
JEA K-128: A novel Encryption Algorithm Using VHDL

JAMAL N. BANI SALAMEH

Computer Engineering Department

Mu'tah University

Mu'tah – Karak, P.O.Box (7)

Jordan

jbanisal@mutah.edu.jo

Abstract: - Data security is an important issue in computer networks and cryptographic algorithms are essential

parts in network security. In this paper a new block- ciphering algorithm, JEA K-128 (for Jamal Encryption

Algorithm with a Key of length 128 bits) is described. JEA K-128 is a symmetric block cipher suitable for

hardware or software implementations. JEA K-128 has a 64-bit word size, 4-rounds, and 128-bit is the length of

the secret key. New cryptographic features in our work include the use of many successive XORing for the

plaintext with sub-keys, and the use of multiple multiplexers in sub-keys generator. The main goal of designing

JEA K-128 algorithm is to reach the condition of having almost every bit of the ciphertext depend on every bit

of the plaintext and every bit of the key as quickly as possible. Simulation study shows that JEA K-128 gives a

strong Avalanche effect, when there is a change in one bit of the plaintext or one bit of the key; almost all bits

in the ciphertext were changed. All codes for our algorithm were captured by using VHDL, with structured

description logic. The reason for choosing VHDL is its suitability for hardware implementation. The design

principles of JEA K-128 are given together with results and analyses to define the encryption algorithm

precisely.

Key-words:- Data encryption, block cipher, cryptography, key generator, VHDL implementation.

1 Introduction
Symmetric-key block ciphers have long been used

as a fundamental cryptographic element for

providing information security. Although they are

primarily designed for providing data

confidentiality, their versatility allows them to serve

as a main component in the construction of many

cryptographic systems such as pseudorandom

number generators, message authentication

protocols, stream ciphers, and hash functions. There

are many symmetric-key block ciphers which offer

different levels of security, flexibility, and

efficiency. Among the many symmetric-key block

ciphers currently available, some (such as DES,

RC5, CAST, Blowfish, FEAL, SAFER, and IDEA)

have received the greatest practical interest [1-6].

Most symmetric-key block ciphers (such as DES,

RC5, CAST, and Blowfish) are based on a “Feistel”

network construct and a “round function”. A Feistel

cipher involves dividing the plaintext into two

halves and repeatedly applying a round function to

the data for some number of rounds, where in each

round using the round function and a key, the left

half is transformed based on the right half and then

the right half is transformed based on the modified

left half. The round function provides a basic

encryption mechanism by composing several simple

linear and nonlinear operations such as exclusive-or,

substitution, permutation, and modular arithmetic

[7, 8]. Different round functions provide different

levels of security, efficiency, and flexibility. The

strength of a Feistel cipher depends heavily on the

degree of diffusion and non-linearity properties

provided by the round function. Many ciphers (such

as DES and CAST) base their round functions on a

construct called a “substitution box” (s-box) as a

source of diffusion and non-linearity. Some ciphers

(such as RC5) use bit-wise data-dependent rotations

and a few other ciphers (such as IDEA) use

multiplication in their round functions for diffusion.

In this paper, we present a novel symmetric-key

block cipher, called JEA K-128, with a block size of

64 bits and a key size of 128 bits. The motivation

for this work is the need to design our own

cryptographic algorithm plus sub-keys generator.

This algorithm plus the key generator will form a

kind of encryption/decryption box. This box could

be connected to the output of the transmitter and to

the input of the receiver. A secret key should be

known by all parties that use communication

system. Before the transmitter start sending he needs

to use the secret key to run the generator to generate

the sub-keys to be used in the encryption algorithm

to encrypt all information that goes through the

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1875 Issue 12, Volume 8, December 2009

encryption box. In the other side, the receiver needs

to do same procedure: use the secret key, then run

the key generator; generate the required sub-keys;

use them in the decryption algorithm to reconfigure

back the original plaintext. Each time the transmitter

or the receiver got the same secret key and runs the

generator, this should generate the same sub-keys

that will be used in the encryption/decryption box.

When they change the secret key they got a different

group of sub-keys.

