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Abstract: - The numerical simulation of the structural damage of a steel truss bridge subjected to blast loading 
with the aid of a hydrocode is presented in this paper. A three-dimensional nonlinear finite element model of an 
actual bridge has been developed based on the drawing design of the Minpu II Bridge in Shanghai. The effects 
of mesh size on pressure distribution produced by explosions are also studied. Through the comparison between 
the calculation results and the experimental values, the reliability of the calculation is validated. All the process 
from the detonation of the explosive charge to deck crack, including the propagation of the blast wave and its 
interaction with the structure is reproduced. The numerical results show the damage of bridge parts and provide 
a global understanding of bridge under blast loads. It may be generated to supplement experimental studies for 
developing appropriate blast-resistant design guidelines for bridges in the future. 
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1 Introduction 
Bridges are crucial to a nation’s transportation 
infrastructure. Due to different terrorist attacks all 
around the world, increased attention has been given 
to bridges which are vulnerable to blast loads. 
Bridge engineers, however, have not typically 
considered security in the design process. There are 
definite rules for resistance of wind, earthquake and 
ship collision, but no preventive measure for blast is 
addressed. Blast resistant analysis of bridges is a 
new and challenging project [1-4]. Therefore, it is of 
important military value and realistic meaning to 
simulate and study the damage effect of bridge 
under blast loads in order to provide useful 
reference for safety protection in the future.  

Generally speaking, blast in air is characterized 
as short duration dynamic loading which 
significantly influences structural response. The 
frequencies of explosive loads can be much higher 
than conventional loads. Furthermore, short duration 
dynamic loads often exhibit strong spatial and time 
variations, resulting in sharp stress gradients in the 
structures. Consequently, the analysis of bridge 
structures subjected to blast loading becomes a very 
complex issue and it is hard to analyze accurately 
deformation or crack conditions of bridges subjected 
to blast wave using equations. On the other hand, 
experiments on real bridge are so exhibitive that it is 

hardly carried out. Historically, the analysis of 
explosions either has predominantly involved 
simplified analytical methods [5-7] or has required 
the use of supercomputers for detailed numerical 
simulations due to the fact that simulation of 
explosion is highly complicated, involving an 
explosion causing a shock wave propagation in air 
and then interaction with a structure. In recent years, 
many efforts have been devoted to the development 
of reliable methods and algorithms for a more 
realistic analysis of structures and structural 
components subjected to blast loading. Furthermore, 
with the rapid development of computer hardware 
over the last decades, it has become possible to 
make detailed numerical simulations of explosive 
events in personal computers. Moreover, new 
developments in integrated computer hydrocodes 
complete the tools necessary to carry out the 
numerical analysis successfully. 

Hydrocodes are computational mechanics tools 
that simulate the response of both solid and fluid 
material under highly dynamic conditions (e.g., 
detonation and impact) where shock wave 
propagation is a dominant feature. Hydrocodes 
make fewer approximations than either of the more 
special-purpose Computational Fluid Dynamics 
(CFD) or Computational Solid Mechanics (CSM) 
methods. They numerically solve the more 
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fundamental time-dependent equations of 
continuum mechanics that CFD and CSM do not. 
Hydrocodes are tools for simulation of multi-
material, compressible, transient continuum 
mechanics [8]. 

This paper is related to the effect of blast loads in 
bridges and presents the results of the numerical 
simulation of the damage of an actual bridge, the 
Minpu II bridge in Shanghai. It is assumed that the 
damage was caused by an explosive load equivalent 
to 800 kg of TNT placed on top of bridge deck. In 
this paper, the hydrocode ANSYS AUTODYN [9] 
is used for these purposes. The program is an 
integrated analysis program specifically designed 
for non-linear dynamics problems that uses finite 
difference, finite volume, and finite element 
techniques to solve a wide variety of non-linear 
problems in solid, fluid and gas dynamics. It has 
been used extensively in the defense industry for 
modelling blast-structure interaction. The 
phenomena to be studied with such a code can be 
characterized as highly time dependent with both 
geometric non-linearities (e.g. large strains and 
deformations) and material non-linearities (e.g. 
plasticity, failure, strain-hardening and softening, 
multiphase equations of state). The hydrocode uses 
a coupled methodology to allow an optimum 
numerical solution for a given problem. With this 
approach, different domains of a physical problem, 
e.g. structures, fluids, gases, etc. can be modelled 
with different numerical techniques or processors 
most appropriate for that domain. Then these 
different domains are coupled together in space and 
time to provide an optimized solution. This 
capability makes this code especially suitable for the 
study of interaction problems involving multiple 
systems of structures, fluids, and gases. Therefore, 
the dydrocode is widely applied to the modelling 
and analysis of impact, penetration, blast and 
explosion events [10-12]. 

