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Abstract: - Data security is an important issue in computer networks and cryptographic algorithms are essential 

parts in network security. In this paper a new block- ciphering algorithm, JEA K-128 (for Jamal Encryption 

Algorithm with a Key of length 128 bits) is described. JEA K-128 is a symmetric block cipher suitable for 

hardware or software implementations. JEA K-128 has a 64-bit word size, 4-rounds, and 128-bit is the length of 

the secret key. New cryptographic features in our work include the use of many successive XORing for the 

plaintext with sub-keys, and the use of multiple multiplexers in sub-keys generator. The main goal of designing 

JEA K-128 algorithm is to reach the condition of having almost every bit of the ciphertext depend on every bit 

of the plaintext and every bit of the key as quickly as possible. Simulation study shows that JEA K-128 gives a 

strong Avalanche effect, when there is a change in one bit of the plaintext or one bit of the key; almost all bits 

in the ciphertext were changed. All codes for our algorithm were captured by using VHDL, with structured 

description logic. The reason for choosing VHDL is its suitability for hardware implementation. The design 

principles of JEA K-128 are given together with results and analyses to define the encryption algorithm 

precisely.  
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1 Introduction 
Symmetric-key block ciphers have long been used 

as a fundamental cryptographic element for 

providing information security. Although they are 

primarily designed for providing data 

confidentiality, their versatility allows them to serve 

as a main component in the construction of many 

cryptographic systems such as pseudorandom 

number generators, message authentication 

protocols, stream ciphers, and hash functions. There 

are many symmetric-key block ciphers which offer 

different levels of security, flexibility, and 

efficiency. Among the many symmetric-key block 

ciphers currently available, some (such as DES, 

RC5, CAST, Blowfish, FEAL, SAFER, and IDEA) 

have received the greatest practical interest [1-6]. 

Most symmetric-key block ciphers (such as DES, 

RC5, CAST, and Blowfish) are based on a “Feistel” 

network construct and a “round function”. A Feistel 

cipher involves dividing the plaintext into two 

halves and repeatedly applying a round function to 

the data for some number of rounds, where in each 

round using the round function and a key, the left 

half is transformed based on the right half and then 

the right half is transformed based on the modified 

left half. The round function provides a basic 

encryption mechanism by composing several simple 

linear and nonlinear operations such as exclusive-or, 

substitution, permutation, and modular arithmetic 

[7, 8]. Different round functions provide different 

levels of security, efficiency, and flexibility. The 

strength of a Feistel cipher depends heavily on the 

degree of diffusion and non-linearity properties 

provided by the round function. Many ciphers (such 

as DES and CAST) base their round functions on a 

construct called a “substitution box” (s-box) as a 

source of diffusion and non-linearity. Some ciphers 

(such as RC5) use bit-wise data-dependent rotations 

and a few other ciphers (such as IDEA) use 

multiplication in their round functions for diffusion.  

In this paper, we present a novel symmetric-key 

block cipher, called JEA K-128, with a block size of 

64 bits and a key size of 128 bits. The motivation 

for this work is the need to design our own 

cryptographic algorithm plus sub-keys generator. 

This algorithm plus the key generator will form a 

kind of encryption/decryption box. This box could 

be connected to the output of the transmitter and to 

the input of the receiver. A secret key should be 

known by all parties that use communication 

system. Before the transmitter start sending he needs 

to use the secret key to run the generator to generate 

the sub-keys to be used in the encryption algorithm 

to encrypt all information that goes through the 
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encryption box. In the other side, the receiver needs 

to do same procedure: use the secret key, then run 

the key generator; generate the required sub-keys; 

use them in the decryption algorithm to reconfigure 

back the original plaintext. Each time the transmitter 

or the receiver got the same secret key and runs the 

generator, this should generate the same sub-keys 

that will be used in the encryption/decryption box. 

When they change the secret key they got a different 

group of sub-keys.    

One of the main problems in using the symmetric 

cryptography is key management. In this case you 

have the choice weather to send the secret key to the 

other party by hand or send it through the channel 

(this is too risky) [7]. By using the proposed 

technique; there will be no problem to send the 

secret key through the channel. If an intruder got 

this key; he still needs to get the 

encryption/decryption box that holds the algorithm 

plus the key generation to break this communication 

system.    

In this paper; besides the JEA K-128 algorithm 

we also introduce a novel technique for sub-keys 

generation. 

Many pseudorandom generators were proposed in 

the literature that depends on some good statistical 

properties of the LFSR (left feedback shift register) 

sequences. The nearest work to the proposed design 

is Geffe's generator [9]. This key stream generator 

uses three LFSRs, combined in a nonlinear manner. 