One of the main problems in using the symmetric

cryptography is key management. In this case you

have the choice weather to send the secret key to the

other party by hand or send it through the channel

(this is too risky) [7]. By using the proposed

technique; there will be no problem to send the

secret key through the channel. If an intruder got

this key; he still needs to get the

encryption/decryption box that holds the algorithm

plus the key generation to break this communication

system.

In this paper; besides the JEA K-128 algorithm

we also introduce a novel technique for sub-keys

generation.

Many pseudorandom generators were proposed in

the literature that depends on some good statistical

properties of the LFSR (left feedback shift register)

sequences. The nearest work to the proposed design

is Geffe's generator [9]. This key stream generator

uses three LFSRs, combined in a nonlinear manner.

Two of the LFSR's are inputs into a multiplexer, and

the third LFSR controls the output of the

multiplexer. Another scheme uses a multiplxer to

combine two LFSRs is the Jennings generator [10].

The multiplxer, controller by the LFSR-1, selects 1-

bit of LFSR-2 for each output bit. There is also a

function that maps the output of LFSR-2 to the input

of the multiplexer.

The sub-keys generator that is proposed in this

work could be used in any communication system to

generate pseudorandom sub-keys given the main

secret key as the input for this generator. The size of

main secret key as well as the size of the sub-key

are variable and could be used with any length to

suit any system. For the JEA K-128 algorithm we

choose the size of the main key to have 128-bit and

the size of the sub-keys have a length of 16-bit.

All codes for JEA K-128 algorithm was captured

by VHDL [11, 12], with structured description

logic. The reason for choosing VHDL is its

suitability for hardware implementation. The VHDL

codes were synthesized using the MAX+Plus II

Simulator [13].

The rest of the paper is organized as follows:

Section 2 describes the JEA K-128 cryptographic

algorithm. Section 3 discusses the results and checks

the performance of the algorithm. Finally, section 4

provides some concluding remarks.

2 The JEA K-128 Cryptographic

Algorithm
JEA K-128 is a block ciphering algorithm; it

operates on 64-bit plaintext blocks. It has four

different rounds. The key is 128 bits long, which

makes it practically immune to brute-force attacks.

 Overview of JEA K-128
A 64-bit block of plaintext goes in one end of the

algorithm and a 64-bit block of ciphertext comes out

the other end. JEA K-128 is a symmetric algorithm;

the same algorithm and key are used for both

encryption and decryption. As with all the other

block ciphers, JEA K-128 uses both confusion and

diffusion. The design philosophy behind the

algorithm is one of mixing XOR operations. These

operations can be viewed as JEA K-128's S-box,

and they are easily implemented in both hardware

and software.

JEA K-128 was designed in accordance with

Shannon's principles of confusion and diffusion for

obtaining security in secret-key ciphers [14]. When

a round subkeys are mixed with the plaintext within

the round; this acts like a nonlinear combination

with respect to the subsequent transformations in the

nonlinear layer and in the linear layer. This gives the

cipher the confusion required to make the statistics

of the ciphertext depend in a complicated way on

the statistics of the plaintext; provided that small

changes diffuse quickly through the cipher. To

guarantee this diffusion in JEA K-128, we spread

the redundancy of the plaintext out over the

ciphertext. A cryptanalyst looking for those

redundancies will have a harder time finding them.

 Detailed description of JEA K-128
In this section, we will introduce the JEA K-128

algorithm in some details. Fig. 1 shows a block

diagram of JEA K-128 algorithm (encryption). The

64-bit input data is divided into four 16-bit blocks.

These four blocks become the input to the first

round of the algorithm. The 128-bit main key feeds

the key generator which generates the required sub-

keys. JEA K-128 algorithm needs 23 different 16-bit

sub-keys that will be used in all rounds of the

algorithm. More details about the key generator will

be discussed later. JEA K-128 is based upon a basic

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1876 Issue 12, Volume 8, December 2009

function, which is iterated four times. The first

iteration (round) operates on four input 16-bit

plaintext blocks and the successive iterations also

operate on the 16-bit blocks that come from the

previous iteration. In each round, the 16-bit

plaintext blocks are XORed with the 16-bit sub-

keys. There are multiple XOR operations in each

round. After the last iteration, a final transform step

produces the 64-bit cipher block.