In order to reproduce the structural damage, the 
complete bridge is modelled, including steel girder, 
cables, H-shaped bridge tower, piers and pier caps. 
Appropriate numerical models are used for the 
different materials in the bridge. In addition, the 
volume of air in which the bridge is immersed is 
also modelled. The analysis begins with the 
modelling of the detonation and propagation of the 
pressure wave inside the explosive and in the air in 
contact with the explosive. As this analysis must be 
performed with much detail, a spherical explosive is 
modelled. The distributions of pressures in different 
mesh sizes are compared with experimental values 
and a proper mesh size used for the analysis is 
chosen validating the simulation procedure. Then 

the results of this first analysis are mapped into the 
3D model. Starting from this point, the propagation 
of the blast wave in air and its interaction with the 
building is simulated. In this way, the complete 
damage process is reproduced and analyzed. The 
paper is organized as follows. Section 2 presents the 
explicit time integration and Arbitrary Lagrangian-
Eulerian (ALE) Method. Section 3 describes the 
numerical model for blast-bridge problem. Section 4 
gives some simulation and experiment results. 
Section 5 provides some conclusions.  
 
 
2 Methodology 
All numerical techniques require the complex 
problem to be broken up into a finite number of 
smaller, simpler problems. This is a discretisation 
process. The equations need to be discretised both in 
time and space. The temporal discretisation is the 
same for different analysis techniques (processor) in 
AUTODYN. The complete time span is split into 
thousands of small time steps. Explicit time 
integration is used for computing required variables 
for process analysis. But the spatial discretisation is 
different for different processors. Three different 
schemes are included, Lagrange, Eulerian and 
Arbitrary Lagrangian-Eulerian (ALE). In this 
analysis, ALE method is applied to the blast-bridge 
problem. 
 
 
2.1 Explicit Time Integration 
Under blast loads, the dynamic equation of the 
bridge structure system can be defined as: 

int extMq Cq f f+ + =     (1) 

int ( )f Kq t=                   (2) 
where ( )q t , ( )q t , ( )q t  are the vectors of 
generalized displacements, velocities and 
accelerations, M , K  and C  are the mass, stiffness 
and damping matrices respectively, intf  is the 
vector of the internal resisting forces and extf  is the 
vector of the external applied forces. The internal 
forces include the shares of material and geometric 
nonlinearities. Therefore the internal force vector 
has to be updated at each time step as well as each 
iteration step during the time integration of the 
equations of motion. 

Contrary to implicit schemes the generation and 
factorization of system matrices, which are very 
memory and time consuming, may be avoided by 
explicit schemes (lumped mass and damping 
matrices). Working with system vectors (instead of 
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system matrices), which may be added up by the 
finite element contributions, for the computation of 
the state variables q  and q , it is possible to 
increase the number of degrees of freedom and thus 
large engineering problems can be treated. From 
software development point of view the application 
of the explicit time integration schemes provides the 
opportunity to create a uniform software concept 
both for the solution of static and dynamic problems. 
The central difference method to approximate q  
and q  has proved to be a very effective procedure 
to integrate the initial value problem (1). 

