
1

Symbolic Algorithmic Verification of
Generalized Noninterference

Conghua Zhou
School of Computer Science and Telecommunication Engineering, Jiangsu University

Zhenjiang, 212013, China
e-mail: chzhou@ujs.edu.cn

Abstract

In this paper we propose an algorithmic verification technique to check generalized noninterference.
Our technique is based on the counterexamples search strategy mainly which generating counterexamples
of minimal length. In order to make the verification procedure terminate as soon as possible we also discuss
how to integrate the window induction proof strategy in our technique. We further show how to reduce
counterexamples search and induction proof to quantified propositional satisfiability. This reduction enables
us to use efficient quantified propositional decision procedures to perform generalized noninterference
checking.

Keywords:Generalized noninterference; Quantified propositional satisfiability; Multilevel security

I. INTRODUCTION

One of the typical problems in computer security
is that confidential data needs to be protected from
undesired accesses. A well known approach to face
this problem is the Multilevel Security , which is
a policy for managing objects at various levels of
secrecy. In multilevel secure systems every object
and every user is bound to a secrecy level and the
information flow can be directed only from low
users to higher users. The system achieves this
aim by implementing access control policies. As
remarked in [1] this solution is still not satisfactory.
Access control policies are defined to serve this
task by specifying which accesses are allowed for
which users. However, access control methods can
only restrict direct information flow. For example,
information leakage over covert channels[2], [3] is
not controllable by access control methods.

In [4], Goguen and Meseguer first introduced
the notion of noninterference as a means to control
both direct as well as indirect information flow in
a deterministic system. In practice, however there
are much nondeterministic systems. Therefore, D.
McCullough in his work [5] proposed a new secu-
rity property, called generalized noninterference, to
characterize the confidentiality on nondeterministic
systems. After that, many more definitions based on
generalized noninterference have been proposed in
the literature, such as noninference [6], [7], sepa-
rability [6], restrictiveness [5], the perfect security
property[7].

Above security properties are global require-
ments. Henceforth, their verification is usually
a complex task. At present, to the best of our
knowledge there are only a sound approach[8] to
checking generalized noninterference. However the
approach is not complete. In this paper, based on a
QBF[9] solver we focus on presenting a sound and
complete approach to verifying generalized nonin-
terference. The quantified boolean formula problem
(QBF) is a generalization of the boolean satisfia-
bility problem in which both existential quantifiers
and universal quantifiers can be applied to each
variable. Our work is motivated by that the veri-
fication methods based on QBF solvers[10], [11],
[12], [13] have been shown to push the envelope
of functional verification in terms of both capacity
and efficiency, as reported in several academic
and industrial case studies[14], [15], [16]. The
successful application of QBF solvers in formal
verification due to dramatic improvements in QBF
solver technology over the past decade. At present,
several powerful QBF solvers which can handle
quantified propositional formulas with thousands of
variables.

We present a symbolic algorithmic approach
to the verification of generalized noninterference.
The basic concept of our algorithmic approach
consists of two aspects: one aspect is to search for
a counterexample of generalized noninterference
in executions whose length is bounded by some
integer k, the search works by mapping the prob-

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 976 Issue 6, Volume 8, June 2009

2

lem of the existence of some counterexample of
length k to the quantified propositional satisfiability
problem; another aspect is to use the widow induc-
tion technique[17] to verify generalized noninter-
ference, and the induction hypothesis is checked
by a QBF solver.

Our algorithmic approach shown in Fig. 1. con-
sists of three basic steps:

1. Check the Bound: Determine whether the
bound reaches the pre-computed threshold. If
so, then claim the system satisfies noninterfer-
ence.

2. Search for Counterexamples by a QBF Solver:
Reduce the existence problem of counterexam-
ples of some length to the quantified proposi-
tional satisfiability problem, i.e., there exists
counterexamples of length k if and only if the
quantified propositional formula [M, GNI]k is
satisfiable. If [M, GNI]k is satisfiable, then
claim that the system does not satisfy gener-
alized noninterference, and return a counterex-
ample.

3. Inductive Proof by a QBF Solver: Reduce
the window induction proof to the quantified
propositional satisfiability problem, i.e., the
window induction proof of the size of win-
dow k succeeds if and only if [M, GNI]IN

k

is satisfiable. If [M, GNI]IN
k is satisfiable,

then claim that the system satisfies generalized
noninterference, else let k = k + 1, return to
Step 1.

