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Abstract:- This paper describes a new rule discovery algorithm called Distributed Relational Inductive 

Learning DRILA, which has been developed as part of ongoing research of the Inductive Learning Algorithm 

(ILA) [11], and its extension ILA2 [12] which were built to learn from a single table, and the Relational 

Inductive Learning Algorithm (RILA) [13], [14] which was developed to learn from a group of interrelated 

tables, i.e. a centralized database. DRILA allows discovery of distributed relational rules using data from 

distributed relational databases. It consists of a collection of sites, each of which maintains a local database 

system, or a collection of multiple, logically interrelated databases distributed over a computer network. The 

basic assumption of the algorithm is that objects to be analyzed are stored in a set of tables that are distributed 

over many locations. Distributed relational rules discovered would either be used in predicting an unknown 

object attribute value, or they can be used to extract the hidden relationship between the objects' attribute 

values. The rule discovery algorithm, developed, was designed to use data available from many locations 

(sites), any possible ‘connected’ schema at each location where tables concerned are connected by foreign keys. 

In order to have a reasonable performance, the ‘hypotheses search’ algorithm was implemented to allow 

construction of new hypotheses by refining previously constructed hypotheses, thereby avoiding the work of re-

computing.  

  Unlike many other relational learning algorithms, the DRILA algorithm does not need its own copy of 

distributed relational data to process it. This is important in terms of the scalability and usability of the 

distributed relational data mining solution that has been developed. The architecture proposed can be used as a 

framework to upgrade other propositional learning algorithms to relational learning.  

 

Key-words: Distributed Relational Rule Induction, Rule Selection Strategies, Inductive Learning, ILA, ILA2, 

RILA, DRILA. 

 

1  Introduction  
Most computer algorithms have been designed for 

situations in which all relevant data are stored at a 

single computer site. This is the classical model of a 

computer based information and control system. 

The emerging networked knowledge environment 

requires a significant move away from this classical 

model. In these situations of geographically 

distributed but networked systems, the data relevant 

for a computation may exist in a number of different 

databases residing at different network sites. An 

efficient system for computations with such 

distributed data would work by doing as much work 

at local sites as possible and then communicating 

minimum required information among the sites. 

This is much more efficient than transferring the 

complete databases to a single site, join these 

databases, and then execute algorithms with this 

data. They require each object to be described by a 

fixed set of attributes. Compared to a single table of 

data, a distributed relational database containing 

multiple tables that are distributed over network to 

several locations makes it possible to represent more 

complex and structured data. For these reasons, it is 

important to have discovery algorithms running for 

distributed relational data in its natural form without 

requiring the data to be viewed in a single table at 

the same location. A distributed relational data 

model consisting of multiple tables at each location 

over network may represent several object classes, 

i.e. within a schema while one set of tables 

represents a class of object, a different set of tables 

may represent another class. Before starting 
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discovery processes, users should analyze the 

schema and select the list of tables that represents 

the kind of objects they are interested in. One of the 

selected tables will be central for the objects and 

each row in the table should correspond to a single 

object in the database. This central table is named as 

‘target table’ [1] and [2], ‘primary table’ [3], ‘master 

relation’ [4], or ‘hub table’ [5].  

As a matter of fact, an efficient management [6], 

[7] could get a lot of benefits by using a high 

technology of distributed relational data, such as 

indexing, query services and transaction 

management support, also it can structure more 

complex data. In contrast to a single table of data, 

these systems make it possible to represent more 

complex and structured data. As a result of their 

advantages over other ways of storing and managing 

data, a significant amount of current scientific and 

commercial data is stored in distributed relational 

databases. Theoretically, any distributed relational 

database can be transformed into a single universal 

relation to get the benefit of traditional data mining 

systems. However, in practice this can lead to 

relations of unmanageable sizes especially when 

there are recursive relations in the schema. Because 

relational data can result in a combinatorial 

explosion in either the number of instances or the 

number of attributes [8] depending upon whether 

one decides to duplicate or aggregate. For this 

reason, it is important to have learning algorithms 

running for distributed relational data without 

requiring the data to be viewed in one single table. 

Previous related work on single tables like ILA 

[11] , ILA2 [12] cannot analyze relational data 

without first transforming it into a single table, this 

transformation, however, is not always easy and 

results in the lost of the structural information that 

could potentially be useful for the data mining 

processes or data mining or relational data mining.  

This being rightfully highlighted as a field not 

adequately covered by researchers despite its 

importance to developing a generalized method by 

which database problems can be efficiently tackled. 

Considerable amount of work was done to elucidate 

the algorithm of ILA, by transformation of data into 

a single table; farther on this ILA2 was developed to 

solve the problem of overfitting. 