( )

( )

(1/ 2) (1/ 2)

(1/ 2) (1/ 2)

1

1

t t t t t

t t t t t

q q q
t

q q q
t

+ Δ − Δ

+ Δ − Δ

= −
Δ

= −
Δ

                (3) 

Unfortunately, explicit methods are only 
conditionally stable and so the time step size has to 
be smaller than a critical value, which is directly 
dependent on the largest frequency of the finite 
element discretization (smallest element). The 
stability consideration of the central difference 
scheme gives a limitation of the time step length of  

max

2
kritt

ω
Δ ≤                                           (4) 

where maxω  is the highest frequency of the FE 
model. If we insert the Eq. (3) in Eq. (1), accept 
C cM= with a lumped mass matrix M , the 
explicit solution scheme of Eq. (1) may be written 
as 

( )(1/ 2) (1/ 2)

(1/ 2)

2 2
2 (2 ) i i

t
t t t t t t
i ext intt t

ii
t t t t t
i i i

c t tq q f f
c t m c t

q q tq

+ Δ − Δ

+Δ + Δ

− Δ Δ
= + −

+ Δ + Δ

= + Δ
                                                                (5) 

In Eq. (5) 
i

t
intf is the internal force related to the 

degree of freedom i , and 
i

t
extf  is the given external 

force at the degree of freedom i . The largest 
eigenvalue of a matrix is always smaller than any 
matrix norm (known as Gerschgorin’s theorem), and 
from this follows the estimation: 

2

1

1 n

i ij
jii

k
m

ω
=

≤ ∑                                     (6) 

where iim is the diagonal element of the lumped 
mass matrix. Substitution of Eq. (4) in Eq. (6) gives 
an estimation of iim : 

2

1

1
4

n

ii ij
j

m t k
=

≥ Δ ∑                                 (7) 

The damping coefficient c included in (5) may be 
calculated from the condition of an aperiodic 
oscillation, i.e. 

0

1
2

cυ
ω

= =                        (8) 

where υ , c , 0ω  are the decrement of the damping, 
the damping coefficient and the smallest 
eigenfrequency, respectively. The smallest 
eigenfrequency 0ω  is approximated by the 
Rayleigh’s quotient of the FE system, i.e. 

2
0

T

T

t t

t t

q Kq
q Mq

ω ≤                     (9) 

The substitution of Eq. (9) in Eq. (10) gives the 
damping factor as 

2
T

T

t t
t

t t

q Kqc
q Mq

=                (10) 

It should be noted that the quadratic forms in Eqs. 
(9) and (10) are simply calculated at the element 
level by adding up the shares of each element. 
 
 
2.2 Arbitrary Lagrangian-Eulerian Finite 
Element Method 
The ALE method combines the advantages of 
purely Lagrangian method and purely Eulerian 
method.  

Purely Lagrangian methods are typically used 
only for structural deformation. The mesh moves in 
space whereas the computational mesh of a 
Lagrangian model remains fixed on the material. 
Since the mass in each element remains fixed, no 
mass flux at inter-element boundaries must be 
computed. Material distortions correspond to 
Lagrangian mesh distortions. Large distortions may 
result in reductions in time-steps and/or stoppage of 
the calculation and the mesh will need to be repaired 
manually in order to continue the calculation. This 
process is necessary every time the mesh becomes 
too distorted for the calculations to continue. 
Therefore, the general limitation of most Lagrangian 
hydrocodes to relatively low-distortion 
computations limits their applicability to shock-
structure interaction analysis and the explosion 
event is not feasible using a purely Lagrangian 
method due to the high deformation of the fluid 
mesh caused by the shockwave. 

Purely Eulerian methods are typically used for 
fluid calculations. Eulerian hydrocodes advance 
solutions in time on a mesh fixed in space allowing 
the material passes through it, thus avoiding the 
Lagrangian mesh distortions problems. Eulerian 
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hydrocodes include material strength (flow of solids) 
and multi-material capabilities. Eulerian hydrocodes 
are strictly transient dynamics solvers. They are not 
designed to solve steady-state fluid flow problems. 
Eulerian hydrocodes are computationally expensive 
due to their ability to have elements that contain 
more than one material (i.e., multi-material 
elements). Numerical algorithms are required that 
prevent artificial material diffusion (the mixing of 
materials across a material interface) in mixed 
elements. The convergence to a common state 
parameter (e.g., pressure) in a multi-material 
element can also result in considerable expense. The 
Eulerian method does not cause mesh distortion, but 
it is not suitable for the analysis of structural 
deformation in blast-structure interaction. 

