
Solving Traveling Salesman Problem on Cluster Compute Nodes

IZZATDIN A. AZIZ, NAZLEENI HARON, MAZLINA MEHAT,
LOW TAN JUNG, AISYAH NABILAH MUSTAPA, EMELIA AKASHAH PATAH AKHIR

Computer and Information Sciences Department
Universiti Teknologi PETRONAS

31750 Tronoh, Perak
MALAYSIA

{izzatdin, nazleeni, mazlinamehat, lowtanjung, emeliaakashah}@petronas.com.my, allysa85@yahoo.com

Abstract: - In this paper, we present a parallel implementation of a solution for the Traveling Salesman Problem (TSP).
TSP is the problem of finding the shortest path from point A to point B, given a set of points and passing through each
point exactly once. Initially a sequential algorithm is fabricated from scratch and written in
C language. The sequential algorithm is then converted into a parallel algorithm by integrating it with the Message
Passing Interface (MPI) libraries so that it can be executed on a cluster computer. Our main aim by creating the parallel
algorithm is to accelerate the execution time of solving TSP. Experimental results conducted on Beowulf cluster are
presented to demonstrate the viability of our work as well as the efficiency of the parallel algorithm.

Key-Words: - Traveling Salesman Problem (TSP), High Performance Computing (HPC), Message Passing Interface
(MPI)

1 Introduction
Traveling Salesman Problem (TSP) is a well known
problem that involved repetitive process which would be
resource exhaustive if it is applied on a huge coordinate
set and if it were to be executed using sequential
machine. It is a typical NP-complete problem that has
received great attention in research and teaching.
 In TSP a set of N cities is given and the problem of
finding the shortest route connecting them all, with no
city visited twice and return to the city at which it
started. For any two cities c1 and c2 the distance is given
by d(c1, c2). It is a symmetric TSP (STSP), if the
distances satisfy d(c1,c2) = d(c2,c1). Otherwise the TSP
is called asymmetric (ATSP). The sum of all distances of
a valid route is called the tour length.
 Since the task of solving the TSP accurately is not
feasible, to get a solution for a TSP problem one could
either focus on only small instances, or look for an
approximate solution within polynomial time. If one
chooses to focus only on small instances, one will loose
the possibility to solve many interesting problems. One
of the reasons for the interest in the TSP is that it often is
a part of another problem that can be solved by using a
TSP solver. Solving small problems of this type is not
often enough since large instances of the TSP problem is
related to many industrial and scientific modeling tasks.
Since the focus of this research is only interested in the
underlying technology of TSP, then there is no need to
focus on small instances. Therefore the study will be on
finding the approximate solution for solving TSP.

 Ideally TSP should be solved by an algorithm that
could perform fast computations on large data sets. In

this paper we proposed a plausible approach in solving
TSP computation by developing a parallel algorithm
using C language and Message Passing Interface (MPI)
directives. It has been proven that tasks accomplished
through parallel computation results in faster execution
as compared to a computational processes that runs
sequentially [1]. MPI was chosen due to the fact it is
designed for high performance computing on parallel
machines or cluster of workstations [2]. The message-
passing model consists of a number of processors, any
pair of which can communicate with each other by
exchanging messages via communication link(s).
 Choosing the best parallel programming paradigm is
actually an imperative concern when it comes to
parallelization of an application or algorithm. There are a
few parallel programming paradigms available such as
MPI, OpenMP and Parallel Virtual Machine (PVM).We
have chosen MPI as the paradigm of choice due to the
nature of our problem, the hardware components and the
network setup that we have in the laboratory [3]. MPI
consists of specifications for message passing libraries
that can be used to write parallel programs. This
message passing paradigm not only can be employed
within a node but also across several nodes in a cluster.
 This is the advantage of MPI over OpenMP. Some
other features of OpenMP that are not in our favor
include: OpenMP only runs efficiently in shared-
memory multiprocessor platforms as proposed in [4], it
lacks the reliable error handling capabilities, scalability
in OpenMP is limited by node memory architecture, and
synchronization between a subset of threads is not
allowed. Unlike OpenMP, MPI is found to be more
viable for wide range of problems and it offers the user’s

