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Abstract: The Placement of the Electronic Circuits Problem (PECP) is considered as one of the most difficult 

optimization problems. The PECP has been expressed as a Quadratic Knapsack Problem (QKP) with linear 

constraints. The goals of this work are to solve the Placement of the Electronic Circuits Problem (PECP) using 

the Continuous Hopfield Networks (CHN) and to illustrate, from a computational point of view, the advantages 

of CHN by its implement in the PECP. The resolution of the QKP via the CHN is based on some energy or 

Lyapunov function, which diminishes as the system develops until a local minimum value is obtained. The 

Decomposition approach was used to solve the PECP. This method suffers from problems of feasibility of 

solutions and long training time. Unlike the decomposition approach, the CHN is much faster and all the 

solutions are feasible. Finally, some computational experiments solving the PECP are included.   

 

Key-Words: Placement of the Electronic Circuits Problem (PECP), Continuous Hopfield Networks (CHN), 

Quadratic Knapsack Problem (QKP), combinatorial problems, satisfaction of the PECP constraints.   

 

 

1 Introduction 
The aims of this work are to solve the Placement of 

the Electronic Circuits Problem (PECP) using the 

Continuous Hopfield Networks (CHN) and to 

illustrate, from a computational point of view, the 

advantages of CHN by its implement in the PECP. 

The PECP is introduced as a QKP. In the last 

four decades, many researchers working on QKP 

have proposed methods for linearizing the quadratic 

term in the objective function by introducing 

additional variables. The work of Lawler [26] is a 

fundamental linearization, deriving the well-known 

Gilmore-Lawler-Bound (GLB)  and an entire family 

of correlated linearizations. The research of 

Kaufman and Broeckx [23], Frieze and Yadegar 

[12] and more recently Adams and Jonson [19] is 

extremely important on this matter. The 

linearization of Adams and Johnson dominates all 

the others [19]. Closely related to some 

linearizations are the polyhedral studies performed 

by Barvinok [11], Jünger and Kaibel [4,2], designed 

to derive the QKP polytope for use with branch-

and-cut  methods. But with these linearizations, the 

number of the variable and the number of 

constraints grow dramatically. On the other hand, 

many authors have chosen to work with QKP in its 

original form. For example, Finke et al. [4] used the 

trace formulation to introduce the eigenvalue 

bounds, a stronger class of lower bounds when 

compared to GLB bounds. The eigenvalue lower 

levels of the Branch-and-bound tree are searched. 

Since QKP in NP-Hard, good lower bounds are of 

eminent importance for solving these problems by 

implicit enumeration procedures like Branch-and-

bound.  

The PECP had already been treated using the 

decomposition approach which decomposes an 

instance of the problem recursively into several 

small instances. In addition, this mentioned 

approach keeps a global sight of the entire problem 

instance at all stages; see Jünger and all [20]. 

However, this method suffers from problems of 

feasibility of solutions and long training time.  

The CHN was proposed by Hopfield and Tank [16] 

to solve any combinatorial problem; since it proved 

its efficiency, many researches have also treated the 

QKP through this neuronal approach [3],[14],[29]. 

Within these papers, the feasibility of the 

equilibrium points of the CHN is not assured for the 
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general case, and the solutions obtained are often 

not good enough. To avoid these problems, we 

choose an appropriate energy function that penalizes 

the objective function and the constraints of the 

PECP. The penalty parameters of this function 

should ensure an appropriate balance between 

minimization of the cost function and simultaneous 

satisfaction of the PECP constraints.  In addition, 

these parameters must avoid some bad local 

minima. In order to realize these goals, we 

decompose the set of non feasible solutions into 

appropriate subsets, and we use the partial 

derivatives of the energy function to select the 

parameters of the function.  

In this work, we formulate the PECP in a manner 

that can be solved by the CHN; that is, we cast this 

problem in terms of an appropriate energy function 

that can be minimized by the CHN.   

The paper consists of seven sections. The second 

introduces the CHN and its dynamical equations.   