Two of the LFSR's are inputs into a multiplexer, and 

the third LFSR controls the output of the 

multiplexer. Another scheme uses a multiplxer to 

combine two LFSRs is the Jennings generator [10]. 

The multiplxer, controller by the LFSR-1, selects 1-

bit of LFSR-2 for each output bit. There is also a 

function that maps the output of LFSR-2 to the input 

of the multiplexer.     

The sub-keys generator that is proposed in this 

work could be used in any communication system to 

generate pseudorandom sub-keys given the main 

secret key as the input for this generator. The size of 

main secret key as well as the size of the sub-key 

are variable and could be used with any length to 

suit any system. For the JEA K-128 algorithm we 

choose the size of the main key to have 128-bit and 

the size of the sub-keys have a length of 16-bit.   

All codes for JEA K-128 algorithm was captured 

by VHDL [11, 12], with structured description 

logic. The reason for choosing VHDL is its 

suitability for hardware implementation. The VHDL 

codes were synthesized using the MAX+Plus II 

Simulator [13]. 

The rest of the paper is organized as follows: 

Section 2 describes the JEA K-128 cryptographic 

algorithm. Section 3 discusses the results and checks 

the performance of the algorithm. Finally, section 4 

provides some concluding remarks. 

 

 

2 The JEA K-128 Cryptographic 

Algorithm 
JEA K-128 is a block ciphering algorithm; it 

operates on 64-bit plaintext blocks. It has four 

different rounds. The key is 128 bits long, which 

makes it practically immune to brute-force attacks. 

 

 

 Overview of JEA K-128 
A 64-bit block of plaintext goes in one end of the 

algorithm and a 64-bit block of ciphertext comes out 

the other end. JEA K-128 is a symmetric algorithm; 

the same algorithm and key are used for both 

encryption and decryption. As with all the other 

block ciphers, JEA K-128 uses both confusion and 

diffusion. The design philosophy behind the 

algorithm is one of mixing XOR operations. These 

operations can be viewed as JEA K-128's S-box, 

and they are easily implemented in both hardware 

and software.  

JEA K-128 was designed in accordance with 

Shannon's principles of confusion and diffusion for 

obtaining security in secret-key ciphers [14]. When 

a round subkeys are mixed with the plaintext within 

the round; this acts like a nonlinear combination 

with respect to the subsequent transformations in the 

nonlinear layer and in the linear layer. This gives the 

cipher the confusion required to make the statistics 

of the ciphertext depend in a complicated way on 

the statistics of the plaintext; provided that small 

changes diffuse quickly through the cipher. To 

guarantee this diffusion in JEA K-128, we spread 

the redundancy of the plaintext out over the 

ciphertext. A cryptanalyst looking for those 

redundancies will have a harder time finding them. 

 

 

 Detailed description of JEA K-128 
In this section, we will introduce the JEA K-128 

algorithm in some details. Fig. 1 shows a block 

diagram of JEA K-128 algorithm (encryption). The 

64-bit input data is divided into four 16-bit blocks. 

These four blocks become the input to the first 

round of the algorithm. The 128-bit main key feeds 

the key generator which generates the required sub-

keys. JEA K-128 algorithm needs 23 different 16-bit 

sub-keys that will be used in all rounds of the 

algorithm. More details about the key generator will 

be discussed later. JEA K-128 is based upon a basic 
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function, which is iterated four times. The first 

iteration (round) operates on four input 16-bit 

plaintext blocks and the successive iterations also 

operate on the 16-bit blocks that come from the 

previous iteration. In each round, the 16-bit 

plaintext blocks are XORed with the 16-bit sub-

keys. There are multiple XOR operations in each 

round. After the last iteration, a final transform step 

produces the 64-bit cipher block.  

 

 
 

Figure 1: Block Diagram of JEA K-128 

Algorithm (Encryption) 

 

A schematic diagram (Encryption) for round 1 is 

shown in Fig. 2. The inputs for this round are four 

16-bit blocks that were received from the initial 

permutation stage and eight 16-bit different sub-

keys that were received from the main key 

generator. As we see in the figure each 16-bit block 

of text and each 16-bit sub-key are divided into four 

4-bit blocks. All 4-bit text blocks are XORed many 

times with identical 4-bit blocks of the sub-keys.  

At the end of this round, the 4-bit block outputs are 

assembled again into 16-bit blocks of cipher text 

that form the inputs for round 2. 