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1020 Issue 6, Volume 8, June 2009

complete control over data distribution and process
synchronization.
 This feature is vital in order to ensure optimum
performance of the parallelization. PVM may be more
suitable for heterogeneous network setup and although
MPI does not have the concept of a virtual machine,
MPI does provide a higher level of abstraction on top of
the computing resources in terms of the message-passing
topology.
 The resulting implementation is tested on High
Performance Computing (HPC) architecture that is made
of Beowulf-style computing cluster. The parallel
program designed caters for 50 cities or points.
 Due to its famous nature, many literatures have
existed in providing solutions to solve the TSP problem.
However, only few references can be found on parallel
implementations of the TSP [4-7]. The main difference
of these works with ours is the choice of parallel
programming paradigm.

2 Methodology
Traditional approach of system development
methodology that needs to get the development model
mostly correct in the early stage is impossible as this
involves more than just one area of studies such as prime
number generation algorithm, primality tests, parallel
processing and MPI. Various issues need to be
considered that may be unforeseen at the beginning stage
of development. Thus different conditions and
techniques would involve during development phase.
 Evolutionary development is an iterative and
incremental approach for system development. The
system will be delivered incrementally over time.
Evolutionary development is new to many existing
professional developer and many traditional
programmers as well. Fig. 1 illustrates the phases
involved in evolutionary development approach [8].

Fig. 1: Phases involved in Evolutionary Development
Approach

2.1 Specification Phase
A sequential program of prime number generation in C
using MPI libraries is developed. Then in this phase the
parts of the sequential program that could be parallelized
would be identified. This is the beginning of the
specification phase. Although the main objective is to
parallelize the prime number generation, but not all part
of the program can be parallelized. This is where the
partitioning stage of the programming design takes place
which is intended to explore the opportunities for
parallel execution.

2.2 Development Phase
As mentioned earlier, the parallelization of the algorithm
was achieved by using MPI libraries. The parallel
program was written incrementally over time which
means troubleshooting was done on the program from
time to time to avoid error that could not be debugged
later on.

2.3 Validation Phase
The program prototype will then go through the
validation phase to ensure the project requirements are
achieved. If there are still areas that need to be modified
and altered, the whole phases will be repeated all over
again until the final version of the program is released.
Most of the evaluation processes were carried out by the
authors.

3 Development Tools
The main reason of choosing C to write the program is
because it provides an sequential infrastructure that
accommodates mechanism of breaking down the
problem into a collection of data structures and
operations that is matching the characteristic of parallel
processing.
 Furthermore, C is also compatible with the concept
of partitioning and dynamic memory allocation which,
are the concept that is going to be deployed in the
parallelization of prime number generation. As
mentioned earlier, MPI is used for the parallel
processing of the algorithm; a library of subroutine
specifications that can be called from C , this is also
another reason why the parallel program is written using
C. The application that is used to edit the program is
Linux gnu[8].

3.1 Libraries
MPI provides all the subroutines that are needed to break
the tasks involved in the massive computational process
into subtasks that can be distributed to a number of
available nodes for processing. The goal of the MPI is to
establish a portable, efficient, and flexible standard for

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1021 Issue 6, Volume 8, June 2009

message passing that will be widely used for writing
message passing programs. MPI provides an appropriate
environment for general purpose message-passing
programs, especially programs with regular
communication patterns. Fig. 2 shows the general MPI
program structure:

Fig. 2: General MPI Program Structure [8].