The termination and completeness of our ap-
proach depends on the computation of the thresh-
old. The threshold must satisfy that if the system
does not satisfy generalized noninterference, then
there must be a counterexample of length no more
than the threshold. It is clear if the system does
not satisfy generalized noninterference, then the
minimal threshold is equal to the length of the
shortest counterexamples. This implies that find-
ing the smallest threshold is at least as hard as
checking whether the system satisfies generalized
noninterference. Consequently, we concentrate on
computing an over-approximation to the smallest
threshold based on graph-theoretic properties of the
system. We discuss a bound, and show that the
bound can be checked by a SAT solver[18].

A. Related Work

To the best of our knowledge, there are no
any tools of verifying generalized noninterference

based on states. Therefore, in this subsection we
will compare our work with related work in theory.
The traditional verification of generalized nonin-
terference is called the unwinding approach[19]
which reduces the global requirement to more local
conditions that involves only individual transitions.
The main problem of the unwinding approach is
that it is not complete.That is if the individual
transitions satisfy local conditions, we can conclude
that the system satisfy generalized noninterference.
However, if the local conditions are not satisfied,
we can not declare that the system does not satisfy
generalized interference.

Compared with the unwinding approach, our’s
has three advantages: first, our approach is not only
sound, but also complete; second our approach can
be implemented by a quantified boolean decision
procedure which makes us verify large systems;
third our approach combines the counterexample
search strategy and induction proof technique. The
counterexample search strategy makes us find coun-
terexamples quickly.

The paper is organized as follows. In Section
2, we describe the symbolic representation for the
nondeterministic security system model. In Section
3, we present our counterexample search based
algorithmic verification technique to check gen-
eralized noninterference. In Section 4, we show
how to reduce the verification to the satisfiability
problem of a quantified propositional formula. In
Section 5, our experimental results are presented.
Some conclusions and ideas for future research are
presented in Section 6.

II. SYMBOLIC REPRESENTATION FOR SECURITY

SYSTEM MODEL

A. State-Observed Model

We consider only the state-observed modeling.
The system are input-enabled, in the sense that
any action can be taken at any time. Most of the
literature restricts attention to two users: low level
user L and high level user H , and the security
policy L ≤H. This policy permits information to
flow from L to H , but not from H to L. We also
make this restriction here. We use a type of state
transition graph called a Nondeterministic Security
Labeled Kripke Structure(NSLKS) to describe the
behavior of a security system.

Definition 1 A NSLKS M is a 8-tuple
(S, sin,Σ, ΣL,ΣH , R, AP, OL) where
• S is a finite non-empty set of states.

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 977 Issue 6, Volume 8, June 2009

3

Input M

 reaches the

pre-computed

threshold?

k
[,] is

satisfiable?

k
M G�I [,] is

satisfiable?

I�

k
M G�I

return True return True
return a

counterexample

1k =

Yes

No

Yes Yes

No

No, 1k k= +

Fig. 1: A Framework for Checking Noninterference Using a SAT Solver

• sin ∈ S is an initial state.
• Σ is a finite set of actions with Σ = ΣL∪ΣH .
• ΣL ⊂ Σ is a finite set of actions of L.
• ΣH ⊂ Σ is a finite set of actions of H .
• R : S×Σ → 2S \ {∅} is a transition function.
• AP is a finite set of propositions.
• OL : S → 2AP is a labeling function valua-

tions.
In a NSLKS M , a path π =

s0, σ0, s1, σ1, . . . , σk, sk of M is an alternating
sequence of states and events subject to the
following: for each k ≥ i ≥ 0, si ∈ S, σi ∈ Σ
and si+1 ∈ R(si, σi) holds. Given a
action sequence σ = σ0 · · ·σk, define
s0 • σ = {sk|s0, σ0, s1, σ1, . . . , σk, sk is a
path} to represent a set of sates after executing σ.