Acknowledging the need to benefit from 

relational database management systems (RDBMS) 

in learning algorithms, research was driven once a 

step forward by implementing a relational database 

inductive learning algorithm called RILA [13] which 

aims to develop data analysis solutions for relational 

data without requiring it to be transformed into a 

single table, but did not put much concentration on 

solving the learning rules from distributed 

databases. RILA was developed with two rule 

selection strategies: 

1. Select early: inherited from ILA2 

algorithm. 

2. Select late: developed with RILA so rule 

selection is performed after the hypothesis 

search process is completed. It is similar to 

the rule selection strategies used in well-

known relational rule induction algorithms 

such as the WARMR algorithm [17]. But 

this effort only considers centralized 

database systems. 

There exists many algorithms in the literature 

that handle the problem of extracting inductive rules 

from distributed relational databases from one face 

either horizontally partitioned datasets as SVM [19], 

[20], or vertically partitioned datasets [21] . On the 

other hand, there are few algorithms as the 

Distributed Decision Tree Algorithm [2], handle the 

problem from the two faces; horizontally and 

vertically partitioned datasets, the main problem of 

this algorithm is that it is a non incremental. This 

means that if new examples are entered, the decision 

tree must be built all over again. In addition, there 

may be more than one decision tree for a given set 

of examples. 

WARMR [17] is an algorithm developed to 

learn from multiple relations. When Clare [18] 

wanted to use WARMR to process a relational yeast 

data set, this was not possible due to the amount of 

memory required by the system for the data. Due to 

this limitation of WARMR, a distributed version of 

the WARMR algorithm, called PolyFARM (Poly-

machine First-order Association Rule Miner) was 

developed to allow processing to be distributed 

across a cluster of computers [18]. 

This paper describes an algorithm for learning 

from distributed relational data stored in, and 

managed by modern distributed relational database 

systems. This algorithm is called Distributed 

Relational Inductive Learning Algorithm DRILA 

that can be used to discover knowledge in the form 

of relational classification rules. The main 

contribution here is the adaptation of a traditional 

propositional learning algorithm to the relational 

domain and a new effective rule selection strategy. 

Pruning techniques have also been incorporated into 

the implementation of the algorithm.  

Unlike our approach, traditional relational 

learning algorithms have been generally designed 

for relational data stored in Datalog1/Prolog servers. 

These algorithms are usually called ILP2 based 

algorithms [9]. Adapting these algorithms for data 

stored in relational databases is complicated because 
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Prolog engines are not designed to support relational 

data stored in distributed relational databases as they 

support relational data stored in the native Prolog 

bases. Some algorithms such as the FOIL algorithm 

[10] have been designed in a generic way, 

independent of the location of the actual relational 

data; these algorithms can be adapted for data stored 

in distributed relational database management 

systems. However, they generally assume the input 

data stored in the runtime memory of the learning 

processes. In order to adapt these algorithms for 

relational data stored in relational database 

management systems they should be revised to 

employ the client-server architecture. 

Actually, working on distributed relational 

database mining is a continuous of an evolving 

interrelated chain that dates back to the early 

seminal work of the inductive learning in 1998 [11]. 

This stage of research has evolved logically from 

previous substantial accomplishments in the field 

carried out by numerous research teams. The theme 

of reasonably coordinated research team work is 

still retained in the present research exercise that 

well presumably adds to the work of the teams 

below:  

• ILA [11]: inductive learning algorithm for 

learning data store in single table.  

• ILA2 [12]: fast inductive learning algorithm for 

learning from single table with solution for 

overfitting problem (noise-tolerant version of 

the ILA rule induction algorithm). 

• RILA [13], [14]: relational learning algorithm 

from centralized database based on ILA2 

algorithm.  

Our general strategy for designing an algorithm 

for learning from distributed data that is provably 

exact with respect to its centralized counterpart 

follows from the observation that most of the 

learning algorithms use only certain statistics 

computed from the data D in the process of 

generating the hypotheses that they output. (A 

statistic is simply a function of the data; examples of 

statistics include mean value of an attribute, counts 

of instances that have specified values for some 

subset of attributes, the most frequent value of an 

attribute, etc.) This yields a natural decomposition 

of a learning algorithm into two components: 

 1. An information extraction component 

formulates and sends a statistical  query to a 

data source. 

 2. A hypothesis generation component uses the 

resulting statistic to modify a  partially 

constructed hypothesis (and further invokes the 

information extraction component if needed). 

 So, DRILA has been developed for performing 

supervised learning by classifying from distributed 

relational databases, depends on ILA, ILA2 and 

RILA algorithms which handles both strategies of 

partitioning the datasets: horizontally and vertically. 

DRILA of the system that has been developed 

was adapted from ILA (Inductive Learning 

Algorithm) [11]. So, for best understanding of 

DRILA, one must understand RILA [14] and its 

descendent algorithms ILA [11] and ILA-2 [12]. 