 MPI contains approximately 125 functions that
greatly ease the tasks in implementing common
communication structures, such as send-receive,
broadcasts and reductions. However, MPI is reasonably
easy to learn as a complete message-passing program
can be written with just six basic functions.
 MPI contains useful communications libraries for
applications that need to be ported to various platforms.
Different versions of MPI exist for virtually every major
platform: message-passing supercomputers, scalable
shared-memory machines, symmetric multiprocessors,
loosely-coupled workstation clusters, and even
individual PCs. With MPI, the programmer can write
code once and merely recompile it for each new
platform.

3.2 Experimental Testbed
Fig 3 shows the experimental cluster set up in the UTP
lab which comprised of 20 SGI machines. Each of the
machines consists of off-the-shelf Intel i386 based dual
P3-733MHz processors with 512MB memory Silicon
Graphics 330 Visual Workstations. These machines are
connected to a Fast Ethernet 100Mbps switch.
 The head node performs as master node with
multiple network interfaces [9]. Although these
machines may not be as powerful as the latest cluster-
machine in terms of the hardware and performance, the

important focus would be the parallelization of the
algorithm and how jobs can be disseminated among the
processors.

Fig.3 UTP Cluster [9]

 The software stack on all machines is consisting of
Linux Ubuntu 5.10 operating system, MPICH-1.2.7p1
and openMosix for Kernel 2.4.26 stable cluster
middlewares, parallel High Performance Linpack (HPL)
version 1.0a and Flops.c version 2.0 both for parallel
benchmark and individual node flops benchmark, GCC-
3.3.6 with Basic Linear Algorithm Subroutine (BLAS)
version 3.0 as the program compiler and its supporting
math library, and lastly is the MPI communication
benchmark using mpptest (part of perftest version 1.3b).
 The reasoning why we run only HPL C version is by
the assumption that the majority of application programs
are based on C programming language rather than other
programming languages in our implementation [9].

4 The Sequential Solution
This section explains our design of sequential solution.
However the serial brute-force algorithm proposed by
[10-12] is stated here again for comparison purpose to
the authors’ algorithm.

Input n: the number of cities,
C : the costmatrix
Output shortesttour

begin

min := infinity;
for all cyclic permutations pi of {1, 2,..., n} do
cost := o;
for i:= 1to n do cost:= cost+ C[i,pi(i)];
/*here pi(i) is the ith elementof pi*/
if cost< min then min:= cost; besttour:= pi
output besttour,

end,

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1022 Issue 6, Volume 8, June 2009

The proposed sequential algorithm is as follows:-
Number of possible paths = n!

Start Where, n = number of cities

Open file and get the input for the coordinates of a node Table 1 shows the numbers of possible paths derived

from this formula. Initialize the source and destination nodes
 Initialize dynamic 2D array
 Table 1: Total number of all possible paths
Compute for all possible path using permutation
algorithm and stores in the dynamic 2D array

Number of cities n! Number of
possible path(s)

3
4
5
6

10
50

3!
4!
5!
6!

10!
50!

6

24
120
720

3628800
3.04 x 1061

 Compute for the distance for all possible paths
 Compare the distance to find the shortest path
 Display shortest distance and shortest path

End

 The sequential program begins by getting input from
a text file (.txt) that holds the coordinates of all the
nodes. Default value is used for the destination and
source node. A dynamic 2D array is created and all
computed possible paths are stored in it. The distances
for all possible paths are calculated and the shortest
distance is determined. The program then displays the
shortest distance and the shortest path. The total number
of all possible paths can be calculated by using simple
factorial method. The number of nodes must first be
defined. Later the number of possible path shall be
defined using the formula below:

4.1 Array of possible paths
The program uses dynamic 2D arrays. That is, using
calloc function to create a table that contains the nodes
that represent all possible paths from one source node to
a destination node. The number of rows and columns is
equal to the number of possibilities calculated and the
number of processing nodes defined respectively.