B. Symbolic Representation of NSLKS
This subsection describes how a NSLKS can be

represented symbolically. To represent this struc-
ture we must describe the set S, the set Σ, the
transition relation R, and the labeling function OL.
Without loss of generality, we suppose that there
are 2m states for some m > 0, 2n high user
actions for some n > 0, 2n low user actions,
AP = {p1, · · · , pk} for some k > 0.

Let φ : S ↔ {0, 1}m be a bijection function
that maps each state of S to a boolean vector
of length m. The initial state sin can be rep-
resented by a boolean vector φ−1(sin), denoted
by I(sin). ψ : Σ ↔ {0, 1}n+1 be a bijection
function satisfying ψ : ΣL ↔ {0} × {0, 1}n,
and ψ : ΣH ↔ {1} × {0, 1}n. ψ maps each
action of Σ to a boolean vector of length n + 1.
Let φ−1(s) = (b1, . . . , bm). Then, the state s
can be characterized by a boolean formula as

follows:
1≤i≤k∧
bi=1

b
′
i∧

1≤i≤k∧
bi=0

¬b
′
i, where b

′
i is an atomic

proposition. For simplicity, we use φ−1(s) in-
stead of the above formula. The transition relation
s′ ∈ R(s, σ) can be characterized by a boolean
formula as follows: φ−1(s) ∧ ψ−1(σ) ∧ φ−1(s′).
The labeling function OL(s) can be represented as
follows: ÔL(s) = φ−1(s) ∧ ∧

p∈OL(s)

p ∧ ∧
p6∈OL(s)

¬p.

OL(s) 6= OL(s′) can be represented as follows:
ÔL(s) ∧ ÔL(s′) ∧ ¬((

∧
p∈OL(s)

p ∧ ∧
p6∈OL(s)

¬p) ↔
(

∧
p∈OL(s′)

p ∧ ∧
p6∈OL(s′)

¬p)).

1
p

2
p

0
s 1

s

0
h

0 0
,h l

0 0
,h l

0
l

Fig. 2: Two state SLKS

In order to illustrate how to represent a NSLKS
symbolically, we consider the two state structure
shown in Fig 2. In this case, there are two states.
We need one boolean variable v to encode states.
We introduce one additional boolean variable v′

to encode successor states. There are two actions
including one low user action and one high user
action. Since we need to distinguish these two kinds
of actions, we need two boolean variables u1, u2

to encode actions. The aim introducing u1 is to
distinguish whether a action is a low user action
or a high user action. Here, u1 = 1 means the
action encoded by (u1, u2) is a high user action,
otherwise the action is a low user action. We use
(1, 1) to encode h0, (0, 1) to encode l0. Thus we
will represent the transition from state s0 to state s1

enabled by inputting l0 by ¬v∧¬u1 ∧u2 ∧ v′. The
boolean formula for the entire transition relation is

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 978 Issue 6, Volume 8, June 2009

4

given by (¬v ∧ ¬u1 ∧ u2 ∧ v′) ∨ (¬v ∧ u1 ∧ u2 ∧
¬v′)∨(v∧¬u1∧u2∧v′)∨(v∧u1∧u2∧¬v′)∨(¬v∧
u1 ∧ u2 ∧ v′) ∨ (v ∧ ¬u1 ∧ u2 ∧ ¬v′). The labeling
function is represented by (¬v ∧ p1) ∨ (v ∧ p2).

III. VERIFYING GENERALIZED

NONINTERFERENCE

A. Generalized Noninterference

Historically, one of the first information flow
properties was noninterference, defined with re-
spect to deterministic machines. With respect to
the simple policy L ≤ H , the definition of non-
interference was formalized by saying that if one
removes all the hidden inputs the observations in
the view of low users remain unchanged. However,
this is not as general as one would lick, since it
is only meaningful for deterministic systems. A
more general definition is to say that any possible
set of observation is consistent with any possible
sequence of hidden inputs. This is formalized as
follows in the definition of generalized noninter-
ference.

Definition 2 We call a NSLKS M satisfies gen-
eralized noninterference, denoted by M |= GNI ,
if and only if for each action sequence σ, each state
s of s0 •σ, there exists a state s′ ∈ s0 • purgeL(σ)
such that OL(s) = OL(s′), where purgeL : Σ∗ →
Σ∗L restricts the sequence to the subsequence of
actions of L.