Arbitrary Lagrangian Eulerian (ALE) hydrocodes 
share aspects with both Lagrangian and Eulerian 
hydrocodes; Lagrangian motion is computed every 
time step, followed by a remap phase in which the 
spatial mesh is either rezoned (Lagrangian), rezoned 
to its original shape (Eulerian) or rezoned to some 
“advantages” shape (between Lagrangian and 
Eulerian). ALE mesh motions are based primarily 
on the preservation of a uniform mesh, not the 
capture of physical phenomena. In other words, the 
approach is based on the arbitrary movement of a 
reference domain which, additionally to the 
common material domain and spatial domain, is 
introduced as a third domain. In this reference 
domain, which will later on correspond to the finite 
element mesh, the problem is formulated and the 
mesh is allowed to move, but the motion of the 
mesh does not necessarily coincide with the motion 
of the material. Therefore, it is easy to trace the free 
surfaces and moving boundaries accurately and to 
conserve the regularity of the computational mesh at 
the same time, coupling the fluid dynamics with the 
structural dynamics directly, without interfacing two 
separate coordinate systems. Structural elements can 
be incorporated directly in the ALE framework. The 
Arbitrary Lagrangian Eulerian method is the 
preferred method for assessing structural response 
due to an explosion in air for large deformations. 
The method provides the capabilities to model the 
fluid dynamics and the structural dynamics most 
efficiently by providing the accuracy of Lagrangian 
mesh motion and the robustness of Eulerian mesh 
motion within the same framework. 

In the ALE description, the material derivative 
with respect to the reference coordinate can be 
described as follows: the ALE equations are derived 
by substituting the material time derivative with the 
reference configuration time derivative, 

( , ) ( , ) ( , )( )

( , ) ( , )

i i i
i i

i

i i
i

i

f X t f x t f x tu
t t x

f x t f x t
t x

υ

ω

∂ ∂ ∂
= + −

∂ ∂ ∂
∂ ∂

= +
∂ ∂

           (11) 

where iX is the Lagrangian coordinate, i  is the 
referential coordinate, ix  is the Eulerian coordinate, 

iω  is the reference velocities, and iυ  and iu are the 
material and the mesh velocity components, 
respectively. Thus, the governing equations, 
including the equations of mass, momentum and 
energy conservation in a general ALE formulation 
are given by:  
 

i
i

i it x x
υρ ρρ ω∂∂ ∂

= − −
∂ ∂ ∂

                          (12) 

,
i i

ij j i i
j

b
t x
υ υρ σ ρ ρω∂ ∂

= + −
∂ ∂

               (13) 

,ij i j i i j
j

E Eb
t x

ρ σ υ ρ υ ρω∂ ∂
= + −

∂ ∂
           (14) 

where ρ  is density, ijσ is the components of the 

stress tensor, ib  is the body force, and E  is the total 
energy. 

The equations (12)-(14) are solved in two phases 
during each computational time step: 

- The first step is the Lagrangian phase, during 
which the incremental motion of the material is 
computed and the material motion and the mesh 
motion are identical. Thus at the end of this cycle 
the position of the material surface is known. 

- The second step is the Eulerian phase, which is 
referred to as the advection, or remap phase. In this 
step there is a transport of material between the cells 
because the mesh is moved independently to the 
material position. To keep a regular mesh the new 
remapping algorithm moves back the frontier nodes 
along the material surface determined in the 
Lagrangian cycle. Thus the position of the material 
surface is kept.  

 
 

3 Numerical Model 
 
3.1 Bridge Model 
Figure 1 shows the schematic representation of the 
Minpu II bridge. The full-scale three dimensional 
finite-element model of the steel truss bridge is 
constructed following the actual design drawings. 
The resulting model is presented in Fig. 2. As it can 
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be seen in this figure, the bridge is composed of six 
differentiable parts: steel girder, cables, H-shaped 
bridge tower, transitional pier, auxiliary pier and 
pier cap. Except for the bridge stay cables, in which 
the individual cable strands are modelled by beam 
elements, all other major structural components are 
modelled with shell and solid elements. The 
complete model consists of 211949 nodes and 
242186 elements. The whole bridge is solved with a 
Lagrange processor. The bottoms of the piers are 
fixed in their base corresponding to the ground level 
in the bridge. 
 