Result
converged at
Master

Fig. 4: Dynamic 2D array filling process

 The program will fill the first column of every
row and the destination node will fill the last column of
every row. The in between cells of the array will be
filled up with all other possible nodes generated from

the permutation function. For example, let’s take 3
cities; the number of possibilities will be 3! equivalent
to 6. Assuming the source node is 0 and destination

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1023 Issue 6, Volume 8, June 2009

Store
Distribute
Assemble

MASTER

SLAVE

Receive
Process
Submit

node is 2. To further explain the array filling process,
refer to the Fig. 4.

5 The Parallel Solution
This section illustrates our design on the parallelization
of traveling salesman problem.

5.1 The parallel programming paradigm
We are using the master-slave parallel paradigm for this
type of problem. The Master is responsible for dividing
the task amongst the other processors called the slaves.
All the slaves execute the task given concurrently. In
this case the task is to find the distance for each path.
The slaves will return the results to the master once
they have calculated it. The master will then determine
the shortest distance after it has received all the results
from all slaves.

5.2 Master-Slave Architecture

The pseudocode mentioned in next subsection
was implemented on the Master-Slave HPC
architecture. In this setup, the master node acts as the
coordinator in terms of load distribution to the other
nodes and eventually gathers and stores all the
processed data. The slave nodes primary task is to
receive the input from the master node and execute the
codes destined for the slave nodes. Each of the slave
nodes receive one shot record at a time and the entire
process depicted in Figure 4 were executed by the
slave nodes. The illustration of the architecture is as in
Figure 5 below.

Fig 5: Master-Slave architecture

5.3 The parallel algorithm
The algorithm of the parallel program is outlined
as follows:

Start

Master open file and get the input for the coordinates
of a node

Master initializes the source and destination node
 Master initialize dynamic 2D array
Master compute for all the possible path using

permutation algorithm and stores in the dynamic 2D
array
Master divide the number of possible path (rows) with
the number of processors

Master sends the number of rows to each slave
Each slave will receive an initialized row from master
Each slave will compute for the distance for all
possible paths
Each slave will compare the distance to find the
shortest path
Each slave will return shortest distance and shortest
path to Master

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1024 Issue 6, Volume 8, June 2009

Master waits for results from slaves
Master receives shortest distance and shortest path
from each slave
Master compares the shortest distance hence finds the
shortest path

Master display shortest distance and shortest path

End

 When the code runs on the grid cluster, master will
create a table of dynamic 2D array that later populates
all the possible paths. As the number of nodes
increases, the number of possible path would increase
excessively. Therefore, it is significant to use the
dynamic array that can easily expand to a very large
size and only takes memory spaces that it needed.
 A pointer to pointer variable **poss_array in
master will point to an array of pointers that
subsequently point to a number of rows; this makes up
a table of dynamic 2D array. The number of rows and
columns of the array are both defined by the number of
possibilities and the number of cities respectively.
 After the table of dynamic 2D array is created,
master will then compute and fills in all possible paths
in the array. This process uses the permutation function
to compute all possible paths. This idea is illustrated in
Fig. 6.

Fig. 6: Master creates dynamic 2D array

 The parallel segment begins when Master
broadcasts the dynamic 2D array to all nodes by using
MPI_Bcast. The Master will then equally divide the
rows by the number of slaves available in the grid
cluster. Each slave is given an equal number of rows to
compute and find the distance for the shortest path.

 Each slave will be receiving n numbers of rows to
be computed and this is where the parallel processing
takes place. The slaves will process each row given
concurrently, where each slave will find the shortest
distance and shortest path for the all rows received.
After the slaves have processed all the rows, it will
return the results of the shortest distance and shortest
path computed to the Master.
 The master will then compare all the results from
the slaves to determine the shortest distance and
shortest path. Let’s take the previous example where
there are 3 cities and 6 possibilities. Therefore the
dynamic 2D array should have 6 rows and 3 columns.
Assuming that there are 3 slaves available to execute
the task, therefore when Master divides the number of
rows with the number of slaves, each slave will
compute 2 rows. The overall process is depicted in Fig.
7.