ILA is a ‘covering’ type learning algorithm that 

takes each class in turn and seeks a way of covering 

all instances, at the same time excluding instances 

which are not in the class. There is also an improved 

version of the ILA algorithm named ILA-2 that uses 

a penalty factor that helps to produce better results 

for noisy data [12]. Also there is an adapted version 

of the ILA-2 algorithm is named Relational-ILA 

which learns rules from centralized databases.  

ILA requires a particular feature of the object 

under consideration to be used as a dependent 

attribute for classification. In DRILA, at each 

location over network, however, the dependent 

attribute corresponds to the target attribute of the 

target table. It is assumed that the target table is 

connected to other tables through foreign key 

relations. DRILA is composed of initial hypotheses 

generation, hypotheses evaluation, hypotheses 

refinement and rule selection steps at each location 

(site) of the distributed database.  

 

 

2 The Distributed Relational Inductive 

Learning Algorithm DRILA 
 

2.1 Definition of Distributed Learning  
The problem of learning rules from distributed 

relational databases with periodical updates can be 

summarized as follows: Given a data set D, a 

hypothesis class H and a performance criterion P, 

the learning algorithm L outputs a hypothesis h € H 

that optimizes P. In pattern classification 

applications, H is a classifier, the data D typically 

consists of a set of training examples. Each training 

example is an ordered tuple of attribute values, 

where one of the attributes corresponds to a class 

label and the remaining attributes represent inputs to 

the classifier. The goal of learning is to produce a 

hypothesis that optimizes the performance criterion 

of minimizing some function of the classification 

error (on the training data) and the complexity of the 

hypothesis. 

Given the fragments D1…Dn of a data set D 

distributed across the sites 1…n, a set of constraints 
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Z, a hypothesis class H, and a performance criterion 

P, the task of the learner Ld is to output a hypothesis 

h € H that optimizes P using only operations 

allowed by Z. Clearly, the problem of learning from 

a centralized data set D is a special case of learning 

from distributed data where n = 1 and Z = φ. 

 

 

2.2 An Overview of DRILA Algorithm 
Depending on the definition of distributed databases 

and declarations for that data and its nature and how 

that data are distributed among locations (horizontal 

or vertical); we build an inductive learning system 

for distributed database that is concerned with the 

following points: 

• Data size in every location. 

• Distance among locations. 

• Nature of data in each location. 

• Distributing strategy of data in each location: 

horizontal or vertical or both. 

So upon this information, we may have many 

strategies for learning from a distributed database. 

These strategies are discussed as follows, showing 

the strength aspects and drawbacks of each: 

 

Strategy-1: Merging 

Merge all the data sets from all distributed sites in 

one site then start the learning process. This 

strategy is not valid for these reasons:  

• This strategy takes us back to a single table 

idea in which ILA learning system can be 

used, or centralized database idea in which 

RILA learning system can be used. 

• Transfer data from all sites to a single site 

causes the database to loose its structural 

information and makes it weak. 

• Time consuming and less efficient, because 

it needs transferring the complete databases 

to a single site, join these databases, and 

then execute algorithms with this data.  

• A main constraint with this strategy is that 

the databases sometimes cannot be moved 

to other network sites due to data-security, 

size, and privacy or data-ownership 

considerations.  

In addition to the above mentioned reasons, it 

may happen that for some huge databases it may not 

be feasible to be stored and processed at one 

computer site. 

 

Strategy–2: Pipelining 
This strategy depends on executing the learning 

system on the first site to generate learning rule, 

then move these rules to second site and do 

learning to generate new rules, and so on until we 

reach the final site, this strategy has a lot of 

drawbacks that make it not valid. These 

drawbacks may be summarized as follows: 

• It is a sequential learning strategy. 

• Slow, inefficient, and may not work 

properly for massive data sets. The learning 

systems by this method is slow when it is 

used to learn from very large data sets, take 

more time in this process because it must be 

executed site by site, and carry the rules also 

from site to site until we reach the last site 

then transfer the resulted rules to the main 

site for execution. So, this process takes 

more time, take into consideration that the 

learning time is the summation of learning 

times of all site. 

• Contradiction may arise in the generated 

rules. This is because that the learning 

process in this way cannot be incremental, 

because only the generated rules are moved 

to the next site without the datasets 

themselves which are needed for 

incremental learning. 

 

Strategy–3: Parallelism 

The learning strategy here is to execute the 

learning process on all locations separately and 

simultaneously, and generate the rules at each site, 

then merge all the rules of all sites in the main site 

and resolve the contradiction between them, 

which has the following characteristics that make 

it the most suitable strategy for learning:  

• This strategy results in a fast learning 

process with high performance. This is 

because the learning system is executed at 

all sites simultaneously. 

• The learning process in this strategy is 

incremental; rules can be refined by 

modifying their conditions; they do not need 

to be generated from scratch in each 

learning loop.  

The third strategy seems to be the most 

adequate among other strategies for learning from a 

distributed database, so it will be adopted in our 

system. 

