fig. 5 An 8×8 image example. 

 
Gray 
level 0 1 2 

0 #(0,0) #(0,1) #(0,2)

1 #(1,0) #(1,1) #(1,2)

2 #(2,0) #(2,1) #(2,2)
 

Fig. 6 GLCM schematic diagram for an 8×8 image 
example. 
 

16 0 12  0 10 14
0 16 12  10 0 14

12 12 32  14 14 22
(a) 0°  (b) 45° 

 
0 0 28  0 8 14
0 0 28  8 0 14

28 28 0  14 14 20
(c) 90°  (d) 135° 

 
Fig. 7 The co-occurrence matrices of an 8×8 image 
example. 
 

 
 
Fig. 8 An image example with vertical textures 

WSEAS TRANSACTIONS on COMPUTERS Chun-Cheng Lin, Cheng-Yu Yeh

ISSN: 1109-2750 1579 Issue 9, Volume 8, September 2009



 
(a) (b) 

 

 
(c) (d) 

 
Fig. 9 GLCMs of an image example with vertical 
textures at (a) 0°, (b) 45°, (c) 90° and (d) 135°. 
 
Since the image texture in Figure 8 presents a 
vertical trend, GLCM at 90° distributes significantly 
near the diagonal line, as shown in Figure 9(c). At 
the same time, GLCMs in the other directions 
distribute uniformly, as shown in Figures 9(a), (b), 
and (d). 

Conventional textural features in GLCM texture 
analysis include contrast, angular second moment 
(ASM), homogeneity, entropy and correlation, 
which are defined as follows [2-5]: 
 
1) Contrast 
 

( ) ( )∑∑ −=
i j

d jiPjiCON ,2  (17) 

                   
where Pd is the normalized GLCM, defined as 
follows: 
 

( )
P

jiP
P

oi j

d

∑∑
= =

= 255 255

0

,

1  (18) 

 
Contrast is used to measure the sharp degree of the 
contrast and reflect the situation of co-occurrence 
matrices elements near the main diagonal line. 
When larger values center on the main diagonal line 
of co-occurrence matrices, the image contrast is 
smaller. Otherwise, when larger values centre at the 

upper right or lower left corners, the contrast is 
larger. A smaller contrast indicates closer gray-level 
values among pixels, while a larger contrast 
indicates larger differences of gray-level values 
among pixels. 
 
2) Angular second moment 
 

( )[ ]∑∑=
i j

d jiPASM 2,  (19) 

 
The ASM value is equal to the quadratic sum of all 
elements in GLCM and also the energy of GLCM. 
ASM is used to measure the consistency and 
uniformity of image gray level distribution, which 
means the repeated emergence probability of a 
certain pixel: higher probability indicates higher 
consistency. When an image has consistent texture, 
few values of normalized GLCM off the diagonal 
line are approximate to 1, while others are 
approximate to 0. Therefore, when the image texture 
is more consistent and uniform, GLCM values tend 
to centre on the few elements, thus making the ASM 
value larger. Otherwise, when GLCM values 
distribute more uniformly, the ASM value is smaller. 

 
3) Homogeneity 
 

( )∑∑ ≠
−

=
i j

d jijiP
ji

HOM ,,1
2  (20) 

 
When larger values are concentrated around the 
main diagonal line, homogeneity would be larger. 
Opposite to contrast, homogeneity is used to analyze 
the homogeneous degree of the image: the more 
homogeneous the image (contrast less sharp), the 
larger the homogeneity. An image with a sharper 
contrast is detailed, while one with higher 
homogeneity is coarse. 
 
4) Entropy 
 

( ) ( )∑∑−=
i j

dd jiPjiPEN ,log,  (21) 

 
Entropy is mainly used to measure textural 
complexity. When the texture of a textural image is 
unorderly, gray level values distribute uniformly, 
making the values of all elements in the co-
occurrence matrix smaller. Therefore, larger entropy 
indicates higher textural complexity. Entropy is in 
inverse proportion to energy. The co-occurrence 
matrix values of an image with higher entropy 
distribute uniformly. 
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5) Correlation 
 

22

),(

yx

i j
yxd jiPji

COR
σσ

μμ∑∑ −××

=  (22) 

where, 
 

∑∑=
j

d
i

x jiPi ),(μ  

 

∑∑=
i

d
j

y ijPi ),(μ  

 

∑∑ −=
i j

dxx jiPi ),()( 2μσ  

 

∑∑ −=
i j

dyy jiPj ),()( 2μσ  (23) 

 
where xμ , yμ , xσ and yσ are the mean values of 
rows and standard deviations of columns. 
Correlation values can reflect image directivity. 
When images arrange along a certain direction, the 
correlation of textural features in this direction is 
higher than that in other directions. 