  
Fig.1  Schematic representation of bridge 

 

 
Fig.2  Three-dimensional finite element model of 

bridge 
 
 

3.2 Generation of Blast Loading  
It is quite a complex and tough task to study the 
dynamic responses of bridge components subjected 
to an explosive because the initiation of blast and 
the interaction between bridge and blast wave are 
included. In addition, computational resources are 
cost to the calculation of fluid cells. In order to 
reduce computational time and ensure the accuracy 
of results, the generation of blast loading in free air 
is based on remapping technology of ANSYS 
AUTODYN, which is a good method to calculate 
the initiation of detonation and the blast wave 
propagation in free air. So numerical analysis of the 
bridge under blast loads is performed in two stages. 
The first part of the analysis is the simulation of the 
explosion itself from the detonation instant and the 
propagation of the blast wave in air. The problem 
has spherical symmetry and can be treated as 1D. 
When solution time is reached, the remapping file is 
generated based on the model. The second part is 

the input of previous remapping file and analysis of 
the impact effect and interaction with the bridge of 
the blast wave. In this way, the results of 1D 
analysis are later mapped in the 3D model 
representing the bridge and the surrounded air 
volume drastically reducing the computational cost 
of numerical analysis.  

In the first part of explosion generation, the use 
of symmetry conditions allows the spherical portion 
of the blast wave expansion to be represented by a 
spherical model. This is achieved by a one-
dimensional (1D) mesh using spherical symmetry. 
The number of cells required to produce accurate 
solutions is greatly reduced when compared with a 
full 3D model. When the spherical blast wave 
begins to interact with obstacles, the flow becomes 
multi-dimensional. However, before this time, the 
1D solution can be imposed or remapped onto a 
specific region of the multi-dimensional model. The 
3D calculation can then proceed from that point. 

In order to carry out a comparable analysis, the 
mass of the explosive is defined by TNT masses [7]. 
The corresponding masses for other explosives can 
be obtained through the concept of TNT 
equivalence [13]. In the analysis, the initial 
detonation and expansion of the sphere of 800 kg of 
TNT is modelled in a 1D, spherically symmetric 
model of 1.2m radius with a JWL equation of state, 
as illustrated in Fig. 3. The remapping of the 1D 
analysis to the 3D model of the bridge is shown in 
Fig. 4. 

 
Detonation point Material Location

AIR

TNT

 
Fig.3 Mesh used for the generation of the explosion 

 

 
Fig.4 The location of blast on top of bridge 

（local view） 
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3.3. Material Constitutive Models 
In order to develop a robust nonlinear finite element 
model of the steel truss bridge in computer 
simulation, it is important to select the proper 
material constitutive formulation for structural 
components. 

The differential equations governing unsteady 
material dynamic motion are used to express the 
local conservation of mass, momentum and energy. 
In order to obtain a complete solution, it is 
necessary to define a further relation between the 
flow variables in addition to appropriate initial and 
boundary conditions. This can be found from a 
material model which relates stress to deformation 
and internal energy (or temperature). In most cases, 
the stress tensor may be separated into a uniform 
hydrostatic pressure (all three normal stresses equal) 
and a stress deviatoric tensor associated with the 
resistance of the material to shear distortion. Then 
the relation between the hydrostatic pressure, the 
local density (or specific volume) and local specific 
energy (or temperature) is known as an equation of 
state.  

In this study, each component of the bridge 
structure has been given an appropriate material 
constitutive model. The principal mechanical 
properties of different material are presented in 
Table 1. 

 
Table 1 Material properties used in computational 

model 

Material 
Equation 

of state 

Strength 

model 

Reference 

density 

(g•cm-3) 

Shear 

Modulus

（KPa）

TNT JWL None 1.63 None 

Air 
Ideal 

Gas 
None 1.225E-3 None 

Steel Linear 
Johnson 

Cook 
7.85 7.923E+7

Reinforced 

concrete 
P alpha 

RHT 

Concrete 
2.6 1.312E+7

 
 
4 Numerical Results 
 
4.1 Blast analysis and verification 
In order to study dynamic responses of structures 
subjected to blast loading, it is important to build 
computational model of blast first and describe blast 
generation, development and propagation in air 

correctly. The impact of blast wave to surrounding 
objects is mainly pressure effect, so the key of 
numerical simulation is calculation of peak 
overpressures. 