In the third section, the PECP is introduced as a 

QKP. The use of the decomposition method is 

presented in the fourth section. In the fifth section, 

the energy function related to the PECP is 

determined, where the calculating procedure of the 

parameter-setting of the energy function is also 

given. Finally, some computational experiments are 

included in the sixth section.  

 

 

2 The Continuous Hopfield neural 

Networks (CHN)  
   The CHN consists of n  interconnected neurons 

with a smooth sigmoid activation function (usually a 

hyperbolic tangent).   

The differential equation which governs the 

dynamics of the (CHN) is: 

 

      ( )1bivT
u

dt

du
++−=

τ
 

with 
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where  

         iu  : is the current state of the neuron i , 

         iv  : is the output of the neuron i , 

        ijT  : is the weight of the synaptic   

              connection from neuron j  to neuron    

             i , 

        
b

ii  : is the offset bias of the neuron i . 

 

 

Definition 1 

A point 
eu is called an equilibrium point of the 

system )1(  if, for an initial input vector 
0u ,  

eu satisfies e

e ttutu ≥∀=)( , for some 0≥et . 

 

Hopfield has introduced the energy function E  on 

[ ]n1,0  which is defined by 
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 It should be noted that if the energy function (or 

Layapunov function) exists, the equilibrium point 

exists as well. Hopfield proved that the symmetry of 

matrix T  is a sufficient condition for the existence 

of Lyapunov function; see[17].      

The CHN will solve combinatorial problems that 

can be expressed as the constrained minimization 

of: 

 

( ) ( ) ( )3
2

1
viTvvvE

tbt −−=  

 

The extremes of this function are among the corners 

of the n -dimensional hypercube [ ]n1,0 ; see  [15] 

and [27]. 

The philosophy of this approach is that the objective 

function which characterizes the combinatorial 

problem is associated with the energy function of 

the network when ∞→τ . In this way, the output of 

the CHN can be represented as a solution to 

combinatorial problem.  

Since the differential equation, which characterizes 

the dynamics of the CHN, is analytically hard to 

solve, many researchers used to make the use of the 

famous Euler method. However, this latter proved to 

be highly sensitive with respect to initial conditions, 

and it requires a lot of CPU time for medium or 

greater size CHN instances. Recently, one 

algorithm, which assures the obtaining of the 

equilibrium points, has been proposed. Unlike the 
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former method, the proposed algorithm is robust 

with respect to the initial conditions; see [28]. 

 

Given the combinatorial optimisation problem with 

n  variables and m  linear constraints: 

 

{ }vqPvvMin tt +
2
1  

   Subject to                                 

       { } niv

bRv

i ,,11,0

)4(

…=∈

=
        

To simplify, the sets are defined as: 

 

● The Hamming hypercube 

 

         [ ]nH 1,0=   

 

 

● The Hamming hypercube corners set 

 

        { }nCH 1,0=      

  

● The feasible solutions set 

 

        { }bRvHvH cF =∈= /  

  

The standard form of the energy function is: 

 

 HvvEvEvE pc ∈∀+= )()()(  

 

 where 

● )(vE c
 is directly proportional to the objective 

function. 

●  )(vE p
 is a quadratic function that ensures the 

feasibility of the solution obtained by the CHN, and 

also penalizes the violated constraints of the 

problem. This function must give the same value for 

each element v form FH , and an adequate selection 

of this function is necessary for a correct mapping. 

 

 

3 The Placement of the Electronic 

Circuits Problem (PECP) 
From the computational point of view, the PECP is 

considered as one of the most difficult optimisation 

problems; see [20], [24] and [25].  

An integrated circuit consists of the central part and 

the border. The central part is a rectangular array 

(the master) of base cells and the border consists of 

two columns of cells; see Fig.1. At the beginning, 

the circuit integer connections are unknown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Fig.1: The master and the border    

                         consists of base cells. 

 

Let B  be a finite set of cells where each cell b has a 

finite number of rectangular realisations. Each cell 

is characterized by its widths and heights, the 

positions of its electrical terminals (pins), and its 

electrical properties, like switching speed, etc. 

Moreover, we have a set of nets, and each net 

{ } Bbb k ⊆,,1 …  specifies that certain pins of the 

cells kbb ,,1 …  have to be electrically connected. 