B. Checking Generalized Noninterference by
Searching for Counterexamples

Definition 3 (Counterexample for generalized
noninterference) Let M be a NSLKS. A finite
action sequence α ∈ Σ∗ is called a counterexample
of generalized noninterference iff there exists a
action sequence σ and a state s ∈ s0•σ such that for
each state s′ ∈ s0 • purgeL(σ), OL(s) 6= OL(s′).

It is easy to justify that a NSLKS M does not
satisfy generalized noninterference iff there is a
counterexample. That is we can check generalized
noninterference if we consider all possible actions
sequences. This leads to a straightforward general-
ized noninterference checking procedure. To check
whether M |= GNI , the procedure checks all
action sequences with length k for k = 0, 1, 2, · · · .
If a counterexample with length k is found, then the
procedure proves that M 6|= GNI and produces
a counterexample of length k. If there are no
counterexamples of length k, we have to increment
the value of k indefinitely, and the procedure does

not terminate. We now establish a bound on k, and
have that for all k within the bound, if there are no
counterexamples of length k, we can conclude that
M |= GNI .

Definition 4(Deterministic System Construc-
tion)Let M = (S, sin,Σ, ΣL,ΣH , R, AP, OL)
be a security system, define MD =
(SD, sD

in,Σ, ΣL,ΣH , RD, AP) to be a system
as follows:
• SD = 2S .
• sD

in = {sin}.
• RD : SD × Σ → SD is a transition function

given by SD
1 = RD(SD, σ) if and only if

SD
1 =

⋃
s∈SD

R(s, σ).

Definition 4 shows from a NSLKS N how to
deduce a deterministic system which has same
behaviors with N . This deduction can reduce the
verification of generalized noninterference to the
verification of noninterference over a deterministic
system. The following Definition 5 further shows
how to reduce the verification of noninterference to
a reachability checking problem.

Definition 5.(Double Construction)Let MD =
(SD, sD

in,Σ, ΣL,ΣH , RD, AP) be a system, define
MD2

= (SD2
, sD2

in ,Σ, ΣL,ΣH , RD2
, AP) to be the

system, where
• SD2

= SD × SD.
• sD2

in = (sD
in, sD

in).
• RD2

: SD2 × Σ → SD2
is a transi-

tion function given by RD2
((sD2

1 , sD2

2), a) =
(R(sD

1 , a), R(sD
2 , a)) for a ∈ ΣL, and

R2((sD
1 , sD

2), a) = (R(s1, a), sD
2) for a ∈ ΣH .

In Definition 5, we note that in every transition,
a ∈ ΣH is applied only on the left part of each
state pair. An easy induction shows that for every
sequence of actions α ∈ Σ∗, if sD2

in • α = (sD, tD)
in MD2

, then in MD we have sD = sD
in • α and

tD = sD
in • purgeL(α). We therefore obtain the

following lemma:
lemma 6 Let M be a security system model,

we have M |= GNI iff in MD2
, for all states

(sD, tD) reachable from sD2

in , we have that for each
state s ∈ SD, there exists a state s′ ∈ tD such that
OL(s) = OL(s′).

Let |MD2 | be the number of states in MD2
. Then

|MD2 | = |MD|2 = |2|M ||2 = 22|M |. Since in MD2
,

every reachable state is reachable from the initial
state within |MD2 | steps. Henceforth, we have the
following theorem.

Theorem 7 Let M be a security system model,
we have M |= GNI iff there does not exist

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 979 Issue 6, Volume 8, June 2009

5

counterexamples of length no more than 22|M |.
Theorem 7 says that when checking whether

M |= GNI , we only need to check whether there
are counterexamples of length no more than 22|M |.
However, it is unsatisfactory when one considers
the necessary number of iterations before it termi-
nates. For a system satisfying GNI , the number of
iterations required is 22|M |. But this could easily
be far too many iterations! In theory we should
consider only shortest paths between pairs of states.
However this implies that finding the shortest path
is at least as hard as checking whether M |= GNI .
Consequently, we concentrate on computing an
over-approximation to the shortest path based on
graph-theoretic properties of MD2

.
Definition 8. In a double construction MD2

, we
call a finite path sD2

0 , σ0, · · · , σk−1, s
D2

k of MD2
is

a loop-free path if and only if for any 0 ≤ i < j ≤
k, sD2

i 6= sD2

j .
Definition 9. (Recurrence Diameter)The recur-

rence diameter of a MD2
, denoted by rd(MD2

) is
the longest loop-free path (defined by the number
of its edges)in MD2

between the initial state and
any reachable state.