Figure 1: Block Diagram of JEA K-128

Algorithm (Encryption)

A schematic diagram (Encryption) for round 1 is

shown in Fig. 2. The inputs for this round are four

16-bit blocks that were received from the initial

permutation stage and eight 16-bit different sub-

keys that were received from the main key

generator. As we see in the figure each 16-bit block

of text and each 16-bit sub-key are divided into four

4-bit blocks. All 4-bit text blocks are XORed many

times with identical 4-bit blocks of the sub-keys.

At the end of this round, the 4-bit block outputs are

assembled again into 16-bit blocks of cipher text

that form the inputs for round 2.

Figure 2: Round 1 Schematic Diagram

(Encryption)

Fig. 3 shows a schematic diagram (encryption) for

round 2. The inputs for round 2 are four 16-bit

blocks that come from round 1 plus five 16-bit sub-

keys that are generated by the key generator. Almost

the same procedure as in round 1 occurs here in this

round; all 4-bit text blocks are XORed many times

with identical 4-bit blocks of the sub-keys. At the

end of this round, the 4-bit block outputs are

assembled again in a 16-bit blocks of cipher text

that form the inputs for round 3.

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1877 Issue 12, Volume 8, December 2009

Figure 3: Round 2 Schematic Diagram

(Encryption)

The same scenario is repeated in round 3 and

round 4 with different mixing scheme between text-

blocks and sub-keys. Fig. 4 shows a schematic

diagram (encryption) for round 3 and Fig. 5 shows a

schematic diagram (encryption) for round 4. Note

that round 3 and round 4 also needs five 16-bit sub-

keys each.

As a final note on the design process of the

encoder; which could be seen in the schematics

above; each round in our algorithm consists of a

key-dependent permutation, a key and data-

dependent substitution and all operations are EX-

Ors on 4-bit words.

Figure 4: Round 3 Schematic Diagram

(Encryption)

Figure 5: Round 4 Schematic Diagram

(Encryption)

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1878 Issue 12, Volume 8, December 2009

Decryption for JEA K-128 is relatively

straightforward. Ironically, decryption works in the

same algorithmic direction as encryption beginning

with the ciphertext as input.

A block diagram for the decryption process is

shown in Fig. 6. As we see in the figure, the same

128-bit secret key is used as input to the key

generator, which generate the same sub-keys as in

the encoder side. However, as expected, the sub-

keys are used in reverse order. The 64-bit block of

ciphertext goes in one end of the algorithm, and then

the algorithm runs in the reverse direction, which

reconfigures the 64-bit of plaintext at the end.

Figure 6: Block Diagram of JEA K-128

Algorithm (Decryption)

The schematic diagrams for all rounds in the

decryption process are exactly the same as in the

encryption process but in the reverse direction.

Figure 7 shows a sample of this process: A

schematic diagram for decryption in round 1.

Figure 7: Round 1 Schematic Diagram

(Decryption)

2.3 The Sub-keys Generation Process
JEA K-128 uses a large number of sub-keys. These

sub-keys must be pre-computed before any data

encryption or decryption. The key array consists of

twenty three 16-bit sub-keys (Sk0, Sk1,…...., Sk22).

The procedure for generating the sub-keys for JEA

K-128 is indicated in the block diagram that is

shown in Figure 8. This block diagram shows how

the main key K (128-bit) is used to generate the 16-

bit sub-keys that are required within the 4-rounds of

JEA K-128 algorithm.

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1879 Issue 12, Volume 8, December 2009

Figure 8: Sub-Key Generation Block Diagram

Note that in the generation process, the original key

(K) is bit-wise rotated by 1-bit to the left between

the process of generating a new sub-key. The

rotation process is shown in Fig. 9 and it known as

the scrambler in the previous block diagram.

Figure 9: Scrambler

Figure 10 shows a schematic diagram for the

sub-key generation. Here, we introduce a novel idea

of using multiple multiplexers (MUX's) in choosing

random sub-keys among the main key.

