
DRILA: A Distributed Relational Inductive Learning Algorithm

SALEH M. ABU-SOUD

Computer Science Department

New York Institute of Technology

Amman Campus

P.O. Box (1202), Amman, 11941

JORDAN

sabusoud@nyit.edu

ALI AL-IBRAHIM

Faculty of Information Systems

The Arab Academy for Banking and

Financial Sciences

P.O. Box. 1470, Amman, 11118

JORDAN

alikitim@yahoo.com

Abstract:- This paper describes a new rule discovery algorithm called Distributed Relational Inductive

Learning DRILA, which has been developed as part of ongoing research of the Inductive Learning Algorithm

(ILA) [11], and its extension ILA2 [12] which were built to learn from a single table, and the Relational

Inductive Learning Algorithm (RILA) [13], [14] which was developed to learn from a group of interrelated

tables, i.e. a centralized database. DRILA allows discovery of distributed relational rules using data from

distributed relational databases. It consists of a collection of sites, each of which maintains a local database

system, or a collection of multiple, logically interrelated databases distributed over a computer network. The

basic assumption of the algorithm is that objects to be analyzed are stored in a set of tables that are distributed

over many locations. Distributed relational rules discovered would either be used in predicting an unknown

object attribute value, or they can be used to extract the hidden relationship between the objects' attribute

values. The rule discovery algorithm, developed, was designed to use data available from many locations

(sites), any possible ‘connected’ schema at each location where tables concerned are connected by foreign keys.

In order to have a reasonable performance, the ‘hypotheses search’ algorithm was implemented to allow

construction of new hypotheses by refining previously constructed hypotheses, thereby avoiding the work of re-

computing.

 Unlike many other relational learning algorithms, the DRILA algorithm does not need its own copy of

distributed relational data to process it. This is important in terms of the scalability and usability of the

distributed relational data mining solution that has been developed. The architecture proposed can be used as a

framework to upgrade other propositional learning algorithms to relational learning.

Key-words: Distributed Relational Rule Induction, Rule Selection Strategies, Inductive Learning, ILA, ILA2,

RILA, DRILA.

1 Introduction
Most computer algorithms have been designed for

situations in which all relevant data are stored at a

single computer site. This is the classical model of a

computer based information and control system.

The emerging networked knowledge environment

requires a significant move away from this classical

model. In these situations of geographically

distributed but networked systems, the data relevant

for a computation may exist in a number of different

databases residing at different network sites. An

efficient system for computations with such

distributed data would work by doing as much work

at local sites as possible and then communicating

minimum required information among the sites.

This is much more efficient than transferring the

complete databases to a single site, join these

databases, and then execute algorithms with this

data. They require each object to be described by a

fixed set of attributes. Compared to a single table of

data, a distributed relational database containing

multiple tables that are distributed over network to

several locations makes it possible to represent more

complex and structured data. For these reasons, it is

important to have discovery algorithms running for

distributed relational data in its natural form without

requiring the data to be viewed in a single table at

the same location. A distributed relational data

model consisting of multiple tables at each location

over network may represent several object classes,

i.e. within a schema while one set of tables

represents a class of object, a different set of tables

may represent another class. Before starting

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 988 Issue 6, Volume 8, June 2009

discovery processes, users should analyze the

schema and select the list of tables that represents

the kind of objects they are interested in. One of the

selected tables will be central for the objects and

each row in the table should correspond to a single

object in the database. This central table is named as

‘target table’ [1] and [2], ‘primary table’ [3], ‘master

relation’ [4], or ‘hub table’ [5].

As a matter of fact, an efficient management [6],

[7] could get a lot of benefits by using a high

technology of distributed relational data, such as

indexing, query services and transaction

management support, also it can structure more

complex data. In contrast to a single table of data,

these systems make it possible to represent more

complex and structured data. As a result of their

advantages over other ways of storing and managing

data, a significant amount of current scientific and

commercial data is stored in distributed relational

databases. Theoretically, any distributed relational

database can be transformed into a single universal

relation to get the benefit of traditional data mining

systems. However, in practice this can lead to

relations of unmanageable sizes especially when

there are recursive relations in the schema. Because

relational data can result in a combinatorial

explosion in either the number of instances or the

number of attributes [8] depending upon whether

one decides to duplicate or aggregate. For this

reason, it is important to have learning algorithms

running for distributed relational data without

requiring the data to be viewed in one single table.

Previous related work on single tables like ILA

[11] , ILA2 [12] cannot analyze relational data

without first transforming it into a single table, this

transformation, however, is not always easy and

results in the lost of the structural information that

could potentially be useful for the data mining

processes or data mining or relational data mining.