The PECP looks for a nonoverlapping (Fig.2) 

assignment of the cells to the plan and realization of 

the nets with respect to some criteria as: minimal 

area of the smallest rectangle containing all cells, 

minimal switching time of the circuit and wire 

ability with minimum total wire length.        

Let m  be the number of the base cells of the master 

and n  be the number of the cells. 

      
 Fig. 2: The common part between the cells       

             i and j  represents the overlapping  

              between these two cells.   

 

Definition 2 

A cell i  is assigned to base cell k if cell i is placed 

on the master so that its lower left corner coincides 

with base cell k; see Fig.3. 

 

Definition 3 

We say that a base cell k is feasible for a cell i if cell 

i  fits on the master when assigned to base cell k. 

Cell i 

      Cell j 

Overlapping 

Master 

Base cell 

Border 

WSEAS TRANSACTIONS on COMPUTERS M. Ettaouil, K. Elmoutaouakil, Y. Ghanou

ISSN: 1109-2750 1867 Issue 12, Volume 8, December 2009



 

Definition 4 

The Manhattan distance between cells i and j 

assigned to base cells k and l, respectively, is the 

sum of the shortest distances in both horizontal and 

vertical directions between any two points on the 

boundary of  i and j.  

 
          Fig.3: The cell i  is assigned 

                       to base cell  k      

 

Definition 5 

The overlapping number between two cells is the 

number of common base cells between these two 

cells, see Fig.2. 

 

Definition 6 

The density of circuits is the total area of the cells to 

be placed, divided by the area of the master.  

 

 

3.1 The PECP as a 0-1 mathematical 

programming model 
In this part, we introduce an optimization model for 

the placement of electronic circuit problem based on 

a quadratic 10 −  programming problem with special 

linear constraints. 

 

• Following the notation of M. Jünger and all [20], 

let v  be the mn×  matrix of state variable: 
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This matrix is converted to a vectormn −× : 
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 • In practice, it is impossible to avoid the 

overlapping between the cells placed into the 

“master”, and their relative weights have to be 

controlled by some parameters. 

The cost matrix P  is defined as the following  

nji ,,1, …=∀  and , 1, ,k l m∀ = …   

        ,,,, jlikjlikijjlik odcp λ+=  

where 

ijC       is the number of nets connecting cells i      

           and j , 

jlikd ,   is the Manhattan distance between cells    

           i  and j , 

 

jlikO ,
 is the number of overlapping units     

          between cells i  and j ,  

0≥λ  is a penalty parameter. 

  

In general, the matrix d of the Manhattan distance, 

the matrix O  of overlapping numbers and the 

matrix C  of number of nets are symmetric. 

Therefore, the matrix P is symmetric too. 

The objective function is defined by: 

 vqPvvvf tt +=
2

1
)(  

 where         

    
t

mn

q
�� ��� ��
…………

×

= )000(  

• All cells must be assigned to exactly one of the m  

base cells and thus: 

     

{ } )5(,,11
1

,∑
=

∈∀=
m

k

ki niv …

 

In this case, the matrix which defines the constraints 

is: 

 

Base Cell 
k  

Cell 
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and the vector is 
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
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Now the Placement of the Electronic Circuits 

Problem (PECP) is 

 

  minimize the cost function: 

      ∑ ∑ ∑ ∑
= = = =

=
n

i

m

k

n

j

m

l

ljkiij vvpvf
1 1 1 1
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    subject to the blocking constraints 
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which can be written more compactly in a matrix 

form 

      

       { }PvvMin t

2
1  

       Subject to 

           
{ } mn

v

bRv

×∈

=

1,0
 

Many researches have solved the QKP using the 

Lagrangean duality (for example: Lagrangean 

decompositions methods, Lagrangean substitutions 

…etc.. ); see [7]. But these methods are based on 

gradient descending technique which needs an 

extremely high number of iterations for training. 

                 

 

4 Decomposition approach for the 

placement of the electronic circuits 

problem  
In 1991, the decomposition approach was used to 

solve the PECP; see [15]. This method decomposes 

the problem recursively into several small instances. 