The observed characteristics of air blast waves 
are found to be affected by the physical properties 
of the explosion source. Figure 5 shows a typical 
blast pressure profile. The detonation of a 
condensed high explosive generates hot gases and 
the hot gas expands forcing out the volume it 
occupies. As a consequence, a layer of compressed 
air (blast wave) forms in front of this gas volume 
containing most of the energy released by the 
explosion. At the arrival time at , following the 
explosion, pressure at that position suddenly 
increases to a peak value of overpressure, sp , over 
the ambient pressure, 0p . After a short time, the 
pressure behind the front may drop below the 
ambient pressure. During such a negative phase, a 
partial vacuum is created and air is sucked in. This 
is also accompanied by high suction winds that 
carry the debris for long distances away from the 
explosion source. 

 
Pressure

Time

ps

ta Ts

p0

Positive phase Negative phase

 
Fig.5 A typical pressure history for a blast wave 

 
All blast parameters are primarily dependent on 

the amount of energy released by a detonation in the 
form of a blast wave and the distance from the 
explosion. A universal normalized description of the 
blast effects can be given by scaling distance 
relative to 1/ 3

0( / )E p  and scaling pressure relative 
to 0p , where E  is the energy release (kJ) and 0p the 
ambient pressure. For convenience, however, it is 
general practice to express the basic explosive input 
or charge weight W as an equivalent mass of TNT. 
Results are then given as a function of the 
dimensional distance parameter (scaled distance) 

1/3/Z R W= , where R  is the actual effective 
distance from the explosion. W  is generally 
expressed in kilograms. Scaling laws provide 
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parametric correlations between a particular 
explosion and a standard charge of the same 
substance. 

The pressure– time history of a blast wave is 
often described by exponential functions such as 
Friedlander equation [14] which has the form 

( ) ( ) ( )0 1 / exp /s a s a sp t p p t t T A t t T= + − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

(15) 
where t  is the time, 0p  is the ambient pressure, sp  
is the peak overpressure, sT is the duration of the 
positive phase, at is the arrival time and A  is a 
decay coefficient. 

There are many solutions for the peak 
overpressures from both numerical solution and 
experimental measurements [5-7]. The results are 
usually presented in graphics, tables or equations 
based on experimental or numerical results, such as 
such as the representative Henrych equations 
presented by Smith and Hetherington [7]. 

The Henrych equations divide the analysis into 
three fields, a near, middle and far field. They are 
presented below. 

 
2

3 4

2

3

2

3

1407.2 / 554.0 /
0.05 0.3

35.7 / 0.625/

619.4 / 32.6 /
0.3 1.0

213.2 /

66.2 / 405.0 /
1.0 10

328.8/

a

s
a

a

Z Z
Z

Z Z KP

Z Z
p Z

Z KP

Z Z
Z

Z KP

⎧ +
≤ ≤⎪

− +⎪
⎪ −⎪= ≤ ≤⎨
+⎪
⎪ +⎪ ≤ ≤
⎪+⎩

(16) 

 
Where sp is the peak overpressure, 1/ 3/Z R W= , 

W is the charge mass expressed in kilograms of 
TNT, R is the distance from an explosive charge. 

High explosives are chemical substances which, 
when subject to suitable stimuli, react chemically 
very rapidly releasing energy. In the hydrodynamic 
theory of detonation, this very rapid time interval is 
shrunk to zero and a detonation wave is assumed to 
be a discontinuity which propagates through the 
unreacted material instantaneously liberating energy 
and transforming the explosive into detonating 
products. The most comprehensive form of equation 
of state developed over this period, the “Jones–
Wilkins–Lee” (JWL) equation of state is used in this 
paper, 

1 2
1 2

1 2

1 1r v r v ep C e C e
r v r v v
ω ω ω− −⎛ ⎞ ⎛ ⎞

= − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

        (17) 

where p  is the hydrostatic pressure, 1C , 2C , 1r  
and 2r  are constants and e , ω  and v  are the 
internal energy, adiabatic constant and specific 
volume respectively. 