This being rightfully highlighted as a field not

adequately covered by researchers despite its

importance to developing a generalized method by

which database problems can be efficiently tackled.

Considerable amount of work was done to elucidate

the algorithm of ILA, by transformation of data into

a single table; farther on this ILA2 was developed to

solve the problem of overfitting.

Acknowledging the need to benefit from

relational database management systems (RDBMS)

in learning algorithms, research was driven once a

step forward by implementing a relational database

inductive learning algorithm called RILA [13] which

aims to develop data analysis solutions for relational

data without requiring it to be transformed into a

single table, but did not put much concentration on

solving the learning rules from distributed

databases. RILA was developed with two rule

selection strategies:

1. Select early: inherited from ILA2

algorithm.

2. Select late: developed with RILA so rule

selection is performed after the hypothesis

search process is completed. It is similar to

the rule selection strategies used in well-

known relational rule induction algorithms

such as the WARMR algorithm [17]. But

this effort only considers centralized

database systems.

There exists many algorithms in the literature

that handle the problem of extracting inductive rules

from distributed relational databases from one face

either horizontally partitioned datasets as SVM [19],

[20], or vertically partitioned datasets [21] . On the

other hand, there are few algorithms as the

Distributed Decision Tree Algorithm [2], handle the

problem from the two faces; horizontally and

vertically partitioned datasets, the main problem of

this algorithm is that it is a non incremental. This

means that if new examples are entered, the decision

tree must be built all over again. In addition, there

may be more than one decision tree for a given set

of examples.

WARMR [17] is an algorithm developed to

learn from multiple relations. When Clare [18]

wanted to use WARMR to process a relational yeast

data set, this was not possible due to the amount of

memory required by the system for the data. Due to

this limitation of WARMR, a distributed version of

the WARMR algorithm, called PolyFARM (Poly-

machine First-order Association Rule Miner) was

developed to allow processing to be distributed

across a cluster of computers [18].

This paper describes an algorithm for learning

from distributed relational data stored in, and

managed by modern distributed relational database

systems. This algorithm is called Distributed

Relational Inductive Learning Algorithm DRILA

that can be used to discover knowledge in the form

of relational classification rules. The main

contribution here is the adaptation of a traditional

propositional learning algorithm to the relational

domain and a new effective rule selection strategy.

Pruning techniques have also been incorporated into

the implementation of the algorithm.

Unlike our approach, traditional relational

learning algorithms have been generally designed

for relational data stored in Datalog1/Prolog servers.

These algorithms are usually called ILP2 based

algorithms [9]. Adapting these algorithms for data

stored in relational databases is complicated because

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 989 Issue 6, Volume 8, June 2009

Prolog engines are not designed to support relational

data stored in distributed relational databases as they

support relational data stored in the native Prolog

bases. Some algorithms such as the FOIL algorithm

[10] have been designed in a generic way,

independent of the location of the actual relational

data; these algorithms can be adapted for data stored

in distributed relational database management

systems. However, they generally assume the input

data stored in the runtime memory of the learning

processes. In order to adapt these algorithms for

relational data stored in relational database

management systems they should be revised to

employ the client-server architecture.

Actually, working on distributed relational

database mining is a continuous of an evolving

interrelated chain that dates back to the early

seminal work of the inductive learning in 1998 [11].

This stage of research has evolved logically from

previous substantial accomplishments in the field

carried out by numerous research teams. The theme

of reasonably coordinated research team work is

still retained in the present research exercise that

well presumably adds to the work of the teams

below:

• ILA [11]: inductive learning algorithm for

learning data store in single table.

• ILA2 [12]: fast inductive learning algorithm for

learning from single table with solution for

overfitting problem (noise-tolerant version of

the ILA rule induction algorithm).

• RILA [13], [14]: relational learning algorithm

from centralized database based on ILA2

algorithm.

Our general strategy for designing an algorithm

for learning from distributed data that is provably

exact with respect to its centralized counterpart

follows from the observation that most of the

learning algorithms use only certain statistics

computed from the data D in the process of

generating the hypotheses that they output. (A

statistic is simply a function of the data; examples of

statistics include mean value of an attribute, counts

of instances that have specified values for some

subset of attributes, the most frequent value of an

attribute, etc.) This yields a natural decomposition

of a learning algorithm into two components:

 1. An information extraction component

formulates and sends a statistical query to a

data source.

 2. A hypothesis generation component uses the

resulting statistic to modify a partially

constructed hypothesis (and further invokes the

information extraction component if needed).