In addition, it keeps a global sight of the entire 

problem instance at all stages. In this section, we 

will briefly discuss the major headlines of this 

method.  

 

 

4.1 The decomposition approach 
The decomposition approach consists of the creation 

of a k -nary tree T in order to decompose a large 

instance into smaller ones. All cells and the whole 

area of the circuit construct the root ofT . For any 

node t  of the tree, its k-th children 

kttt ,,, 21 … corresponding to k  rectangular sub-

areas 
kttt aaa ,,,

21
…  of rectangle ta  represented by 

t , and k  subsets 
kttt ccc ,,,

21
…  of the cell set tc  

assigned to node t . 

In the following, we will explain how the 

decomposition scheme keeps the entire vision of the 

problem at all stages. 

To keep away from any kind of complexity, one  

works on a simplified case in which the master 

consists of a hh 22 ×  array of h22  base cells. Initially, 

the master is subdivided into regular 44× array of 

equally shaped super base cells, each of which could 

be seen as a new master that contains an array of 
22 22 −− × hh base cells. The placement problem is 

solved for 44×  array with relaxed overlapping 

condition, i.e. each cell is assigned to one of these 

16  representative base cells, and each of these super 

bases is represented by the base cell in its lower left 

corner. In the subsequent step, the same thing would 

be done with super base cells. The procedure goes 

on until each super base cell becomes identical to a 

base cell. 

 

 

4.2 The graph theoretic formulation of the 

placement of electronic circuit problem 
The graph associated to the placement problem 

),,( wEVG =  is as follows, where V  denotes the 

set of the nodes  

{ }nietmkxV ki ,,1,,1/, …… === . E  denotes 

the set of the edge and w  denotes the set of the 

weights. An edge is introduced between kix,  and 

kjx , if and only if ji ≠ . The weights are the 

coefficients of the matrixP . Furthermore, any 

feasible solution of the placement problem is 

associated with a clique in G  of cardinality n , and 

its objective function value is the total weight of this 

clique.   

A stable set in G  is a subset of V  in which no two 

nodes are connected by an edge. A clique is a subset 
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of nodes such that every pair of nodes is connected 

by an edge. 

Thus, the placement problem is equivalent to the 

following graph theoretic problem. “Find among all 

cliques of cardinality Ginn one of minimum 

weight”. To solve this problem approximately, 

Jünger and all [20] used the heuristic which avoids 

the simultaneous deletion of more than one node. 

We iteratively delete nodes until a clique of 

cardinality n  is left. To this end, we assign weights 

to the nodes in G   and to the maximum stable sets 

in G . In each step we determine a maximum stable 

set S  with the highest weight and a node u of S  

with highest weight (among all nodes of S ). Then 

the node u  is deleted from G . These steps are 

repeated until every maximum stable set consists of 

only one node. These remaining nodes define a 

clique of maximum cardinality.   

 

 

5 Continuous Hopfield networks for 

the PECP  
The main purpose of this section is to apply the 

CHN to solve the PECP. To this end, we define an 

appropriate energy function that enables us to 

resolve the PECP by the approach of CHN. To be 

precise, the choice of the parameters of this function 

must ensure the feasibility of the CHN equilibrium 

points. 

 

 

5.1 Energy function for PECP 

Let’s consider a matrix array of nm×  neurons 

represents an assignment of the n  cells to the 

m  base cells. The m n×  neurons are grouped 

into n  groups of m  neurons. Each group of m  

neurons is used to represent the position of the 

cell on the integrated circuit. 

For example, if { }87654321 ,,,,,,, ccccccccB=  

represents the set of the cells, and 

{ }321 ,, bbbD =  represents the set of the base 

cells, a possible assignment is showed in Fig.4. 

The second group of three neurons corresponds 

to the cell 2c  and [ ]100   means that cell 2c  is 

assigned to the base cell 3b .       
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         Fig.4: A matrix array of 8x3 neurons to  

                       represent an assignment of the 8 

                       cells to the 3 base cells. 