It can be shown that at large expansion ratios the 
first and second terms on the right hand side of Eq. 
(17) become negligible and hence the behavior of 
the explosive tends towards that of an ideal gas. 
Therefore, at large expansion ratios, where the 
explosive has expanded by a factor of 
approximately 10 from its original volume, it is 
valid to switch the equation of state for a high 
explosive from JWL to ideal gas. In such a case the 
adiabatic exponent for the ideal gas, γ  , is related to 
the adiabatic constant of the explosive, ω , by the 
relation 1γ ω= + . The reference density for the 
explosive can then be modified and the material 
compression will be reset. Potential numerical 
difficulties are therefore avoided. 

The accuracy of numerical results is strongly 
dependent on the mesh size used for the analysis. 
The coarser the mesh, the lesser accurate the 
computational is, and vice versa. Therefore, it is 
important to use an adequate mesh size in the 
numerical simulation of blast wave propagation in a 
long-span bridge. On the other hand, the mesh size 
is also limited by the dimensions of the model and 
the computer capacity. If the fluid mesh is too 
smaller, it will spend a lot of computational time 
and require more advanced computers. In order to 
save computational time and ensure computational 
accuracy, finer mesh is used in the interface of fluid 
and solid and coarser mesh in other regions. 

In order to study the free propagation of blast 
waves in air, the air is numerically modelled with 
four different mesh sizes: 40, 50, 80 and 100 mm. A 
three dimensional Euler FCT (higher order Euler 
processor) subgrid is used for the air. The Euler-
FCT processor has been optimized for gas dynamic 
problems and blast problems and it is much more 
efficient in comparison with a general purpose high 
resolution Euler processor. FCT stands for Flux 
Corrected Transport [15]. With FCT a high order 
solution is computed wherever this is possible in the 
flow field. The high order solution fluxes are 
corrected in the regions of shocks using a low order 
reference (transported and diffused) solution. 

Figure 6 shows the comparison of numerical 
results for the peak overpressure with those obtained 
using empirical equations for different distances 
from the explosive charge. It can be seen that in the 
near field of detonation as the mesh is refined, the 
shorter distance between detonation point and object, 
the higher value peak overpressure is with peak 
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overpressure better agree with empirical equations. 
For large distances the effect of mesh size is 
relatively small. The accuracy of predictions and 
measurements in the near field is lower than in the 
far field, probably due to the complexity of blast 
phenomena [7]. The results corresponding to the 
meshes of 4 and 5 cm are almost coincident. It can 
be concluded that the mesh of 5cm gives an accurate 
solution to the problem. 

Figure 7 shows a pressure–time history curve 
obtained from different distances. It can be seen that 
the pressures increased abruptly followed by a 
quasi-exponential delay back to ambient pressure 
and when the distance between blast and gauge 
increases, the pressure decreases. Such tendency is 
in good agreement with the propagation law of blast 
wave in air verifying the correction of numerical 
simulation.  

 

          
Fig.6 Variation of peak overpressures with distance  

 

 
Fig.7 Variation of blast pressure with time 

 
 

4.2 Interaction of Blast Wave with Bridge 
To study the structural damage of the bridge, the 
propagation of the blast wave and its interaction 
with the bridge is analyzed. For that purpose, an 
interaction algorithm between the Lagrange (bridge) 
and Euler (air) processors is used. 

As illustration of the role played by the 
interaction of the blast wave with the bridge, the 
propagation of the blast wave characterized by the 
velocity field of air in the actual bridge is shown in 
Fig. 8. It may be noted the alteration of the blast 
wave produced as a result of the multiple reflections 
on the steel truss. Because of the reflections on the 
deck, the blast wave lost its spherical shape and 
increased its destructive effect in vertical direction.  

 

 
Fig. 8. Effect of the bridge in the blast wave 

propagation 
 
 

4.3 Bridge Response 
Figure 9 shows the stress distribution on bridge. The 
impact of blast wave to the whole bridge is observed 
through the stress distribution on whole bridge when 
the computational time 6ms is reached as presented 
in Fig. 9 (a). It can be seen that the parts 
surrounding the detonation undergo the rapid 
increase of stress whereas others far from the blast 
with much less value of stress even to zero. The 
stress concentrates in the limited region around the 
blast and plastic areas distribute in small areas of 
crack. It illustrates that the characteristic of damage 
effect of a blast load to the whole bridge is limited 
destruction zone near the blast, which corresponds 
to the general law of explosion [16].  