 

 
 

Figure 2: Round 1 Schematic Diagram 

(Encryption) 
 

Fig. 3 shows a schematic diagram (encryption) for 

round 2. The inputs for round 2 are four 16-bit 

blocks that come from round 1 plus five 16-bit sub-

keys that are generated by the key generator. Almost 

the same procedure as in round 1 occurs here in this 

round; all 4-bit text blocks are XORed many times 

with identical 4-bit blocks of the sub-keys. At the 

end of this round, the 4-bit block outputs are 

assembled again in a 16-bit blocks of cipher text 

that form the inputs for round 3.  
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Figure 3: Round 2 Schematic Diagram 

(Encryption) 
 

The same scenario is repeated in round 3 and 

round 4 with different mixing scheme between text-

blocks and sub-keys. Fig. 4 shows a schematic 

diagram (encryption) for round 3 and Fig. 5 shows a 

schematic diagram (encryption) for round 4. Note 

that round 3 and round 4 also needs five 16-bit sub-

keys each.  

As a final note on the design process of the 

encoder; which could be seen in the schematics 

above; each round in our algorithm consists of a 

key-dependent permutation, a key and data-

dependent substitution and all operations are EX-

Ors on 4-bit words. 

 
 

Figure 4: Round 3 Schematic Diagram 

(Encryption) 
 

 

 
 

Figure 5: Round 4 Schematic Diagram 

(Encryption) 
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Decryption for JEA K-128 is relatively 

straightforward. Ironically, decryption works in the 

same algorithmic direction as encryption beginning 

with the ciphertext as input.  

A block diagram for the decryption process is 

shown in Fig. 6. As we see in the figure, the same 

128-bit secret key is used as input to the key 

generator, which generate the same sub-keys as in 

the encoder side. However, as expected, the sub-

keys are used in reverse order. The 64-bit block of 

ciphertext goes in one end of the algorithm, and then 

the algorithm runs in the reverse direction, which 

reconfigures the 64-bit of plaintext at the end.  

 

 

 
 

Figure 6: Block Diagram of JEA K-128 

Algorithm (Decryption) 

 

The schematic diagrams for all rounds in the 

decryption process are exactly the same as in the 

encryption process but in the reverse direction. 

Figure 7 shows a sample of this process:  A 

schematic diagram for decryption in round 1.  

 

 
 

Figure 7: Round 1 Schematic Diagram 

(Decryption) 
 

 

2.3 The Sub-keys Generation Process 
JEA K-128 uses a large number of sub-keys. These 

sub-keys must be pre-computed before any data 

encryption or decryption. The key array consists of 

twenty three 16-bit sub-keys (Sk0, Sk1,…...., Sk22). 

The procedure for generating the sub-keys for JEA 

K-128 is indicated in the block diagram that is 

shown in Figure 8. This block diagram shows how 

the main key K (128-bit) is used to generate the 16-

bit sub-keys that are required within the 4-rounds of 

JEA K-128 algorithm.  
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Figure 8: Sub-Key Generation Block Diagram 

 

Note that in the generation process, the original key 

(K) is bit-wise rotated by 1-bit to the left between 

the process of generating a new sub-key. The 

rotation process is shown in Fig. 9 and it known as 

the scrambler in the previous block diagram.  
 

 
 

Figure 9: Scrambler  
 

Figure 10 shows a schematic diagram for the 

sub-key generation. Here, we introduce a novel idea 

of using multiple multiplexers (MUX's) in choosing 

random sub-keys among the main key.  

 

 
 

Figure 10: Sub-Key Generator Schematic 

Diagram 

 

As we known that the MUX has multiple inputs and 

one output, one of the inputs will be active on the 

output depending on the selection lines. Our 

selection lines that are needed for the MUX's chosen 

upon a simple scheme from the main key; this 

scheme could be changed from time to time. As 

seen in the figure we need 10 selection lines (S0, S1, 

….., S9) that will be used for choosing sub-keys.  

Those selection lines were chosen according to a 

simple algorithm that is shown in Fig. 11.  

 

 
 

Figure 11: Algorithm to Choose the Selection 

Lines 
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The previous algorithm is considered as one of the 

main parts in Fig. 10 that is labeled (Function F). 

Each time we need to generate a sub-key, the 

function F should run to determine values for all 

selection lines.  

 

 

3 Results and Discussion 
The change in number of bits in the cipher text 

whenever there is a change in one bit of the plain 

text or one bit of key is called Avalanche effect [7, 

15]. A desirable feature of any encryption algorithm 

is that a small change in either the plaintext or the 

key should produce a significant change in the 

ciphertext. If the changes are small, this might 

provide a way to reduce the size of the plaintext or 

key space to be searched and hence makes the 

cryptanalysis very easy. So, in order to say that any 

cryptographic algorithm is secure, it should exhibit 

strong avalanche effect.  

JEA K-128 algorithm is designed to reach the 

condition of having almost every bit of the 

ciphertext depend on every bit of the plaintext and 

every bit of the key as quickly as possible. Here we 

provide some performance measurements for JEA 

K-128 encryption/decryption operations. Most of 

the experiments that was done for performance 

evaluation aimed to check the Avalanche effect. 