 

To solve the PECP via the CHN, we choose an 

energy function which includes the objective 

function )(vf ; in addition, it does not only 

penalize the linear constraint bRv =  with a 

quadratic term, but also a linear term.   

Furthermore, the non-extreme values for any 

component iv  are also penalized. 

Taking into consideration all these criteria, we 

propose the following energy function for the 

Placement of the PECP: 
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Where  

        nivve
m

k

kii ,,1)(
1

, …=∀=∑
=

. 

The first term in the energy function represents 

the cost function; the second term, which 

specifies the blocking constraints that every 

plant must be located at exactly one site, is 

penalized by ℜ∈η . Analogously, all the linear 

constraints are penalized by the same 

parameter β . Finally, the term, which forces the 

analogue neurons to take finally discrete 

values 0 or 1,  is penalized by the parameterξ .  

 A simple comparison between the equation  

)3(  and )6(  implies 

 





−−=

+−−=

)7(

2,,
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ξδδηδα
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I
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where 

   

   


 =

=
else

jiif
ij

0

1
δ  

Giving the data , , ,n m C d and O  the PECP 

can be solved via the CHN, once the parameters 

, , andη ξ β α   are determined.  

 

 

5.2 Parameter settings 
According to the equations (7), the weights and 

thresholds associated with PECP depend on the 

parameters  βηα ,,  and ξ . Thus, in order to solve 

the PECP via the CHN, a convenient setting of these 

parameters is necessary. In this part, basing on an 

appropriate decomposition of the set FC HH −  and 

on the partial derivatives of the energy function, we 

choose the parameters of the energy function that 

assures the feasibility of the equilibrium points.   

The partial derivatives of the generalized energy 

function are given by 

 

)8()21(

)(
)(

)(

,

1 1

,,

,

ki

n

j
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l

iljjlik
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ik

v
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v

vE
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−++

+=
∂
∂

= ∑∑
= =

ξβ
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To simplify, we impose the following constraints to 

the parameters of the energy function: 

• The constraint below is imposed to minimize the 

objective function: 

   0≥α  

 

• The following constraint is naturally imposed to 

penalize the family of linear constraints of the 

PECP: 

0≥η  

 

• The next constraint is necessary to avoid the 

stability of the interior points FC HHv −∈ : 

 

02, ≥+−= ξηikikT   

    

Given the family of constraints of PECP: 
 

{ }nivei ,,11)( …∈∀=  

 

The partition of FC HH −  is defined as 

 

• { } { }1)(,/1)(,/1 ≤∀∈∩<∃∈= vejHvveiHvU jiC  

 

In this case, one cell { }ni ,,1…∈  exists such that 

mkv ki ,,1,0, …=∀=  (this cell is not assigned to 

any base cell), thus the value kiv , will increase if 

ε−≤)(, vE ki . 

Now the following constraint is obtained: 

 

εξβα −≤++≤ npvEik max)(  

 where { }jlik

mlk
nji
PMaxp ,

,,1,
,,1,

max

…
…

=
=

=  

The above constraint can be replaced by the 

following: 

εξβα −≤++≤ ∑ max,)( pvEik   

where 
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• { }1)(,/2 >∃∈= veiHvU iC  

 

In this case, one cell { }ni ,,1…∈  is assigned to two 

base cells lk ≠  so that 1,, == liki vv  and 

Therefore the value kiv ,  will decrease if 

ε≥)(, vE ki . 

The following constraint is obtained: 

 

εξβηα ≥−++≥ 2)( minpvEik  

where   

          { }
jlik

mlk
nji
PMinp ,

,,1,
,,1,
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…
…

=
=

= . 

 

Joining all these parametric constraints yields the 

following: 

 

• Initial constraints: 

 

 

• 1U  

εξβα −≤++npmax  

where  
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nji
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,,1,
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…
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=
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0
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or 

εξβα −≤++∑ np max,   

where 
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• 2U  

εξβηα ≥−++ 2minp  

where   
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Moreover, the solution can be feasible by 

choosing: 
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ξ
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=
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2
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This parameters depend on the parameters αε , , 

m  the number of base cells, n  number of cells and 

on the matrix P .   