The architecture of the rule discovery system 

developed is depicted as shown in Figure 1. The 

discovery system uses the JDBC API to 

communicate with the distributed database 

management systems (DDBMS). When a data 

mining session is started the system in every 

location sends meta-data queries to the DBMS 

connected. After the user selects a set of tables, the 

target table, and the target attribute, the data mining 
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process starts at all locations in parallel, during 

which the system sends a number of SQL queries to 

the DDBMS. SQL queries sent to the database 

management system are generally needed to build 

valid rules.  

 

 

 
          SQL, Meta data queries 

    
       (Decomposition) 
 

   
          Resulted sets (composition)  

 

. 

 

 

 
Figure 1. The basic architecture of the DRILA induction system. 

 

In order to reduce the complexity of 

communication between the rule discovery system 

and the DDBMS, the information about covered 

objects and the discretized columns are both stored 

in temporary tables in the DDBMS rather than in the 

internal data structures in the rule discovery system 

side. It was also decided to use these temporary 

tables for performance reasons . 

 The temporary table ‘covered’ has two 

columns named ‘id’ and ‘mark’. Each time the rule 

discovery system starts processing a new class, 

inserting a new row for each object belonging to the 

current class reinitializes this table. The ‘id’ field is 

given the value of the primary key and the ‘mark’ 

field is set to zero. When a new rule is generated, 

the ‘mark’ fields of the rows that refer to the objects 

covered by the new rule are changed to one . 

 

 

2.3 The DRILA Algorithm 
This algorithm is supposed to work in parallel way; 

i.e. must run in all locations simultaneously. It 

consists of two main phases:   

 

Phase 1: Parallel learning:  As learning would 

be done asynchronously. 

 

Phase 2: Incremental learning: The rules resulted 

at this step are called ‘selected rules’. 

These selected rules should be distributed 

to other locations without repetition to 

reduce the effort, eliminate the 

contradiction and save consistency.   

Depending on these two main phases, the detailed 

steps of DRILA are discussed in the following steps: 

 

Step 1: Preparation of data sets 
This includes the reconfiguration and 

normalization for datasets across all sites of 

the distributed database.  

 Step 2: Parallel learning 

The parallelism strategy of learning is used 

here. The following steps; which are much 

similar to the steps of RILA algorithm; are 

executed in each location simultaneously to 

generate rules: 

1- Constructing hypotheses: 

The system sends meta-data queries to 

the connected DBMS to retrieve columns 

and foreign/primary keys information for 

the selected tables (target tables) from the 

database in the location. As soon as this 

information is retrieved, the system then 

has the complete schema description of 

the training data. The process in this step; 

as depicted in Figure 1 has the following 

two iterative steps: 

i- The system sends SQL queries to 

this part of database. 

ii- The results of these queries are 

analyzed to generate new 

hypotheses. 

2- Refining, pruning and evaluating 

hypotheses: 

After building the initial hypothesis, it 

is refined by adding new conditions and 

extending by adding new rules, and then 

some kind of heuristics are used to 

minimize the number of rules before they 

are processed by a phase called ‘pruning 

 
 

 

 

 

 

Discovery system 

   

   

   

   

Hypothesis

yses 

Rules 

 

 

 

JDBC 

Driver 
D2 

D3 

D1 Q1 

Q2 

Q3 
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heuristics’. In order to adopt a pruning 

method one needs to have a measure that 

can show the degree of possibility of a 

hypothesis and its possible extensions to 

become a credible rule by phase called 

‘hypothesis evaluation’. 

 

3- Rule selection: 

Use the generated (selected) hypothesis 

with the highest score to generate rules, 

after a new rule has been selected, the 

system removes the examples covered by 

a new rule from the active search space, 

by using a temporary table in relational 

database to store the identifier of the 

examples covered by the selected rules 

which is important for keeping the data in 

its original from during the learning 

process, and implementing the ‘effective 

cover’ used for avoiding redundant rule 

selection. 

4- Traversing a relational schema: 

‘Rule selection’ is repeated P times, 

deepening on the predefined parameter P, 

after first rule selected and before new 

rule asserting, DRILA algorithm checks 

whether examples covered by the 

candidate rule are not covered by the 

previously selected rule(s), so if there are 

examples not covered yet by previously 

selected rules then the candidate rule is 

asserted as new rule in the input rule set. 

 After rule selection is completed and 

there still objects not covered by the 

selected rules, then the initial hypotheses 

are rebuilt. 

5- After level 1 is completed; i.e. generating 

all the rules with one condition; the 

algorithm moves to level 2; i.e. rules with 

two conditions; by firstly refines the best 

n hypotheses generated in level 1.  

6- Perform rule selection as described in 

previous steps on level 1 to select rules 

for level 2. 