 So, DRILA has been developed for performing

supervised learning by classifying from distributed

relational databases, depends on ILA, ILA2 and

RILA algorithms which handles both strategies of

partitioning the datasets: horizontally and vertically.

DRILA of the system that has been developed

was adapted from ILA (Inductive Learning

Algorithm) [11]. So, for best understanding of

DRILA, one must understand RILA [14] and its

descendent algorithms ILA [11] and ILA-2 [12].

ILA is a ‘covering’ type learning algorithm that

takes each class in turn and seeks a way of covering

all instances, at the same time excluding instances

which are not in the class. There is also an improved

version of the ILA algorithm named ILA-2 that uses

a penalty factor that helps to produce better results

for noisy data [12]. Also there is an adapted version

of the ILA-2 algorithm is named Relational-ILA

which learns rules from centralized databases.

ILA requires a particular feature of the object

under consideration to be used as a dependent

attribute for classification. In DRILA, at each

location over network, however, the dependent

attribute corresponds to the target attribute of the

target table. It is assumed that the target table is

connected to other tables through foreign key

relations. DRILA is composed of initial hypotheses

generation, hypotheses evaluation, hypotheses

refinement and rule selection steps at each location

(site) of the distributed database.

2 The Distributed Relational Inductive

Learning Algorithm DRILA

2.1 Definition of Distributed Learning
The problem of learning rules from distributed

relational databases with periodical updates can be

summarized as follows: Given a data set D, a

hypothesis class H and a performance criterion P,

the learning algorithm L outputs a hypothesis h € H

that optimizes P. In pattern classification

applications, H is a classifier, the data D typically

consists of a set of training examples. Each training

example is an ordered tuple of attribute values,

where one of the attributes corresponds to a class

label and the remaining attributes represent inputs to

the classifier. The goal of learning is to produce a

hypothesis that optimizes the performance criterion

of minimizing some function of the classification

error (on the training data) and the complexity of the

hypothesis.

Given the fragments D1…Dn of a data set D

distributed across the sites 1…n, a set of constraints

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 990 Issue 6, Volume 8, June 2009

Z, a hypothesis class H, and a performance criterion

P, the task of the learner Ld is to output a hypothesis

h € H that optimizes P using only operations

allowed by Z. Clearly, the problem of learning from

a centralized data set D is a special case of learning

from distributed data where n = 1 and Z = φ.

2.2 An Overview of DRILA Algorithm
Depending on the definition of distributed databases

and declarations for that data and its nature and how

that data are distributed among locations (horizontal

or vertical); we build an inductive learning system

for distributed database that is concerned with the

following points:

• Data size in every location.

• Distance among locations.

• Nature of data in each location.

• Distributing strategy of data in each location:

horizontal or vertical or both.

So upon this information, we may have many

strategies for learning from a distributed database.

These strategies are discussed as follows, showing

the strength aspects and drawbacks of each:

Strategy-1: Merging

Merge all the data sets from all distributed sites in

one site then start the learning process. This

strategy is not valid for these reasons:

• This strategy takes us back to a single table

idea in which ILA learning system can be

used, or centralized database idea in which

RILA learning system can be used.

• Transfer data from all sites to a single site

causes the database to loose its structural

information and makes it weak.

• Time consuming and less efficient, because

it needs transferring the complete databases

to a single site, join these databases, and

then execute algorithms with this data.

• A main constraint with this strategy is that

the databases sometimes cannot be moved

to other network sites due to data-security,

size, and privacy or data-ownership

considerations.

In addition to the above mentioned reasons, it

may happen that for some huge databases it may not

be feasible to be stored and processed at one

computer site.

Strategy–2: Pipelining
This strategy depends on executing the learning

system on the first site to generate learning rule,

then move these rules to second site and do

learning to generate new rules, and so on until we

reach the final site, this strategy has a lot of

drawbacks that make it not valid. These

drawbacks may be summarized as follows:

• It is a sequential learning strategy.

• Slow, inefficient, and may not work

properly for massive data sets. The learning

systems by this method is slow when it is

used to learn from very large data sets, take

more time in this process because it must be

executed site by site, and carry the rules also

from site to site until we reach the last site

then transfer the resulted rules to the main

site for execution. So, this process takes

more time, take into consideration that the

learning time is the summation of learning

times of all site.

• Contradiction may arise in the generated

rules. This is because that the learning

process in this way cannot be incremental,

because only the generated rules are moved

to the next site without the datasets

themselves which are needed for

incremental learning.

Strategy–3: Parallelism

The learning strategy here is to execute the

learning process on all locations separately and

simultaneously, and generate the rules at each site,

then merge all the rules of all sites in the main site

and resolve the contradiction between them,

which has the following characteristics that make

it the most suitable strategy for learning:

• This strategy results in a fast learning

process with high performance. This is

because the learning system is executed at

all sites simultaneously.