A feature vector is then defined combining Eqs. 
(17), (19), (20), (21) and (22) as follows: 
 
[ ]CORENHOMASMCON  (24) 
 

The feature vector can be used to calculate the 
Euler distance between the reference image and the 
test image, which is defined as follows: 
 

∑
=

−=
m

i
iixy yxd

1

2)(  (25) 

 
where ix and iy are the feature vectors of the 
reference and test images, respectively. The Euler 
distance can be used to calculate the distances 
among vectors in orthogonal space. However, in this 
study, it is used to estimate the nearness of feature 
vectors. When the Euler distance is lower than the 
default critical value, there is no defect in the test 
image. Otherwise, when the Euler distance is higher 
than the default critical value, there are some defects 
in the image. 
 
 
4 Texture defect detection algorithm 

The texture defect detection algorithm proposed in 
this study is as follows: 

Step 1: Reference image and test image with 
256256×  pixels are input. 

Step 2: Polar Fourier transform and phase 
correlation analysis are applied to calculate angular 
difference 0θ  between the reference and test images. 

Step 3: The reference image with 256256×  
pixels is rotated by 0θ . After the angles of the 
reference and test images are consistent, a block of 

3232× pixels in a central position is extracted as a 
reference. 

Step 4: The test image of 256256× pixels is 
divided into 64 test blocks of 3232× pixels. 

Step 5: Feature matrixes and the Euler Distance 
of the reference block and all test blocks are 
calculated. 

Step 6: When the Euler Distance is larger than the 
default threshold value, the value is set according to 
actual texture kinds. 

In this study, performance indexes such as 
specificity, sensitivity, positive predictive accuracy 
(PPA), negative estimative accuracy (NPA), and 
total estimative accuracy (TPA) [29] were applied to 
estimate the performance of the defect detection 
system. Specificity is used to estimate the 
correctness of detecting zero defects in perfect 
images. Sensitivity is used to estimate the 
correctness of detecting the existence defects in 
actually defective images. PPA is used to estimate 
the detection correctness of the existence of defects.  
NPA is used to estimate the detection correctness of 
zero defects. TPA is used to estimate the total 
detection correctness. Supposing that the defect 
detection results are as in Table 1, all performance 
indexes are defined as follows: 

 

Specificity %100
)(
×

+
=

db
d   (26) 

 

Sensitivity %100
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×

+
=
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a   (27) 

 

PPA %100
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5 Experiment results 
In this study, four kinds of test images with bifilar 
defects, panel defects, greasy defects and scratch 
defects under different deflection angles were 
applied to evaluate the performance of the texture 
defect detection system. As seen from Figure 10, 
when there is no deflection in the test image, 
applying GLCM-based texture analysis only can 
detect the defective blocks correctly. However, 
given any deflection in the test image angle, the 
detection correctness of applying GLCM-based 
texture analysis only decreases greatly. Figures 11, 
12, 13 and 14 show the defect detection results of 
GLCM-based texture analysis without and with 
image deflection compensation when the defective 
test images deflect different angles. Because the 
differences between the perfect and defective blocks 
for greasy and scratch defects are less conspicuous 
than those for bifilar and panel defects, the Euler 
distances and the threshold value of identifying 
defective blocks for greasy and scratch defects are 
also lower than those for bifilar and panel defects. 
The threshold values for identifying bifilar, panel, 
greasy and scratch defects are 300, 300, 15 and 25, 
respectively. The smaller Euler distances also cause 
more misjudgments in the detection of greasy and 
scratch defects when the input test image deflects, if 
only applying GLCM-based texture analysis without 
image deflection compensation. Moreover, the 
larger the deflection angle, the lower the accuracy of 
the defect detection. After adding phase correlation 
analysis and compensating for the deflection angle 
of the test image, the detection accuracy of the 
defective blocks can revert to that when the test 
image has no angular deflection.  

This study further analyzed the performance 
indexes of the texture defect detection system for 
different deflection angles and test images with 
various defects. Tables 2, 3, 4 and 5 list the 
performance indexes for bifilar defects, panel 
defects, greasy defects and scratch defects, 
respectively, using GLCM-based texture analysis 
without and with image deflection compensation 
under different deflection angles of the input test 
image. The quantity of actual perfect and defective 
blocks is dependent on the deflected test image. The 
results demonstrated that image deflection 
compensation can increase TPA by 11% (97%-86%), 
1% (100%-99%), 52% (97%-45%) and 37% (98%-
61%) in the detection of bifilar defects, panel 
defects, greasy defects and scratch defects, 
respectively. As seen, the deflection of the test 
image has the smallest effect on the textural features 
of the test image with panel defects, and the largest 
effect on the test image with greasy defects.  