Figure 10: Sub-Key Generator Schematic

Diagram

As we known that the MUX has multiple inputs and

one output, one of the inputs will be active on the

output depending on the selection lines. Our

selection lines that are needed for the MUX's chosen

upon a simple scheme from the main key; this

scheme could be changed from time to time. As

seen in the figure we need 10 selection lines (S0, S1,

….., S9) that will be used for choosing sub-keys.

Those selection lines were chosen according to a

simple algorithm that is shown in Fig. 11.

Figure 11: Algorithm to Choose the Selection

Lines

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1880 Issue 12, Volume 8, December 2009

The previous algorithm is considered as one of the

main parts in Fig. 10 that is labeled (Function F).

Each time we need to generate a sub-key, the

function F should run to determine values for all

selection lines.

3 Results and Discussion
The change in number of bits in the cipher text

whenever there is a change in one bit of the plain

text or one bit of key is called Avalanche effect [7,

15]. A desirable feature of any encryption algorithm

is that a small change in either the plaintext or the

key should produce a significant change in the

ciphertext. If the changes are small, this might

provide a way to reduce the size of the plaintext or

key space to be searched and hence makes the

cryptanalysis very easy. So, in order to say that any

cryptographic algorithm is secure, it should exhibit

strong avalanche effect.

JEA K-128 algorithm is designed to reach the

condition of having almost every bit of the

ciphertext depend on every bit of the plaintext and

every bit of the key as quickly as possible. Here we

provide some performance measurements for JEA

K-128 encryption/decryption operations. Most of

the experiments that was done for performance

evaluation aimed to check the Avalanche effect.

The main goal of the first test is to make sure

that the decoder is able to recover the original plain

text. First of all, both the key and the data were set

then we run the simulation; the result for the

encoder is shown in Fig. 12.

Figure 12: Data Setup for Encryption

After that, we provide the cipher text that we got out

of the encoder along with the same key to the

decoder. The decoder is able efficiently to recover

the original plain text; this result is shown in Fig.

13.

Figure 13: Data Setup for Decryption

In the second experiment we changed just 1-bit in

the plaintext (bit-7) keeping the same key compared

to experiment 1. After we run the simulator; we got

the following result that is shown in Fig. 14.

Figure 14: Data Setup for Encryption with 1-bit

Change in the Plain Text

If we compared this result to the one in the first test;

that is shown in Fig. 12; we notice that almost all

bits in the cipher text changed. After that, we

provide the cipher text that we got out of the

encoder along with the same key to the decoder. The

decoder is able efficiently to recover the original

plain text; this result is shown in Fig. 15.

Figure 15: Data Setup for Decryption Changing

1-bit in the Plain Text

In the third experiment we changed just 1-bit in the

key (bit-2) keeping the same plain text compared to

experiment-2. After we run the simulator; we got

the following result that is shown in Fig. 16. As we

see from this figure changing 1-bit in the key affects

in changing almost all bits in the cipher text;

compared to Fig. 14.

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1881 Issue 12, Volume 8, December 2009

Figure 16: Data Setup for Encryption Changing

1-bit in the Key

After that, we provide the cipher text that we got out

of the encoder along with the same key to the

decoder. The decoder is able efficiently to recover

the original plain text; this result is shown in Fig.

17.

Figure 17: Data Setup for Decryption Changing

1-bit in the Key

We did one more test by changing just 1-bit in the

key (bit-126) keeping the same plain text compared

to the previous experiment. The result for the

encoder is shown in Fig. 18. Also this experiment

ensures that changing 1-bit in the key affects in

changing almost all bits in the cipher text.

Figure 18: Data Setup for Encryption Changing

1-bit in the Key

The result for the decoder for this experiment is

shown in Fig. 19. Also at this time the decoder is

able to recover the original plaintext.

Figure 19: Data Setup for Decryption Changing

1-bit in the key

Figure 20 shows a test for generation the required

sub-keys for our algorithm. As we see in this figure,

the key generator gives random different sub-keys

each time we provide a new secret key. The number

of sub-keys and the size of each sub-key could be

changed as needed. However, each time we provide

a new main key we got totally different sub-keys.