7- Repeat these steps until the system 

reaches to the level m, determined by the 

parameters m, and all learning rules for 

this site are generated.   

 

Step 3: Merging the rules and incremental 

learning 

After finishing the parallel learning process 

indicated in step 2 at all locations and 

generating subsets of rules Ri, i=1…n in all 

sites, the system then collects Ri, i=1…n for 

all sites Si, i=1…n into a main set of rules 

called R, and saves it into a file that can 

later be used in a prediction task. Rules in R 

should be contradiction free, so if a 

contradiction exists, it must be resolved 

immediately as part of the incremental 

learning. 

 

The relationship between the steps of DRILA is 

summarized in Figure 2 for processing training 

examples of a single class. The database schema is 

treated as a graph where nodes represent relations 

(tables and edges represent foreign keys). The 

schema graph is searched in a breadth-first search 

manner starting from the target table. While 

searching the schema graph, the algorithm keeps 

track of the path followed; no table is processed for 

the second time. 

Initial hypotheses are composed of only one 

condition at each location for each column except 

the foreign and primary key columns and the class 

column, i.e. the target attribute. If the current table 

is the target table then the algorithm uses a 

simplified its version. 

The algorithm also needs to know about the 

frequency of the hypotheses in classes other than the 

current class. Similarly, for the target table, the 

algorithm uses a simplified its version. 

After the initial hypotheses are generated they 

are sorted based on the output of the ILA hypothesis 

evaluation function, which shows how a hypothesis 

satisfies the conditions for being a valid rule. If any 

of the hypotheses can be used for generating a new 

rule then the one with the maximum score is 

converted to a new rule and the objects covered by 

the new rule are marked in the temporary table 

‘covered’. After the rule selection processes if some 

rules were selected but there are still objects not yet 

covered, then the initial hypotheses are rebuilt using 

only the objects that are not covered by the rules 

already generated. If no new rule can be generated 

then the hypotheses refinement step is started. 

Refinement of a distributed relational 

hypothesis means extending the description of the 

hypothesis. It results in a new selection of objects 

that is a subset of the selection associated with the 

original hypothesis .Similar to the initial hypotheses 

build case, to extend a hypothesis, the schema graph 

is searched; starting from the target table, by 

following the foreign key relations between tables, 

here the hypothesis is the hypothesis object being 

refined. The object has two methods to help SQL 

construction processes. The table list method returns 

the list of the tables to which the features in the 

hypothesis refer, plus the tables that connect each 

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 993 Issue 6, Volume 8, June 2009



feature to the target table. The join list method 

returns the list of join conditions for the features in 

the  hypothesis  plus  the  list  of  join  conditions  to  

 

 

connect each feature to the target attribute. Figure 3 

shows the flowchart of the simplified DRILA for 

processing examples of a single class at single 

location. 

 

.  
Figure 3: The simplified DRILA for processing examples of a single class at single location. 

   

 

3 Experiments 
 

3.1 Experiments on the Genes Data Set 
A set of experiments are conducted using the genes 

dataset of KDD Cup 2001 [15] that distributed over 

three locations with different sizes regarding to the 

utilization at each site (location). There are three 

tables in the original genes dataset. One table 

(interaction) specifies which genes interact with 

which other genes. The other table (gene) specifies a 

variety of properties of individual genes. The gene 

table has information about 862 different genes. The 

third table (Composition) specifies the structure of 

each gene. There could be more than one row for 

each gene. The attribute gene_id identifies a gene 

uniquely (primary key). Tests have been conducted 

to generate rules for the localization attribute. 

Because the discovery system requires the target 

table to have a primary key, the schema has been 

normalized as shown in Figure 4. 

 

                   

 

 

 

 

 

 

 

 

910                         rows           862 rows                   4346 rows  

 
Figure 4. Schema of the KDD Cup 2001 genes data after normalization. 

  

The dataset has one numeric attribute and 

several attributes with missing values .The numeric 

attribute, ‘expression’, in the interaction table was 

GENEID GENEID 

Class 

Complex 

Phenotype 

Motif 

Function 

Essential 

Chromosome 

Localization 

GENEID1 

GENEID2 

Type 

Expression 

Interaction Gene Composition 
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divided into 20 bins using the class-blind binning 

method. Missing attribute values were ignored.  

The results of the experiments are presented in 

Table 1 and Table 2. In the experiments, we change 

the parameter "Maximum number of hypotheses to 

be extended" to during 5 experiments from 1 to 5, 

while we fixed the other parameter as max rule size 

m= 3, F-measres f =0.01 and the penalty factor 

pf=2, level of recursive optimization l=100. 

In Table 1 which reflects the results of learning 

centralized relational (merge) database, the first row 

shows the training time (seconds) which will be 

increased as the Maximum number of hypotheses to 

be extended increased, also the number of rules, 

number of conditions, while the training set 

accuracy is good and fixed during these 

experiments, but the training set coverage increases 

by small amount. 