• The learning process in this strategy is

incremental; rules can be refined by

modifying their conditions; they do not need

to be generated from scratch in each

learning loop.

The third strategy seems to be the most

adequate among other strategies for learning from a

distributed database, so it will be adopted in our

system.

The architecture of the rule discovery system

developed is depicted as shown in Figure 1. The

discovery system uses the JDBC API to

communicate with the distributed database

management systems (DDBMS). When a data

mining session is started the system in every

location sends meta-data queries to the DBMS

connected. After the user selects a set of tables, the

target table, and the target attribute, the data mining

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 991 Issue 6, Volume 8, June 2009

process starts at all locations in parallel, during

which the system sends a number of SQL queries to

the DDBMS. SQL queries sent to the database

management system are generally needed to build

valid rules.

 SQL, Meta data queries

 (Decomposition)

 Resulted sets (composition)

.

Figure 1. The basic architecture of the DRILA induction system.

In order to reduce the complexity of

communication between the rule discovery system

and the DDBMS, the information about covered

objects and the discretized columns are both stored

in temporary tables in the DDBMS rather than in the

internal data structures in the rule discovery system

side. It was also decided to use these temporary

tables for performance reasons .

 The temporary table ‘covered’ has two

columns named ‘id’ and ‘mark’. Each time the rule

discovery system starts processing a new class,

inserting a new row for each object belonging to the

current class reinitializes this table. The ‘id’ field is

given the value of the primary key and the ‘mark’

field is set to zero. When a new rule is generated,

the ‘mark’ fields of the rows that refer to the objects

covered by the new rule are changed to one .

2.3 The DRILA Algorithm
This algorithm is supposed to work in parallel way;

i.e. must run in all locations simultaneously. It

consists of two main phases:

Phase 1: Parallel learning: As learning would

be done asynchronously.

Phase 2: Incremental learning: The rules resulted

at this step are called ‘selected rules’.

These selected rules should be distributed

to other locations without repetition to

reduce the effort, eliminate the

contradiction and save consistency.

Depending on these two main phases, the detailed

steps of DRILA are discussed in the following steps:

Step 1: Preparation of data sets
This includes the reconfiguration and

normalization for datasets across all sites of

the distributed database.

 Step 2: Parallel learning

The parallelism strategy of learning is used

here. The following steps; which are much

similar to the steps of RILA algorithm; are

executed in each location simultaneously to

generate rules:

1- Constructing hypotheses:

The system sends meta-data queries to

the connected DBMS to retrieve columns

and foreign/primary keys information for

the selected tables (target tables) from the

database in the location. As soon as this

information is retrieved, the system then

has the complete schema description of

the training data. The process in this step;

as depicted in Figure 1 has the following

two iterative steps:

i- The system sends SQL queries to

this part of database.

ii- The results of these queries are

analyzed to generate new

hypotheses.

2- Refining, pruning and evaluating

hypotheses:

After building the initial hypothesis, it

is refined by adding new conditions and

extending by adding new rules, and then

some kind of heuristics are used to

minimize the number of rules before they

are processed by a phase called ‘pruning

Discovery system

Hypothesis

yses

Rules

JDBC

Driver
D2

D3

D1 Q1

Q2

Q3

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 992 Issue 6, Volume 8, June 2009

heuristics’. In order to adopt a pruning

method one needs to have a measure that

can show the degree of possibility of a

hypothesis and its possible extensions to

become a credible rule by phase called

‘hypothesis evaluation’.

3- Rule selection:

Use the generated (selected) hypothesis

with the highest score to generate rules,

after a new rule has been selected, the

system removes the examples covered by

a new rule from the active search space,

by using a temporary table in relational

database to store the identifier of the

examples covered by the selected rules

which is important for keeping the data in

its original from during the learning

process, and implementing the ‘effective

cover’ used for avoiding redundant rule

selection.

4- Traversing a relational schema:

‘Rule selection’ is repeated P times,

deepening on the predefined parameter P,

after first rule selected and before new

rule asserting, DRILA algorithm checks

whether examples covered by the

candidate rule are not covered by the

previously selected rule(s), so if there are

examples not covered yet by previously

selected rules then the candidate rule is

asserted as new rule in the input rule set.

 After rule selection is completed and

there still objects not covered by the

selected rules, then the initial hypotheses

are rebuilt.

5- After level 1 is completed; i.e. generating

all the rules with one condition; the

algorithm moves to level 2; i.e. rules with

two conditions; by firstly refines the best

n hypotheses generated in level 1.