Figure 20: Sub-keys Generation

To make sure that the generator works as required,

we provided another 128-bit key then we run the

simulator; as seen in Fig. 21; the generator is able to

give another pseudorandom different group of sub-

keys.

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1882 Issue 12, Volume 8, December 2009

Figure 21. Sub-keys Generation-2

The same scenario is repeated when we provide the

generator with another 128-bit key; it is able to

generate a totally different group of sub-keys; this

result in shown in Fig. 22.

Figure 22. Sub-keys Generation-3

Sub-keys are independently chosen and their

generation depends not only on the main key but

also on the values for selection lines of all MUX's in

the generator. The real goal in the design procedure

for sub-keys generation is to a void man in the

middle attacks. This generation process occurs just

on both sides of the communication system; an

attacker whose goal is to break the system needs not

only the secret key but also the key generator which

should be physically protected. There is no risk in

sending the secret key through the channel, but we

should encrypt that key before sending it.

4 Conclusions and Future Work
The number of rounds for thorough mixing and to

ensure that every plaintext and every key bit affects

almost every ciphertext bit proved to be 4-rounds.

After 4-rounds the ciphertext was essentially a

random function of every plaintext bit and every key

bit. This is a good avalanche and sufficiently secure.

That’s the reason why we stopped after 4-rounds,

but for more security and to prevent the algorithm

from being attacked more rounds could be added.

This will be done as a future work.

The JEA K-128 algorithm promises good mixing

of the key and the plaintext for a scrambled

ciphertext. The ciphertext is easy to be de-ciphered

if the key is known. A brute force attack would take

too long to break the system. Further work would

include more thorough testing and analysis to get

better S-boxes, and do some performance

comparison with up-to-date block ciphering

algorithms. Also, another future work will include

hardware implementation for our work in a suitable

FPGA.

References:

[1] R. L. Rivest, The RC5 Encryption Algorithm,

Dr. Dobb’s Journal, Vol. 20, No. 1, 1995, pp.

146-148.

[2] B. Schneier, The Blowfish Encryption

Algorithm, Dr. Dobb’s Journal, Vol. 19, No. 4,

1994, pp. 38- 40.

[3] National Bureau of Standards, Data Encryption

Standard, FIPS PUB 46, 1977.

[4] J. L. Massey, SAFER K-64: A Byte-Oriented

Block-Ciphering Algorithm, Fast Software

Encryption, Cambridge Security Workshop

Proceedings, Springer-Verlag, 1994, pp.1-17.

[5] C. M. Adams, Constructing Symmetric Ciphers

Using the CAST Design Procedure, Design,

Codes, and Cryptography, Vol. 12, No. 3,1997,

pp. 283-316.

[6] B. Schneier, The IDEA Encryption Algorithm,

Dr. Dobb’s Journal, Vol. 18, No. 13, 1990, pp.

50-56.

[7] B. Schneier, Applied Cryptography, John

Wiley & Sons Inc, 1996.

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1883 Issue 12, Volume 8, December 2009

[8] A. J. Menezes, P. C. van Oorschot, and S. A.

Vanstone, Handbook of Applied Cryptography,

CRC Press, 1996.

[9] Geffe, P. R., How to protect data with ciphers

that are really hard to break, Electronics,

1973, pp. 99-101.

[10] S.M. Jennings, Autocorrelation Function of the

Multiplexed Sequence, IEE Proceedings, Vol.

131, No. 2, 1984, pp. 169-172.

[11] IEEE Standard VHDL Language Reference

Manual, IEEE, 1993.

[12] Z. Navabi, VHDL: Analysis and Modeling of

Digital Systems, McGraw-Hill, 1993.

[13] Altera Max Plus II VHDL, Altera Corporation.

1994.

[14] C.E. Shannon, Communication Theory of

Secrecy Systems, Bell System Tech. Jour., Vol.

28, 1949, pp. 656-715.

[15] A.G. Konheim, Cryptograph: A Primer, New

York: John Wiley & Sons, 1981.

WSEAS TRANSACTIONS on COMPUTERS Jamal N. Bani Salameh

ISSN: 1109-2750 1884 Issue 12, Volume 8, December 2009