 

Table 1. Test results on the gene data set for (level of 

recursive optimization) l=100 

Where: (Max rule size)        m =3 

    (F-measures    )       f =0.01 

    (Penalty factor)      pf = 2 

 

 

 

 

 

 

 

 

 
In Table 2 which reflects the results of learning 

distributed relational database on three sites with 

same size, the first row shows the training time 

(seconds) which will be increased as the Maximum 

number of hypotheses to be extended increased, also 

the number of rules, number of conditions, while the 

training set accuracy is good and fixed during these 

experiments, but the training set coverage increases 

by small amount. 

A comparison between the results in Table 1  

 

and Table 2 shows that the training time, 

number of rules, and number of conditions are 

increased per the increasing of the maximum 

number of hypotheses to be extended, also 

according to the training accuracy and training 

coverage. But we observe that the training accuracy 

and training coverage in learning from distributed 

relational database is more superior efficient than 

that what we have in learning from centralized 

relational database.  

Table 2. Test results on the gene data set for (level of recursive optimization) l=100 

Where:  (Max rule size)        m =3 

  (F-measures    )       f =0.01 

  (Penalty factor)      pf = 2 
 

    N = 1     N = 2    N = 3        N=4     N = 5   (Max # of 

hypo. to be 

Extended)  n 

loc A 

 

L o c  H L o c  G loc A 

 

Loc H Loc G loc A 

 

Loc H Loc G loc A 

 

Loc H Loc G loc A 

 

Loc H Loc G 

Training time 

(seconds) 

42 13 30 59 23 75 133 33 55 139 41 89 370 52 89 

Number of 

rules 

52 45 43 55 51 44 60 55 45 66 55 45 70 56 45 

Number of 

conditions 

70 53 53 77 69 55 85 78 58 100 77 58 108 78 58 

Training set 

accuracy 

92 95 96 93 95 96 93 95 96 93 95 96 93 95 96 

Training set 

coverage 

45 79.9 85.6 46.5 82.64 86.25 48.23 84.38 86.6 51.06 84.38 86.6 52.48 84.03 86.6 

(Max # of hypo. to be  

Extended)  n 

n=1 

 

 

n=2 

 

 

n=3 

 

 

n=4 

 

 

n=5 

 

 

Training time (seconds) 32 49 70 85 108 

Number of rules 72 78 88 88 92 

Number of conditions 93 106 131 129 139 

Training set accuracy 93 93 93 93 93 

Training set coverage 64.7 65.89 67 67 67.87 
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The results in the last row of Table 2 indicate 

that the discovered rules have about 20% more 

prediction accuracy. The reason behind the high 

performance noted in the table, lies in the present 

system’s capability to read the relational 

information between genes defined by distributed 

database through many sites (three sites in our case). 

 

 

3.2 Experiments on the Mutagenesis Data Set 
Tests have also been conducted on the mutagenesis 

data set contains descriptions of molecules. The 

characteristic to be predicted is their mutagenic 

activity represented by the attribute label in the table 

molecule with 188 instances in it [16], that 

normalized distributed over three sites by average 

number of molecules about 62 at each location 

related logically to other tables of the database 

which are "bond" and "atom" as shown in Figure 5. 

The tasks to predict function and label for each of 

the molecules in the test set. The experiments in this 

study selected the label task. There are 2 labels and 

six additional attributes intrinsic to molecule 

(molecule-id, log-mut, logp, lugmo, ind1, ind2 and 

label) and two attributes concerning the interactions 

between genes. Figure 5 shows the schema of the 

mutagenesis data set used in the experiments 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 schema of the mutagenesis data set. 

 

 

In the experiments, the parameter m (maximum 

size for rules) was set to 3, while the penalty factor 

(parameter pf) was selected as 2.  

The results of the experiments using centralized 

database are shown in Tables 3, the parameter m 

was set to 3, the parameter f was set to 0.01, and the 

penalty factor was selected as 2. Table 3 shows the 

results of the experiments. The parameter l was 

selected as 100 (as explained above, the parameter l 

determines the level of recursive optimization to 

find a minimal rule set). For this reason, the 

experiments needed more time than the previous 

experiments that did not use the parameter l, (l=0). 

Using a large l value improved the accuracy of the 

results; however, the coverage of the rules 

decreased. 