Fig. 7: Example of assigning 6 rows to 3 slaves

 Slave 1 will be processing row [0] up to row [1],
slave 2 will be processing row [2] up to row [3] and
lastly slave 3 will be processing row [4] up to the last
row, row [5]. After each slave returns the shortest
distance and shortest path to Master, Master will then
compare all the results and determine the shortest
distance and shortest path. The program will then
display the shortest distance and shortest path
calculated.

Below is the outline of the parallel algorithm of TSP.

Begin algorithm

Master part

1 2 3

1 3 2

2 1 3

2 3 1

3 1 2

3 2 1

poss
_arra

y

poss
_arra

y
[0][2]

poss
_arra

y
[0][3]

poss
_arra

y
[0][n]

poss
_arra

y
[0][1]

*poss_arr
ay [0]

*poss_arr
ay [1]

*poss_arr
ay [n]

**poss_arra
y

Number of
rows: 6 Number of column: 3

row[0] Slave
1

row[1]

row[2]
Slave

2
row[3]

row[4]
Slave

3
row[5]

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1025 Issue 6, Volume 8, June 2009

Calculate the number of possible path to determine the
number of rows
Generates dynamic 2D array, where all elements are
the possible path generated from permutation
algorithm
Broadcasts the dynamic 2D array to all slaves
Divides the number of rows with the number of slaves
Send the n rows to each slave
Proceeds with sequential part

Slaves part

Receive the dynamic 2D array from Master
Receive n rows to be computed
Calculate shortest distance and shortest path
Send results to Master

End algorithm

6 Results and Discussion

6.1 Results

Table 2 depicts the performance of the parallel
implementation when 1, 2, 3, 5, 10 and 32 nodes are
used to calculate the distances between 10 cities.

Table 2: Results of parallel execution time for 10 cities

Number of

processors/nodes
Execution Time

(seconds)

1
2
3
5

10
32

17+
11+
9+
7+
6+
5+

 Based on Table 2, it can be inferred that increased
number of processors results in faster execution time.
However, there is latency issue if Table 2 is analyzed
carefully. Observe that the difference between the first
two processes is around 6 seconds. Whereas the
difference between the last two processes is only
around 1 second.
 That is, although the number of processors
involved is increasing, but the difference between the
execution time is decreasing. This is attributable to the
communication latency between the master and slaves
in performing the computation. . It is also observed that
the optimal performance for this test case is when using

five processors. This is due to the fact that the
significant difference in time is between processor one
and five.
 The main goal we want to reach with
parallelization is to gain a good speedup. A good
speedup means to be nearly n times faster with n
processors.
Speedup is the ratio between sequential execution time
and parallel execution time and can be calculated using
the formula below:

timeexecutionparallel
timeexecutionsequentialSpeedup

=

 Sequential execution time is the time taken for a
processor to perform the required computation. Parallel
execution time is capturing the time taken when master
starts to divide the tasks until it receives the last result
from the slave.

0

1.54
1.89

2.43
2.83

3.4

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 5 10 32
No. of Processors

Speedup

Fig. 8 Speedup for the algorithm

 Fig. 8 shows the speedup obtained for the proposed
parallel algorithm with various numbers of processors.
It can be seen that the gap between each speedup is
getting smaller as the number of processors increases.
Therefore to determine the cause of such speedup we
use The Karp-Flatt Metric [x] which is called
experimentally determined serial fraction, e and
calculated using formula below:

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1026 Issue 6, Volume 8, June 2009

processorsofno

processorsofnospeedupe

__.
11

__.
11

−

−
=

 Fig. 9 depicts the serial fraction obtained for each
processor and it shows that the experimentally
determined serial fraction is steadily increasing as the
number of processors increases. Based on the [x], it can
be inferred that the principal reason for smaller gap in
speedup is due to parallel overhead. The parallel
overhead is actually due to time spent in process
startup, communication and synchronization between
the master and the slaves.