6- Perform rule selection as described in

previous steps on level 1 to select rules

for level 2.

7- Repeat these steps until the system

reaches to the level m, determined by the

parameters m, and all learning rules for

this site are generated.

Step 3: Merging the rules and incremental

learning

After finishing the parallel learning process

indicated in step 2 at all locations and

generating subsets of rules Ri, i=1…n in all

sites, the system then collects Ri, i=1…n for

all sites Si, i=1…n into a main set of rules

called R, and saves it into a file that can

later be used in a prediction task. Rules in R

should be contradiction free, so if a

contradiction exists, it must be resolved

immediately as part of the incremental

learning.

The relationship between the steps of DRILA is

summarized in Figure 2 for processing training

examples of a single class. The database schema is

treated as a graph where nodes represent relations

(tables and edges represent foreign keys). The

schema graph is searched in a breadth-first search

manner starting from the target table. While

searching the schema graph, the algorithm keeps

track of the path followed; no table is processed for

the second time.

Initial hypotheses are composed of only one

condition at each location for each column except

the foreign and primary key columns and the class

column, i.e. the target attribute. If the current table

is the target table then the algorithm uses a

simplified its version.

The algorithm also needs to know about the

frequency of the hypotheses in classes other than the

current class. Similarly, for the target table, the

algorithm uses a simplified its version.

After the initial hypotheses are generated they

are sorted based on the output of the ILA hypothesis

evaluation function, which shows how a hypothesis

satisfies the conditions for being a valid rule. If any

of the hypotheses can be used for generating a new

rule then the one with the maximum score is

converted to a new rule and the objects covered by

the new rule are marked in the temporary table

‘covered’. After the rule selection processes if some

rules were selected but there are still objects not yet

covered, then the initial hypotheses are rebuilt using

only the objects that are not covered by the rules

already generated. If no new rule can be generated

then the hypotheses refinement step is started.

Refinement of a distributed relational

hypothesis means extending the description of the

hypothesis. It results in a new selection of objects

that is a subset of the selection associated with the

original hypothesis .Similar to the initial hypotheses

build case, to extend a hypothesis, the schema graph

is searched; starting from the target table, by

following the foreign key relations between tables,

here the hypothesis is the hypothesis object being

refined. The object has two methods to help SQL

construction processes. The table list method returns

the list of the tables to which the features in the

hypothesis refer, plus the tables that connect each

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 993 Issue 6, Volume 8, June 2009

feature to the target table. The join list method

returns the list of join conditions for the features in

the hypothesis plus the list of join conditions to

connect each feature to the target attribute. Figure 3

shows the flowchart of the simplified DRILA for

processing examples of a single class at single

location.

.
Figure 3: The simplified DRILA for processing examples of a single class at single location.

3 Experiments

3.1 Experiments on the Genes Data Set
A set of experiments are conducted using the genes

dataset of KDD Cup 2001 [15] that distributed over

three locations with different sizes regarding to the

utilization at each site (location). There are three

tables in the original genes dataset. One table

(interaction) specifies which genes interact with

which other genes. The other table (gene) specifies a

variety of properties of individual genes. The gene

table has information about 862 different genes. The

third table (Composition) specifies the structure of

each gene. There could be more than one row for

each gene. The attribute gene_id identifies a gene

uniquely (primary key). Tests have been conducted

to generate rules for the localization attribute.

Because the discovery system requires the target

table to have a primary key, the schema has been

normalized as shown in Figure 4.

910 rows 862 rows 4346 rows

Figure 4. Schema of the KDD Cup 2001 genes data after normalization.

The dataset has one numeric attribute and

several attributes with missing values .The numeric

attribute, ‘expression’, in the interaction table was

GENEID GENEID

Class

Complex

Phenotype

Motif

Function

Essential

Chromosome

Localization

GENEID1

GENEID2

Type

Expression

Interaction Gene Composition

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 994 Issue 6, Volume 8, June 2009

divided into 20 bins using the class-blind binning

method. Missing attribute values were ignored.

The results of the experiments are presented in

Table 1 and Table 2. In the experiments, we change

the parameter "Maximum number of hypotheses to

be extended" to during 5 experiments from 1 to 5,

while we fixed the other parameter as max rule size

m= 3, F-measres f =0.01 and the penalty factor

pf=2, level of recursive optimization l=100.

In Table 1 which reflects the results of learning

centralized relational (merge) database, the first row

shows the training time (seconds) which will be

increased as the Maximum number of hypotheses to

be extended increased, also the number of rules,

number of conditions, while the training set

accuracy is good and fixed during these

experiments, but the training set coverage increases

by small amount.