 

The results of the experiments on mutagenesis 

data set; that is distributed over three sites with 

same size of the database in every site, using RMI 

are shown in Tables 4. Using the same identical 

parameters that used in experiments on centralized 

database, parameter m was set to 3, the parameter f 

was set to 0.01, and the penalty factor was selected 

as 2. As shown in Table 4, the first row shows the 

training time (seconds) which is increased as the 

Maximum number of hypotheses to be extended 

increased, also the number of rules, number of 

conditions, while the training set accuracy is good 

and fixed during these experiments, but the training 

set coverage increased by small amount. 
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Table 3. Test results on centralized mutagenesis data set for (level of recursive 

optimization) l=100 

 Where (Max rule size m) =3 

   (F-measures, f) =0.01 

   (Penalty factor pf) = 2 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Table 4 Test results on the mutagenesis data set for (level of recursive optimization) l=100 

 Where: 

   (Max rule size) m =3, 

   (F-measures), f =0.01 

   (Penalty factor) pf = 2 

 

 

 

n=1 n=2 

 

n=3 

 

n=4 

 

n=5  (Max # of hypo. to be  

Extended)  n 

DRILA DRILA DRILA DRILA DRILA 

Training time (seconds) 4.90 5.88 7.77 7.94 8.74 

Number of rules 6 6 6 6 6 

Number of conditions 7 7 7 7 7 

Training set accuracy 96% 96% 96% 96% 96% 

Training set coverage 96.85% 96.87% 96.91% 96.93% 96.95% 

      N=1      N=2       N=3     N=4       N=5    (Max # of 

hypo. to be 

Extended)  n 

loc A 

 

Loc H Loc G loc A 

 

Loc H Loc G loc A 

 

Loc H Loc G loc A 

 

Loc H Loc G loc A 

 

Loc H Loc G 

Training 

time 

(seconds) 

4.97 6.12 6.17 4.97 6.127 5.06 6.35 7.51 6.35 5.58 7.4 6.35 6.43 7.5 8.01 

Number of 

rules 

3 3 3 3 3 3 3 3 3 2 2 4 2 2 4 

Number of 

conditions 

5 3 3 5 3 3 5 3 3 2 2 6 2 2 6 

Training set 

accuracy 

99% 92% 89% 99% 92% 89% 99% 92% 89% 98% 92% 90% 99% 92% 90% 

Training set 

coverage 

34.04 30.3 93.5 34.0 30.32 93.5 34.0 30.3 93.5 33.5 30.3 96.77 33.51 30.32 96.77 
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4 Conclusions  
In this paper, a distributed relational version called 

distributed relational inductive learning algorithm 

(DRILA) with a new rule search and selection 

strategy has been developed depending on an 

existing propositional relational learning algorithm 

called (RILA), with two rule selection strategies; the 

select early strategy and the select late strategy 

which requires more learning time than the select 

early strategy but is more effective in finding the 

most efficient rule sets. In DRILA the select 

strategy, rule selection is performed after the 

hypothesis search process is completed. Three 

different pruning heuristics were used to control the 

number of hypotheses generated during the learning 

processes. Experimental results are presented on 

two data sets; the genes data set was used for the 

first time in the KDD Cup 2001 competition [15], 

and the mutagenesis data set on the mutagenic 

activity of molecules represented by the attribute 

label in the table molecule [16]. The system has 

several parameters to let users customize the 

algorithm execution for their specific goals in a 

given learning task.  

Unlike many other relational learning 

algorithms, the DRILA algorithm does not need its 

own copy of distributed relational data to process it. 

This is important in terms of the scalability and 

usability of the distributed relational data mining 

solution that has been developed. The architecture 

proposed can be used as a framework to upgrade 

other propositional learning algorithms to relational 

learning.  

This work has extended the RILA algorithm 

(which was designed for discovering rules from 

single centralized relational database) to the 

distributed relational domain, where complex 

objects can efficiently be represented using multiple 

tables (stored in many sites or locations over the 

network and managed by a distributed relational 

database management system). The system has been 

designed considering the efficiency of the learning 

processes in each site (location) related to the 

centralized location. For example, it avoids 

redundant hypotheses generation, i.e., each 

hypothesis is generated only once. Also, the bottom-

up strategy used during rule specialization saves 

computation time by testing only combinations of 

features that exist in the training data. Our 

experience in adapting a propositional learning 

algorithm to the distributed relational domain can be 

useful for similar projects in the future. This 

experience also contributes to the general 

knowledge of distributed relational learning as this 

research describes its own approach to distributed 

relational learning which is different from other 

approaches in the ways described above.  

 

The following features have been identified to 

improve the system’s ability to mine distributed 

relational data: 

• Techniques to handle the missing attribute 

values.  

• In order to improve scalability of the system, 

names of the temporary tables used for storing 

discretization and coverage information can be 

annotated by a unique identifier of the learning 

process. This allows concurrent learning 

processes to use the same data without 

interfering with each other. 

• Current Discretization strategy is based on the 

Weka library. This solution requires the numeric 

columns data to be transferred to the client side 

once when the discretization tables are created 

at the beginning of a data mining job. Generally 

numeric information does not require large 

volumes compared to text data. However, this 

strategy can be improved to remove the data 

transfer. 

• Saving output rules in distributed relational 

databases, possibly using an object distributed 

relational mapping tool (such as Hibernate). 