 
Table 1 Distribution of defect detection results 
 

 
Actual 

defective 
blocks 

Actual 
perfect 
blocks 

Total 

Detected 
defective 

blocks 
a b a+b 

Detected 
perfect 
blocks 

c d c+d 

Total a+c b+d  

 
 
 

 
(a) (b) 

 

 
(c) (d) 

 
Fig. 10 Defect detection results of GLCM texture 
analysis when there is no deflection in the test 
image (a) bifilar defects (b) panel defects, (c) greasy 
defects and (d) scratch defects. 

 
 
Tables 2, 3, 4 and 5 also indicate the actual 

deflection angles of the test image and the estimated 
deflection angles by polar Fourier transform and 
phase correlation analysis. The estimation error of 
the deflection angle is only from 0° to 0.5°. Hence 
the deflection angle of the test image can be 
compensated for quite correctly. 
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(a) (b) 

 

 
(c) (d) 

 
Fig. 11 Bifilar defects detection results when the 
input test image deflects 45° ((a) and (b)) and 150° 
((c) and (d)) using GLCM-based texture analysis 
without ((a) and (c)) and with ((b) and (d)) image 
deflection compensations. 

 

 
(a) (b) 

 

 
(c) (d) 

 
Fig. 12 Panel defects detection results when the 
input test image deflects 45° ((a) and (b)) and 150° 
((c) and (d)) using GLCM-based texture analysis 
without ((a) and (c)) and with ((b) and (d)) image 
deflection compensations. 

 
(a) (b) 

 

 
(c) (d) 

 
Fig. 13 Greasy defects detection results when the 
input test image deflects 45° ((a) and (b)) and 150° 
((c) and (d)) using GLCM-based texture analysis 
without ((a) and (c)) and with ((b) and (d)) image 
deflection compensations. 
 

 
(a) (b) 

 

 
(c) (d) 

 
Fig. 14 Scratch defects detection results when the 
input test image deflects 45° ((a) and (b)) and 150° 
((c) and (d)) using GLCM-based texture analysis 
without ((a) and (c)) and with ((b) and (d)) image 
deflection compensations. 
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Table 2 Performance indexes for the detection of 
bifilar defects. 
 

 GLCM 

GLCM 
+ 

Image Deflection 
Compensation

Specificity 
(%) 84 98 

Sensitivity 
(%) 95 93 

PPA 
(%) 55 91 

NPA 
(%) 99 99 

TPA 
(%) 86 97 

Actual deflection angles are 30°, 45°, 60° and 
150°, while estimated deflection angles are 
29.5°, 45°, 60.5° and 150.5°. The threshold 
value is 300. 

 
 
Table 3 Performance indexes for the detection of 
panel defects. 
 

 GLCM 

GLCM 
+ 

Image Deflection 
Compensation

Specificity 
(%) 100 100 

Sensitivity 
(%) 63 100 

PPA 
(%) 100 100 

NPA 
(%) 99 100 

TPA 
(%) 99 100 

Actual deflection angles are 9°, 14°, 22° and 
33°, while estimated deflection angles are 8.5°, 
14.1°, 22.5° and 32.5°. The threshold value is 
300. 

 
 
6 Conclusions 
This study estimated angular differences between 
the reference and test images using polar Fourier 
transform and phase correlation analysis, and 
rotated the reference image by the same angle to 
compensate for the deflection of the test image. 

Table 4 Performance indexes for the detection of 
greasy defects. 
 

 GLCM 

GLCM 
+ 

Image Deflection 
Compensation

Specificity 
(%) 41 98 

Sensitivity 
(%) 88 92 

PPA 
(%) 13 81 

NPA 
(%) 97 99 

TPA 
(%) 45 97 

Actual deflection angles are 11°, 19°, 29° and 
36°, while estimated deflection angles are 
11.3°, 19.5°, 29.5° and 36.4°. The threshold 
value is 15. 

 
  
Table 5 Performance indexes for the detection of 
scratch defects. 
 

 GLCM 

GLCM 
+ 

Image Deflection 
Compensation

Specificity 
(%) 57 97 

Sensitivity 
(%) 100 100 

PPA 
(%) 17 77 

NPA 
(%) 100 100 

TPA 
(%) 61 98 

Actual deflection angles are 5°, 11°, 27° and 
38°, while estimated deflection angles are 5.4°, 
11.2°, 26.7° and 37.9°. The threshold value is 
25. 

 
 

The estimation error of the image deflection angle 
was only from 0° to 0.5°. Hence the estimated 
deflection angle can be further applied to 
compensate for deflection effects. The experimental 
results of the texture defect detection showed that, 
when there is some deflection in the test image, the 
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defect detection accuracy of using GLCM-based 
texture analysis only decreases greatly, while that of 
compensating for the angular deflection of the test 
image can be effectively enhanced. In conclusion, 
the texture defect detection system with image 
deflection compensation proposed in this study can 
effectively solve the problem of test image 
deflection and enhance the performance of the 
texture defect detection system. 
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