From the above definition, it is easy to justify
that for the double construction MD2

of MD , any
reachable states are reachable from the initial state
within rd(MD2

) steps. Henceforth, we have the
following theorem.

Theorem 10. Let M be a security system model,
we have M |= GNI iff there does not exist
counterexamples of length no more than rd(MD2

).
The solution checking generalized noninterfer-

ence based on counterexample search is given in
pseudo-code below (Algorithm 1).

Algorithm 1. Checking Generalized Noninter-
ference based on Counterexample Search
{
k = 1
While k ≤ rd(MD2

) do
if there exists a counterexample of length k,

return False
k = k + 1
End While
return True
}

IV. REDUCING VERIFICATION TO QBF

A. Quantified Boolean Formula

A Quantified Boolean Formula (QBF) is a gen-
eralized form of a Boolean formula that contains

quantifiers. Quantifiers are of two types: universal
or existential. For example, ∀x∃y∃z((x ∨ y ∨ z) ∧
(¬x∨¬y¬z)) is a QBF. Formally, the set of quanti-
fied boolean formulas(QBF) is defined inductively
as follows:

Definition 11 (Quantified Boolean Formula)
1. If f is a propositional formula, it is also a

quantified boolean formula.
2. If f is a quantified boolean formula, and x is

a Boolean variable, then both ∃xf and ∀xf
are quantified boolean formulas;

3. If f and g are quantified Boolean formulas,
then ¬f , f∧g, f∨g, and f → g are quantified
boolean formulas;

As shown in [20], each quantified boolean for-
mula can be written in the following prenex form:
Φ = Q1x1 . . . Qnxnφ with Qi ∈ {∃,∀} and xi

a propositional variable for 1 ≤ i ≤ n, i.e. they
consist of a sequence of quantifiers, the prefix,
followed by a quantifier free propositional formula,
the so-called matrix of the formula. The semantics
of a QBF Φ can be defined recursively as follows. If
the prefix is empty, then the satisfiability of Φ is de-
fined according to the truth tables of propositional
logic. If Φ is ∃xφ (resp. ∀xφ), Φ is satisfiable if
and only if Φx or (resp. and) Φ−x are satisfiable.
Here Φx is the QBF obtained from by substituting
x with True, Φ−x is the QBF obtained from
by substituting x with False. For example, the
formula ∀x∃y(x ↔ y) is True. Given a QBF where
all of its variables are quantified, the question of
determining whether the formula evaluates to true
or false is called a QBF satisfiability problem,
sometimes called QBF problem.

B. Reducing Counterexample Search to QBF
In the previous section, we have showed gener-

alized noninterference can be checked by searching
for counterexamples. We now reduce counterexam-
ples search to quantified propositional satisfiability.
This reduction enables us to use efficient quantified
propositional decision procedures to perform gen-
eralized noninterference checking.

Given a NSLKS structure M , and a bound k,
we will construct a quantified boolean formula
[M, GNI]k. The variables s0, σ0, ..., σk−1, sk in
[M, GNI]k denote a alternating finite sequence
of states and actions on a path. The formula
[M, GNI]k essentially represents constraints on
s0, σ0, ..., σk−1, sk such that [M, GNI]k is satis-
fiable iff there exists a counterexample of length
k.

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 980 Issue 6, Volume 8, June 2009

6

To construct [M, GNI]k, we first define a for-
mula [M]k that constrains s0, σ0, ..., σk−1, sk to be
a valid path in M . Second, we give the translation
of a counterexample of length k to a quantified
boolean formula.

Definition 12. (Unfolding the Transition Re-
lation). For a NSLKS M , a positive integer k,

[M]k =
k−1∧
i=0

R(si, σi, si+1)

We recall that generalized noninterference says
that the purged H actions are not allowed to lead
to any effects observable to L. Henceforth, for the
action sequence σ0, · · · , σk, we need to compute
purgeL(α). Suppose that there are i low user
actions in σ0, · · · , σk, define the following [H]ik to
encode the distributing of these low user actions in
σ0, · · · , σk.