The main goal of the first test is to make sure 

that the decoder is able to recover the original plain 

text. First of all, both the key and the data were set 

then we run the simulation; the result for the 

encoder is shown in Fig. 12.  

 

 
 

Figure 12: Data Setup for Encryption 
 

After that, we provide the cipher text that we got out 

of the encoder along with the same key to the 

decoder. The decoder is able efficiently to recover 

the original plain text; this result is shown in Fig. 

13.  

 

 
 

Figure 13: Data Setup for Decryption 
 

In the second experiment we changed just 1-bit in 

the plaintext (bit-7) keeping the same key compared 

to experiment 1. After we run the simulator; we got 

the following result that is shown in Fig. 14. 

 

 
 

Figure 14: Data Setup for Encryption with 1-bit 

Change in the Plain Text 
 

If we compared this result to the one in the first test; 

that is shown in Fig. 12; we notice that almost all 

bits in the cipher text changed. After that, we 

provide the cipher text that we got out of the 

encoder along with the same key to the decoder. The 

decoder is able efficiently to recover the original 

plain text; this result is shown in Fig. 15. 

  

 
 

Figure 15: Data Setup for Decryption Changing 

1-bit in the Plain Text 
 

In the third experiment we changed just 1-bit in the 

key (bit-2) keeping the same plain text compared to 

experiment-2. After we run the simulator; we got 

the following result that is shown in Fig. 16. As we 

see from this figure changing 1-bit in the key affects 

in changing almost all bits in the cipher text; 

compared to Fig. 14. 
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Figure 16: Data Setup for Encryption Changing 

1-bit in the Key 
 

After that, we provide the cipher text that we got out 

of the encoder along with the same key to the 

decoder. The decoder is able efficiently to recover 

the original plain text; this result is shown in Fig. 

17.  

 

 
 

Figure 17: Data Setup for Decryption Changing 

1-bit in the Key 
 

We did one more test by changing just 1-bit in the 

key (bit-126) keeping the same plain text compared 

to the previous experiment. The result for the 

encoder is shown in Fig. 18. Also this experiment 

ensures that changing 1-bit in the key affects in 

changing almost all bits in the cipher text. 

 

 
 

Figure 18: Data Setup for Encryption Changing 

1-bit in the Key 
 

The result for the decoder for this experiment is 

shown in Fig. 19. Also at this time the decoder is 

able to recover the original plaintext.  

 

 
 

Figure 19: Data Setup for Decryption Changing 

1-bit in the key 
 

Figure 20 shows a test for generation the required 

sub-keys for our algorithm. As we see in this figure, 

the key generator gives random different sub-keys 

each time we provide a new secret key. The number 

of sub-keys and the size of each sub-key could be 

changed as needed. However, each time we provide 

a new main key we got totally different sub-keys. 

 

 
 

Figure 20: Sub-keys Generation 

 

To make sure that the generator works as required, 

we provided another 128-bit key then we run the 

simulator; as seen in Fig. 21; the generator is able to 

give another pseudorandom different group of sub-

keys. 
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Figure 21. Sub-keys Generation-2 

 

The same scenario is repeated when we provide the 

generator with another 128-bit key; it is able to 

generate a totally different group of sub-keys; this 

result in shown in Fig. 22. 

 

 
 

Figure 22. Sub-keys Generation-3 

 

Sub-keys are independently chosen and their 

generation depends not only on the main key but 

also on the values for selection lines of all MUX's in 

the generator. The real goal in the design procedure 

for sub-keys generation is to a void man in the 

middle attacks. This generation process occurs just 

on both sides of the communication system; an 

attacker whose goal is to break the system needs not 

only the secret key but also the key generator which 

should be physically protected. There is no risk in 

sending the secret key through the channel, but we 

should encrypt that key before sending it.     

 

 

4 Conclusions and Future Work 
The number of rounds for thorough mixing and to 

ensure that every plaintext and every key bit affects 

almost every ciphertext bit proved to be 4-rounds. 

After 4-rounds the ciphertext was essentially a 

random function of every plaintext bit and every key 

bit. This is a good avalanche and sufficiently secure. 

That’s the reason why we stopped after 4-rounds, 

but for more security and to prevent the algorithm 

from being attacked more rounds could be added. 

This will be done as a future work.  

The JEA K-128 algorithm promises good mixing 

of the key and the plaintext for a scrambled 

ciphertext. The ciphertext is easy to be de-ciphered 

if the key is known. A brute force attack would take 

too long to break the system. Further work would 

include more thorough testing and analysis to get 

better S-boxes, and do some performance 

comparison with up-to-date block ciphering 

algorithms. Also, another future work will include 

hardware implementation for our work in a suitable 

FPGA.    
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