 

(a) whole bridge 
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(b) local view 

Fig.9  The stress distribution in bridge 
 

The enlarged local stress distribution on bridge is 
shown in Fig.9 (b). For the sake of visualization, the 
cables are removed from the bridge model. In the 
analysis of the bridge damage, the solid–solid 
interaction between the different parts of the bridge 
damaged is also taken into account. It is clear that 
the parts face the explosion suffer the crushing or 
the disintegration of the material under intensive 
pressure waves. In order to reproduce this type of 
effects, the erosion model was used to remove from 
the calculus the cells that have reached certain 
criteria based on deformations. When a cell is 
eliminated, its mass is retained and concentrated in 
its nodes that begin to behave as free masses 
conserving their initial velocity. This erosion model 
represents a numerical remedial to great distortion 
that can cause excessive deformation of the mesh. 
After the blast is detonated, the deck parts begin to 
deform when shock fronts reach the deck. Due to 
the coupling effect between bridge and air, the 
deformation increases until the erosion limit is 
reached. The pressures destroy the deck just under 
the explosion allowing the blast wave to pass to the 
stiffened structures below. With the propagation of 
shock wave downwards, the deck is splitting like an 
irregular petal until the solution time is reached. 

In order to analyze the dynamic responses 
generated in the deck of the bridge by a blast 
loading, four gauge points are defined in the model 
and are indicated in Fig. 10. These points are 
distributed in line with central axis on the deck. It 
can be seen that gauge point 1 is nearest to the 
explosive, while gauge point 4 the farthest. The 
distance between gauges 1 and 2 is 475 mm, gauges 
2 and 3 1062 mm, gauges 3 and 4 938 mm. The 
principal variables of the analysis are saved at these 
gauge points.  

 

 
Fig.10  Gauge setting 

 
The vertical velocity curves of these gauge points 

are presented in Fig. 11. It can be observed that 
these velocity values all tend to increase rapidly in 
the initial time, then gradually become stable, 
corresponding to the propagation law of blast wave 
in structures. Among these gauges, gauge 1, nearest 
to the explosion, is strongest affected with the 
greatest increment of velocity. Afterwards, its 
velocity value doesn’t increase anymore, indicating 
the point has been destroyed and removed with that 
velocity. It is clear that the maximum velocities of 
the remaining three gauges are far lower than that of 
gauge 1. Furthermore, the farther the distance 
between gauge point and detonation point is, the 
lower the velocity gets tending to stabilize earlier 
which illustrates the least impact of blast wave. 

 
Fig.11  Velocity curves of gauges 

 
The vertical acceleration curves of these gauge 

points are presented in Fig. 12. It can be seen that 
the acceleration response of gauge 1 is the greatest 
with the highest peak value. Accelerations of gauges 
1 to 3 reach the peak values immediately after the 
blast detonation with small oscillations until the 
value is decreased to zero. This fact is due to the 
relatively high impact on structures in short duration 
of blast wave. Point 4 gets the least dynamic 
response due to the farthest distance from the 
explosion. It is noted that the acceleration responses 
of bridge can be used as an important input in 
damage detection and health monitoring of bridge 
structures under blast loads for further analysis.   
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Fig.12  Acceleration curves of gauges 

 
 

5. Conclusions 
The numerical simulation and analysis of the 
structural damage of a steel truss bridge subjected to 
a blast load is presented in this paper. All the 
process from the detonation of the explosive charge 
to the broken deck, including the propagation of the 
blast wave and its interaction with the structure is 
reproduced. 

The good agreement of peak overpressures 
between empirical expressions and numerically 
obtained values using a 5 cm mesh guarantees the 
effectiveness of blast loading and reliability of 
computational results. 

The numerical analysis reproduces the 
destruction zone in bridge. The deck just under the 
explosion is damaged and cracked like an irregular 
petal while others keep almost intact. It illustrates 
that the characteristic of damage effect of a blast 
load to the whole bridge is limited destruction zone 
near the blast, which corresponds to the general law 
of explosion. 

The numerical results provide a global 
understanding of bridge under blast loads. It may be 
generated to supplement experimental studies for 
developing appropriate blast-resistant design 
guidelines for bridges in the future. 
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