[H]ik = 0 ≤ l1 < k ∧ 0 ≤ li < k ∧
i−1∧
j=1

(lj <

lj+1) ∧
i∧

j=1
(σlj ∈ ΣL) ∧

j 6∈{l1,··· ,li}∧
0≤j≤k−1

(σj ∈ ΣH)

Then we define [M]iL to encode the execution of
the system after inputting purgeL(α).

[M]iL = I(s
′
l1
) ∧

i∧
j=1

R(s
′
lj
, σlj , s

′
lj+1

)

Combining all components, the encoding of a
counterexample of length k is defined as follows.

Definition 13. (General Translation) For a
NSLKS M , a positive integer k,

[M, NI]k = ∃s0, σ0, ..., σk−1, sk(I(s0)∧ [M]k ∧
k−1∨
i=1

∀s′l1 , ..., s
′
li+1

([H]ik ∧ [M]iL → OL(sk) 6=
OL(s

′
li
)))

Theorem 14. For a NSLKS M , a positive integer
k, [M, GNI]k is satisfiable if and only if for
generalized noninterference there exists a coun-
terexample of length k.

Theorem 14 says that we can check whether
there exists a counterexample of length k by a
QBF solver. Thus, in Algorithm 1, we can use a
quantified propositional decision procedure instead
of counterexample checking. We now consider how
to use a propositional formula to encode a loop-
free path. Directly from the definition of a loop-free
path we have the following definition.

Definition 13. loopfree(sD2

0 , σ0, ..., σk−1, s
D2

k) =
k−1∧
i=0

R2(sD2

i , σi, s
D2

i+1) ∧
∧

0≤i<j≤k

(sD2

i 6= sD2

j).

The solution checking generalized noninterfer-
ence based on QBF is given in pseudo-code below
(Algorithm 2).

Algorithm 2. Checking Generalized Noninter-
ference based QBF
{
k = 1
While I(sD2

0)∧ loopfree(sD2

0 , σ0, ..., σk−1, s
D2

k)
is satisfiable do

if [M, GNI]k is satisfiable return the counterex-
ample σ0...σk−1

k = k + 1
End While
return True
}

C. Combining Induction

In Algorithm 1,2, if M |= GNI , then the
program must iterate rd(MD2

) times. This is not
feasible. In this subsection we will discuss how
to combine the induction technique and the above
counterexample search technique such that the pro-
gram terminates earlier. In addition, the successful
usage of the induction makes us be able to han-
dle larger models since the induction step has to
consider only paths of length 1.

We first consider the classical induction. An
induction proof consists of proving the following
two subgoals:
• For all states sD2

0 , if I(sD2

0) holds, then for
each state s of sD2

0 (1), there exists a state
s′ ∈ sD2

0 (2) such that OL(s) = OL(s′),
where sD2

0 (i) represents the ith element of
sD2

0 . The subgoal can be encoded as a quan-
tified boolean formula: ∀sD2

0 (I(sD2

0) → ∀s ∈
sD2

0 (1)∃s′ ∈ sD2

0 (2)(OL(s) = OL(s′))).
• For all paths sD2

0 , σ0, s
D2

1 , if for each state s
of sD2

0 (1), there exists a state s′ ∈ sD2

0 (2)
such that OL(s) = OL(s′), then for each
state s of sD2

1 (1), there exists a state s′ ∈
sD2

1 (2) such that OL(s) = OL(s′). The sub-
goal can be encoded as a quantified formula:
∀sD2

0 ∀σ0∀sD2

0 (RD2
(sD2

0 , σ0) = sD2

1 ∧ ∀s ∈
sD2

0 (1)∃s′ ∈ sD2

0 (2)(OL(s) = OL(s′))) →
∀s1 ∈ sD2

1 (1)∃s′1 ∈ sD2

1 (2)(OL(s1) =
OL(s

′
1)).

Consider the following tiny example: the system
M1 consists two isolated components: A and B,
where A satisfies generalized noninterference, B
does not satisfies generalized noninterference. The
initial state of A is also the initial state of M .
Thus, it is easy to justify M also satisfies general-
ized noninterference. In B the length of minimal
counterexample is 1. However, in this case the

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 981 Issue 6, Volume 8, June 2009

7

classical induction technique can not be used to
prove M |= GNI successfully. The reason is that
the classical induction technique attempt to prove
that B |= GNI while this is impossible. Therefore
the application of the classical induction has much
limitation.