Table 1. Test results on the gene data set for (level of

recursive optimization) l=100

Where: (Max rule size) m =3

 (F-measures) f =0.01

 (Penalty factor) pf = 2

In Table 2 which reflects the results of learning

distributed relational database on three sites with

same size, the first row shows the training time

(seconds) which will be increased as the Maximum

number of hypotheses to be extended increased, also

the number of rules, number of conditions, while the

training set accuracy is good and fixed during these

experiments, but the training set coverage increases

by small amount.

A comparison between the results in Table 1

and Table 2 shows that the training time,

number of rules, and number of conditions are

increased per the increasing of the maximum

number of hypotheses to be extended, also

according to the training accuracy and training

coverage. But we observe that the training accuracy

and training coverage in learning from distributed

relational database is more superior efficient than

that what we have in learning from centralized

relational database.

Table 2. Test results on the gene data set for (level of recursive optimization) l=100

Where: (Max rule size) m =3

 (F-measures) f =0.01

 (Penalty factor) pf = 2

 N = 1 N = 2 N = 3 N=4 N = 5 (Max # of

hypo. to be

Extended) n

loc A

L o c H L o c G loc A

Loc H Loc G loc A

Loc H Loc G loc A

Loc H Loc G loc A

Loc H Loc G

Training time

(seconds)

42 13 30 59 23 75 133 33 55 139 41 89 370 52 89

Number of

rules

52 45 43 55 51 44 60 55 45 66 55 45 70 56 45

Number of

conditions

70 53 53 77 69 55 85 78 58 100 77 58 108 78 58

Training set

accuracy

92 95 96 93 95 96 93 95 96 93 95 96 93 95 96

Training set

coverage

45 79.9 85.6 46.5 82.64 86.25 48.23 84.38 86.6 51.06 84.38 86.6 52.48 84.03 86.6

(Max # of hypo. to be

Extended) n

n=1

n=2

n=3

n=4

n=5

Training time (seconds) 32 49 70 85 108

Number of rules 72 78 88 88 92

Number of conditions 93 106 131 129 139

Training set accuracy 93 93 93 93 93

Training set coverage 64.7 65.89 67 67 67.87

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 995 Issue 6, Volume 8, June 2009

The results in the last row of Table 2 indicate

that the discovered rules have about 20% more

prediction accuracy. The reason behind the high

performance noted in the table, lies in the present

system’s capability to read the relational

information between genes defined by distributed

database through many sites (three sites in our case).

3.2 Experiments on the Mutagenesis Data Set
Tests have also been conducted on the mutagenesis

data set contains descriptions of molecules. The

characteristic to be predicted is their mutagenic

activity represented by the attribute label in the table

molecule with 188 instances in it [16], that

normalized distributed over three sites by average

number of molecules about 62 at each location

related logically to other tables of the database

which are "bond" and "atom" as shown in Figure 5.

The tasks to predict function and label for each of

the molecules in the test set. The experiments in this

study selected the label task. There are 2 labels and

six additional attributes intrinsic to molecule

(molecule-id, log-mut, logp, lugmo, ind1, ind2 and

label) and two attributes concerning the interactions

between genes. Figure 5 shows the schema of the

mutagenesis data set used in the experiments

Figure 5 schema of the mutagenesis data set.

In the experiments, the parameter m (maximum

size for rules) was set to 3, while the penalty factor

(parameter pf) was selected as 2.

The results of the experiments using centralized

database are shown in Tables 3, the parameter m

was set to 3, the parameter f was set to 0.01, and the

penalty factor was selected as 2. Table 3 shows the

results of the experiments. The parameter l was

selected as 100 (as explained above, the parameter l

determines the level of recursive optimization to

find a minimal rule set). For this reason, the

experiments needed more time than the previous

experiments that did not use the parameter l, (l=0).

Using a large l value improved the accuracy of the

results; however, the coverage of the rules

decreased.

The results of the experiments on mutagenesis

data set; that is distributed over three sites with

same size of the database in every site, using RMI

are shown in Tables 4. Using the same identical

parameters that used in experiments on centralized

database, parameter m was set to 3, the parameter f

was set to 0.01, and the penalty factor was selected

as 2. As shown in Table 4, the first row shows the

training time (seconds) which is increased as the

Maximum number of hypotheses to be extended

increased, also the number of rules, number of

conditions, while the training set accuracy is good

and fixed during these experiments, but the training

set coverage increased by small amount.