Serial Fraction

-0.35

0.03

0.16
0.24 0.26

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

2 3 5 10 32

No of processors

Fig. 9 Experimentally Serial Fraction of the Parallel
Program

 Fig. 10 presents the efficiency of the 32 processors
in solving the parallel algorithm. The efficiency of a
parallel program is a measure of processor utilization
and is calculated using the formula below:

timeexecutionParallelusedprocessors
timeexecutionSequentialEfficiency

 x

=

 It has been observed that the efficiency decreases
as the number of processors are increased. This is
because as the more processors involved in performing
computation, the less task was assigned to each
processor. Therefore, to maintain the same level of
efficiency for each processor, problem size should be
increased as the number of processors increased.
 A possible solution to this problem is to derive an
algorithm by incorporating a proper scheduling

technique. Having this, job can be decomposed
effectively, hence allowing greater efficiency

1.00

0.77

0.41

0.12
0.04

0.26

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 5 10 32
No. of Processors

Efficiency

Fig. 10 Efficiency of the Parallel Algorithm

6.2 Experimental platform limitation
The Master node and all the slave nodes in the cluster
have its own memory limited to 512MB. During the
execution of the parallel program, the possibility table
is generated by the Master node. It will then send the
pointer of that table to the other slave nodes to compute
the shortest path.
Table 3 shows the number of possibilities or the
number of rows in the 2D dynamic array.

Table 3: Number of possibilities/rows for 11 and 12
cites

Number of
cites/points

Number of
possibilities/rows

11
12

11! = 39, 916, 800

 12! = 479, 001, 600

 After the number of rows and columns are
determined, a dynamic 2D array is created in Master’s
main memory and bear in mind the capacity of the main
memory is only 512MB. Each element of the array uses
4 bytes to store an integer value.
 The size of the array for any number of points can
be calculated by multiplying the number of rows (n)
and columns (m) to find the number of elements in the
array. The result is then multiplied by the size of an
integer which is 4 bytes. Therefore, the size of the array

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1027 Issue 6, Volume 8, June 2009

for both 11 cities and 12 cities are as below:

(11 cols x 39916800 rows) x 4 bytes = 159667200
bytes ≈ 159 MB

(12 cols x 479001600rows) x 4 bytes = 1916006400
bytes ≈ 1.9 GB

 From the above calculation, it shows that the size
of 2D array for 11 cities needs approximately 159 MB
of space per execution time. This means it can be easily
created by the master with the 512 MB main memory.
Whereas the size of the 2D array for 12 cities needs
around 1.9 GB which exceeds the capacity of the
Master’s main memory of 512MB. This limitation is
observed during the testing stage of the study.
 The program was developed to cater for 50 points,
however Master node do not have enough memory to
fit the 2D dynamic array. Since there is a limitation in
the Master’s memory space in our experimental setup,
therefore the parallel program can only execute up to
11 cities. In a nutshell, shared memory cluster
architecture would be able to portray properly the true
remuneration that can be gained from parallelism of the
algorithm.

5 Recommendation
As suggested in [13], performance of a cluster can
significantly be improved by using a Generalized
Shared Memory, which is maintained in a consistent
state by a hardware-based coherency mechanism that
operates on shared objects, wherever they happen to be
located. This increases both the performance and the
versatility of the architectures by permitting the
composition of private vs. shared memory to be of
arbitrary size and dynamically variable on different
computer nodes in the cluster.
 Efficiency of the algorithm can also be improved
by executing it on a cluster with better interconnects as
suggested in [14]. A thorough study is recommended
to investigate the suitable interconnects to execute the
algorithm in order to yield optimum result.

6 Conclusion
In this paper we have presented a parallel
implementation of solving Traveling Salesman Problem
(TSP). The nature of TSP and the functionalities
offered by MPI have made it possible to convert the
TSP sequential algorithm to parallel algorithm. The
resulting implementation has also demonstrated that it
is viable approach and has led to increased execution
time of the algorithm. The speed up shows an increased

in processing time however the efficiency measured at
a declined rate, this is possibly due to the network and
communication latency among processors or compute
nodes. It also has shown some limitations as we
increased the number of processors and this will be
further investigated in the future work.