 

 

6 Computational experiments 
The Euler method proved to be highly sensitive, 

with respect to the initial conditions, and it requires 

a lot of CPU time for medium or greater size CHN 

instances. To overcome these shortcomes, we use 

the algorithm described in [28] to simulate the 

mapped PECP. This variable time-step method 

assures the feasibility of the equilibrium point and 

needs less CPU time. Besides, it is robust with 

respect to initial conditions. 

The initial states are randomly generated: 

 

    ]4.0,4.0[,1055.0 12

, −∈+= − uxxv ki  

 

where x  is a random uniform variable in the 

interval ]4.0,4.0[− .  

We choose the parameters  

    
mn×

−

=

=
1

610

α

ε
 

ξ , η and β  were computed from the equations 

)9( , )10( , )11( . 

We have performed experiments on three test 

circuits with 16=m  which are randomly generated. 

Circuit 1 consists of 1022  cells and its density is 

%50 . Circuit 2 consists of 2293cells and its 

density is %6.23 . Circuit 3 consists of 2670 cells 

and its density is %3.50 . In order to compare the 

computational results obtained via the CHN with 

those obtained with the decomposition method, the 

training results reported, respectively, in table 1 and   

table 2 were performed on compatible IBM, 

Pentium(R) Dual-Core 2.5 GHz, 2.5 GHz, and 1 Go 

of RAM through Borland C++ Builder 3.  

The CHN method performs much better than the 

decomposition method with respect to the mean 

estimated wiring length, and the CPU time.  

Unlike the decomposition method, all CHN 

simulations yield valid placements.      
 Table 1 and table 2 list, respectively, the number of 

cells, the density of circuit, the number of 

simulations, the mean estimated wiring length and 

the mean of CPU time. 
 

 

Table 1 
Computational results of the placement of electronic  

circuits instances by decomposition method 
 

number       

cells n 

density      

of  

circuit% 

Number 

of            

run 

mean 

estimated    

wiring 

length 

mean 

time (s) 

1022 50 20 132309.5 5907.7 

2293 23.6 15 722019.9 32881.2 

2670 50.3 10 394361.78 44350.5 

 

 

Table 2 
Computational results of the placement of electronic  

circuits instances by CHN method 
 

number       

cells n 

density      

of  

circuit% 

Number 

of            

run 

mean 

estimated    

wiring 

length 

mean 

time (s) 

1022 50 20 54132.5 945.7 

2293 23.6 15 77473.8 1719.1 

2670 50.3 10 93762.13 1900.4 

 

The final solution can be significantly improved by 

applying one of the following techniques. In the first 

technique, the parameter 0u  is not fixed but is 

gradually decreasing in time during the optimization 

process. As it reaches a critical value 
cu0 , some  of 
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the output variables kiv , begin to move significantly 

towards 0 or 1. The second technique, which can be 

combined with the first one described, involves 

adding random terms to the differential equation 

which characterizes the dynamics of the CHN; see 

[6].   

    

  

7 Summary and conclusions 
In this work, we have applied the CHN to solve the 

PECP. The PECP has been presented as a QKP. The 

resolution is based on an appropriate energy 

function; moreover, the variable time-step method, 

which replaces the Euler method, was used to solve 

the differential equation system associated to the 

CHN. 

Additionally, and in order to solve the PECP, the 

mapping procedure and an appropriate parameter-

setting procedure are discussed in detail. This 

procedure ensures that the solutions obtained are 

always feasible. The achieved results were 

compared with those attained through the 

decomposition method.  The CHN method, unlike 

the decomposition method, takes less CPU time for 

medium or greater size PECP instances. 

Furthermore, the length of wiring used by the 

electronic circuits constructed via the decomposition 

method is longer than the one utilized with the 

CHN. Finally, all the attained assignments through 

the CHN are feasible, but with the decomposition 

approach the feasibility is not always guaranteed.   

To make this approach more efficient, it can be 

combined with some metaheuristics, such as genetic 

algorithms [1] and [30], Tabu research, and Ant 

colony system, or it can be computationally 

optimized by introducing analytical improvements, 

such as replacing the hyperbolic tangent with a 

linear function. 
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