MOLECULE

MOLECULE_ID

LOG_MUT

LOGP

LUGMO

INDI

INDA

LABEL

BOND

MOLECULE_ID

ATOM_ID1

ATOM_ID2

TYPE

ATOM

ATOME_ID

MOLECULE_ID

ELEMNT

TYPE

CHARGE

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 996 Issue 6, Volume 8, June 2009

Table 3. Test results on centralized mutagenesis data set for (level of recursive

optimization) l=100

 Where (Max rule size m) =3

 (F-measures, f) =0.01

 (Penalty factor pf) = 2

Table 4 Test results on the mutagenesis data set for (level of recursive optimization) l=100

 Where:

 (Max rule size) m =3,

 (F-measures), f =0.01

 (Penalty factor) pf = 2

n=1 n=2

n=3

n=4

n=5 (Max # of hypo. to be

Extended) n

DRILA DRILA DRILA DRILA DRILA

Training time (seconds) 4.90 5.88 7.77 7.94 8.74

Number of rules 6 6 6 6 6

Number of conditions 7 7 7 7 7

Training set accuracy 96% 96% 96% 96% 96%

Training set coverage 96.85% 96.87% 96.91% 96.93% 96.95%

 N=1 N=2 N=3 N=4 N=5 (Max # of

hypo. to be

Extended) n

loc A

Loc H Loc G loc A

Loc H Loc G loc A

Loc H Loc G loc A

Loc H Loc G loc A

Loc H Loc G

Training

time

(seconds)

4.97 6.12 6.17 4.97 6.127 5.06 6.35 7.51 6.35 5.58 7.4 6.35 6.43 7.5 8.01

Number of

rules

3 3 3 3 3 3 3 3 3 2 2 4 2 2 4

Number of

conditions

5 3 3 5 3 3 5 3 3 2 2 6 2 2 6

Training set

accuracy

99% 92% 89% 99% 92% 89% 99% 92% 89% 98% 92% 90% 99% 92% 90%

Training set

coverage

34.04 30.3 93.5 34.0 30.32 93.5 34.0 30.3 93.5 33.5 30.3 96.77 33.51 30.32 96.77

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 997 Issue 6, Volume 8, June 2009

4 Conclusions
In this paper, a distributed relational version called

distributed relational inductive learning algorithm

(DRILA) with a new rule search and selection

strategy has been developed depending on an

existing propositional relational learning algorithm

called (RILA), with two rule selection strategies; the

select early strategy and the select late strategy

which requires more learning time than the select

early strategy but is more effective in finding the

most efficient rule sets. In DRILA the select

strategy, rule selection is performed after the

hypothesis search process is completed. Three

different pruning heuristics were used to control the

number of hypotheses generated during the learning

processes. Experimental results are presented on

two data sets; the genes data set was used for the

first time in the KDD Cup 2001 competition [15],

and the mutagenesis data set on the mutagenic

activity of molecules represented by the attribute

label in the table molecule [16]. The system has

several parameters to let users customize the

algorithm execution for their specific goals in a

given learning task.

Unlike many other relational learning

algorithms, the DRILA algorithm does not need its

own copy of distributed relational data to process it.

This is important in terms of the scalability and

usability of the distributed relational data mining

solution that has been developed. The architecture

proposed can be used as a framework to upgrade

other propositional learning algorithms to relational

learning.

This work has extended the RILA algorithm

(which was designed for discovering rules from

single centralized relational database) to the

distributed relational domain, where complex

objects can efficiently be represented using multiple

tables (stored in many sites or locations over the

network and managed by a distributed relational

database management system). The system has been

designed considering the efficiency of the learning

processes in each site (location) related to the

centralized location. For example, it avoids

redundant hypotheses generation, i.e., each

hypothesis is generated only once. Also, the bottom-

up strategy used during rule specialization saves

computation time by testing only combinations of

features that exist in the training data. Our

experience in adapting a propositional learning

algorithm to the distributed relational domain can be

useful for similar projects in the future. This

experience also contributes to the general

knowledge of distributed relational learning as this

research describes its own approach to distributed

relational learning which is different from other

approaches in the ways described above.

The following features have been identified to

improve the system’s ability to mine distributed

relational data:

• Techniques to handle the missing attribute

values.

• In order to improve scalability of the system,

names of the temporary tables used for storing

discretization and coverage information can be

annotated by a unique identifier of the learning

process. This allows concurrent learning

processes to use the same data without

interfering with each other.

• Current Discretization strategy is based on the

Weka library. This solution requires the numeric

columns data to be transferred to the client side

once when the discretization tables are created

at the beginning of a data mining job. Generally

numeric information does not require large

volumes compared to text data. However, this

strategy can be improved to remove the data

transfer.