References:
[1] Selim G Aki, Stefan D Bruda, Improving A

Solution's Quality Through Parallel Processing.
The Journal of Supercomputing archive.Volume
19 , Issue 2 (June 2001).

[2] MPI Retrieved on May, 17 2008 from
http://www-unix.mcs.anl.gov/mpi/

[3] Dani Adhipta, Izzatdin Bin Abdul Aziz, Low Tan
Jung, Nazleeni Binti Haron .Performance
Evaluation on Hybrid Cluster: The Integration of
Beowulf and Single System Image, Proceedings
of ICTS,Jakarta. August 2006.

[4] Delisle P., Krajecki M. et al, “Parallel
implementation of an ant colony optimization
metaheuristic with OPENMP”, Proceedings of
the 3rd European Workshop on OPENMP, Spain,
Sep, 2001

[5] Baraglia, R., Hidalgo, J. I., & Perego, R. A
parallel hybrid heuristic for the TSP. In
Proceedings of EvoCOP2001, the First European
Workshop on Evolutionary Computation in
Combinatorial Optimization, 193-202. 2001.

[6] Ling Chen, Hai-Ying Sun, & Shu Wang, Parallel
implementation of ant colony optimization on
MPP. Proc. International Conference on
Machine Learning and Cybernetics, Boading,
2008.

[7] Tschoke, S., Luling, R., & Monien, B. (1995).
Monien: Solving the traveling salesman problem
with a distributed branch-and-bound algorithm on
a 1024 Processor Network. Proc. 9th Int. Parallel
Processing Symp. (IPPS '95), 182-189.

[8] Izzatdin Aziz, Nazleeni Haron, Low Tan Jung,
WAN Rahaya Wan Dagang
(2007)”Parallelization of Prime Number
Generation Using Message Passing Interface”
WSEAS Journal Transaction of Computers
Volume 7 2008 ISSN: 1109-2750.

[9] Dani Adhipta, Izzatdin Bin Abdul Aziz, Low Tan
Jung, Nazleeni Binti Haron .Performance Evaluation
on Hybrid Cluster: The Integration of Beowulf and
Single System Image, Journal PLATFORM Volume 5
Number 1 January –June 2007, ISSN 1511-6794.

[10] Yang L., Jin L., Integrating Parallel algorithm
Design With Parallel Machine Models, ACM
SIGCSE Bulletin, Vol. 27, Issue 1, Pg: 131 – 135,
March 1995.

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1028 Issue 6, Volume 8, June 2009

[11] Manohar R., Zary S., Dalibor V., Implementation
Machine Paradigm For Parallel Programming. In
proceedings of ACM/IEEE 1990 Conference On
Super-computing, Nov 1990.

[12] A.J Sanchez Santiago,A.J Yuste, J.E Munoz
Exposito, S Garcia Galan, J.M Maqueira Marin,
S Bruque, “A Dynamic Balanced Scheduler for
Genetic Algorithms for GRID Computing”
Journal WSEAS Transaction on Computers,
Issue 1 Volume 8, ISSN 1109-2750

[13] Free Patents Online “Generalized shared
memory in a cluster architecture for a computer
system” <Access date: 16 March 2009>
http://www.freepatentsonline.com/EP0603801.ht
ml.

[14] Weikuan Yu, Ranjit Noronha, Shuang Liang,
Dhabaleswar K.Panda “Benefis of High Speed
Interconnects to Cluster File Systems:A Case
Study with Lustre” IEEEXplore, <Accessed
Date: 16 March 2009>
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&a
rnumber=1639564

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin A. Aziz, Nazleeni Haron, Mazlina Mehat,
Low Tan Jung, Aisyah Nabilah Mustapa, Emelia Akashah Patah Akhir

ISSN: 1109-2750 1029 Issue 6, Volume 8, June 2009