• Constructing a graphical representation of the 

input schema at the beginning of the learning 

process so there will be no need to search the 

foreign keys graph (schema graph) each time 

during hypothesis construction processes. 

 

References: 
[1] Knobbe, A.J., Blockeel, H., Siebes, A., Van 

der Wallen, D.M.G.: relational Data 

Mining, In Proceedings of Benelearn’99, 

(1999). 

[2] Leiva, H., and Honavar, V.: Experiments 

with MRDTL—A relational Decision Tree 

Learning Algorithm. In Dzeroski, S., Raedt, 

L.D., and Wrobel, S. (editors): Proceedings 

of the Workshop on Multi Relational Data 

Mining (MRDM-2002), University of 

Alberta, Edmonton ,Canada, (2002) 97-112. 

[3] Crestana-Jensen, V. and Soparkar, N.: 

Frequent Item-set Counting across Multiple 

Tables .PAKDD 2000, (2000) 49-61.  

[4] Wrobel, S.: An Algorithm for Distributed 

Relational Discovery of Subgroups, 

Proceedings of PKDD’97, Springer-Verlag, 

Berlin, New York, (1997).  

[5] SRS-Relational White Paper, Working with 

relational databases using SRS, LION 

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 998 Issue 6, Volume 8, June 2009



Bioscience Ltd. 

http://www.lionbioscience.com/solutions/pr

oducts/srs. 

[6] Elmasri R. and Navathe S., Fundamentals 

of Database Systems, Benjamin/Cummings, 

Redwood City, CA, Second edition, (1989). 

[7] Silberschatz A., Korth H., Sudarshan S., 

Database System Concepts, Fourth Edition, 

McGraw-Hill Companies Inc., (2002). 

[8]  Neville J. and Jensen D. “Supporting 

relational knowledge discovery: Lessons in 

architecture and algorithm design”, 

Proceedings of the Data Mining Lessons 

Learned Workshop, Nineteenth 

International Conference on Machine 

Learning, (2002). 

[9] Muggleton S. (editor), Inductive Logic 

Programming, Academic Press, 1992. 

[10] Quinlan J. R., “Learning logical definitions 

from relations”, Machine learning, 5, pp. 

239-266, (1990). 

[11] Tolun, M. and Abu-Soud, S.: ILA: An 

Inductive Learning Algorithm for Rule 

Extraction, Expert Systems with 

Applications, 14(3), (1998) 361-370. 

[12] Tolun, M., Sever, H., Uludag., M. and Abu-

Soud, S.: ILA-2: An Inductive Learning 

Algorithm for Knowledge Discovery, 

Cybernetics and Systems: An International 

Journal ,Vol. 30, (1999) 609-628.  

[13]  Uludag M., Tolun M and Etzold T., “A 

multi-relational rule discovery system”, 

Proceedings of Eighteenth International 

Symposium on Computer and Information 

Sciences, Antalya, Turkey, (2003). 

[14] Uludag M.: Supervised Rule Induction for 

Relational Data, PhD Dissertation, Eastern 

Mediterranean University, Cyprus, (2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15] Cheng, J., Krogel, M., Sese, J., Hatsiz, C., 

Morishita, S., Hayashi, H. and Page, D.: 

KDD Cup 2001 Report, ACM Special 

Interest Group on Knowledge Discovery 

and Data Mining (SIGKDD) Explorations, 

Vol. 3, issue 2, (2002).  

[16] King R., Muggleton S., Srinivasan A., and 

Sternberg M., “Structure-activity 

relationships derived by machine learning: 

the use of atoms and their bond 

connectivities to predict mutagenicity by 

inductive logic programming”, Proceedings 

of National Academy of Science USA 9, 93 

(no. 1): (1996) pp. 438–442. 

[17] L. Dehaspe and L. De Raedt, “Mining 

association rules in multiple relations”, 

Proceedings of the Seventh International 

Workshop on Inductive Logic 

Programming, 1297, Springer-Verlag, 

(1997) , pp.125–132. 

[18] Clare A., Ph.D. Thesis, "Machine learning 

and data mining for yeast functional 

genomics”, University of Wales, 

Aberystwyth, U.K, (2003). 

[19] David Meyer, Friedrich Leisch, and Kurt 

Hornik. The support vector machine under 

test. Neurocomputing 55(1-2): 169-186, 

(2003)  

[20] Corinna Cortes and V. Vapnik, "Support-

Vector Networks", Machine Learning, 20, 

(1995). 

[21] Basak J. and Kothart R., A Classification 

Paradigm for Distributed Vertically 

Partitioned Data, Neural Computation, Vol. 

16, No. 7, (2004) Pages 1525-1544. 

WSEAS TRANSACTIONS on COMPUTERS Saleh M. Abu-Soud, Ali Al-Ibrahim

ISSN: 1109-2750 999 Issue 6, Volume 8, June 2009