• Saving output rules in distributed relational

databases, possibly using an object distributed

relational mapping tool (such as Hibernate).

• Constructing a graphical representation of the

input schema at the beginning of the learning

process so there will be no need to search the

foreign keys graph (schema graph) each time

during hypothesis construction processes.

References:
[1] Knobbe, A.J., Blockeel, H., Siebes, A., Van

der Wallen, D.M.G.: relational Data

Mining, In Proceedings of Benelearn’99,

(1999).

[2] Leiva, H., and Honavar, V.: Experiments

with MRDTL—A relational Decision Tree

Learning Algorithm. In Dzeroski, S., Raedt,

L.D., and Wrobel, S. (editors): Proceedings

of the Workshop on Multi Relational Data

Mining (MRDM-2002), University of

Alberta, Edmonton ,Canada, (2002) 97-112.

[3] Crestana-Jensen, V. and Soparkar, N.:

Frequent Item-set Counting across Multiple

Tables .PAKDD 2000, (2000) 49-61.

[4] Wrobel, S.: An Algorithm for Distributed

Relational Discovery of Subgroups,

Proceedings of PKDD’97, Springer-Verlag,

Berlin, New York, (1997).

[5] SRS-Relational White Paper, Working with

relational databases using SRS, LION

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 998 Issue 6, Volume 8, June 2009

Bioscience Ltd.

http://www.lionbioscience.com/solutions/pr

oducts/srs.

[6] Elmasri R. and Navathe S., Fundamentals

of Database Systems, Benjamin/Cummings,

Redwood City, CA, Second edition, (1989).

[7] Silberschatz A., Korth H., Sudarshan S.,

Database System Concepts, Fourth Edition,

McGraw-Hill Companies Inc., (2002).

[8] Neville J. and Jensen D. “Supporting

relational knowledge discovery: Lessons in

architecture and algorithm design”,

Proceedings of the Data Mining Lessons

Learned Workshop, Nineteenth

International Conference on Machine

Learning, (2002).

[9] Muggleton S. (editor), Inductive Logic

Programming, Academic Press, 1992.

[10] Quinlan J. R., “Learning logical definitions

from relations”, Machine learning, 5, pp.

239-266, (1990).

[11] Tolun, M. and Abu-Soud, S.: ILA: An

Inductive Learning Algorithm for Rule

Extraction, Expert Systems with

Applications, 14(3), (1998) 361-370.

[12] Tolun, M., Sever, H., Uludag., M. and Abu-

Soud, S.: ILA-2: An Inductive Learning

Algorithm for Knowledge Discovery,

Cybernetics and Systems: An International

Journal ,Vol. 30, (1999) 609-628.

[13] Uludag M., Tolun M and Etzold T., “A

multi-relational rule discovery system”,

Proceedings of Eighteenth International

Symposium on Computer and Information

Sciences, Antalya, Turkey, (2003).

[14] Uludag M.: Supervised Rule Induction for

Relational Data, PhD Dissertation, Eastern

Mediterranean University, Cyprus, (2005).

[15] Cheng, J., Krogel, M., Sese, J., Hatsiz, C.,

Morishita, S., Hayashi, H. and Page, D.:

KDD Cup 2001 Report, ACM Special

Interest Group on Knowledge Discovery

and Data Mining (SIGKDD) Explorations,

Vol. 3, issue 2, (2002).

[16] King R., Muggleton S., Srinivasan A., and

Sternberg M., “Structure-activity

relationships derived by machine learning:

the use of atoms and their bond

connectivities to predict mutagenicity by

inductive logic programming”, Proceedings

of National Academy of Science USA 9, 93

(no. 1): (1996) pp. 438–442.

[17] L. Dehaspe and L. De Raedt, “Mining

association rules in multiple relations”,

Proceedings of the Seventh International

Workshop on Inductive Logic

Programming, 1297, Springer-Verlag,

(1997) , pp.125–132.

[18] Clare A., Ph.D. Thesis, "Machine learning

and data mining for yeast functional

genomics”, University of Wales,

Aberystwyth, U.K, (2003).

[19] David Meyer, Friedrich Leisch, and Kurt

Hornik. The support vector machine under

test. Neurocomputing 55(1-2): 169-186,

(2003)

[20] Corinna Cortes and V. Vapnik, "Support-

Vector Networks", Machine Learning, 20,

(1995).

[21] Basak J. and Kothart R., A Classification

Paradigm for Distributed Vertically

Partitioned Data, Neural Computation, Vol.

16, No. 7, (2004) Pages 1525-1544.

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 999 Issue 6, Volume 8, June 2009