Windowed induction is a modified induction
technique which has been used to prove a hardware
system design[17]. The advantage of windowed
induction over classical induction is that it provides
the user with a way of strengthening the induction
hypothesis: lengthening the window k. Mathemati-
cally, for noninterference windowed induction with
window size k ≥ 0 consists of the following two
steps:
• Prove that for all paths sD2

0 , σ0, ..., σk−1, s
D2

k ,
if I(sD2

0) holds, then for each state si of
sD2

i (1), there exists a state s′i ∈ sD2

i (2) such
that OL(si) = OL(s′i) for all 0 ≤ i ≤ k.

• Prove that for all paths
sD2

0 , σ0, ..., σk−1, s
D2

k , σk, s
D2

k+1, if for each
state si of sD2

i (1), there exists a state
s′i ∈ sD2

i (2) such that OL(si) = OL(s′i) for
all 0 ≤ i ≤ k, then for each state sk+1 of
sD2

k+1(1), there exists a state s′k+1 ∈ sD2

k+1(2)
such that OL(sk+1) = OL(s′k+1).

The first step can be completed by
checking whether [M, GNI]k is satisfiable.
The second step can be completed by
checking whether a corresponding quantified
formula is satisfiable. We recall the definition
of [M]k. Then we have that [MD2

]k =
k−1∧
i=0

R2(sD2

i , σi, s
D2

i+1). Let [M, GNI]In
k =

∀sD2

0 ∀σ0...∀σk−1∀sD2

k ∀σk∀sD2

k+1(([M
2]k+1 ∧

(
k∧

i=0
(∀si ∈ sD2

i (1)∃s′i ∈ sD2

i (2)(OL(si) =

OL(s′i)) → ∀sk+1 ∈ sD2

k+1(1)∃s′k+1 ∈
sD2

k+1(2)(OL(s1
k+1) = OL(s

′
k+1)))). It is easy

to justify that [M, GNI]In
k is satisfiable if and

only if the conclusion we must prove in the
second step of windowed induction is correct.
The solution checking generalized noninterference
based on induction is given in pseudo-code below
(Algorithm 3).

Algorithm 3. Checking Generalized Noninter-
ference based Counterexample Search and Induc-
tion
{
k = 1
While I(sD2

0)∧ loopfree(sD2

0 , σ0, ..., σk−1, s
D2

k)

is satisfiable do
if [M, GNI]k is satisfiable return the counterex-

ample σ0...σk−1

if [M, GNI]In
k is satisfiable return True

k = k + 1
End While
return True
}

D. Example

0,1

0
s

0, 1xor xor

1,0

1
s

0, 1xor xor

1xor

1xor

0,1

2
s

0, 1xor xor

0,0

3
s

0, 1xor xor

1xor

1xor

Fig. 3: An example: M

In this subsection we take an example from [21]
to show our translation procedure. The example
is deterministic system. So, we add some local
transition relations to the system such that the
system is nondeterministic. Consider a machine M
with two bits of state information, H and L (for
”high” and ”low,” respectively). The machine has
two commands, xor0 and xor1. There are two
users: Holly (who can read and modify high and
low information) and Lucy (who can read only low
information). The system keeps two bits of state
(H, L). For this example, the operation affects both
state bits regardless of whether Holly or Lucy ex-
ecutes the instruction. The state transition relation
of M is given in Fig. 3. s0 is the initial state of M .

In M , there are four states. We need two boolean
variables v1, v2 to encode states, and v2 is observ-
able for the low user. We introduce two additional
boolean variable v

′
1, v

′
2 to encode successor states.

There are two actions including one low user action
xor0 and one high user action xor1. We need two
boolean variables u1, u2 to encode actions. The
aim introducing u1 is to illustrate whether a action
is a low user action or a high user action. Here,
u1 = 1 means the action encoded by u1, u2 is

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 982 Issue 6, Volume 8, June 2009

8

a high user action, otherwise the action is a low
user action. We use (0, 1) to encode xor0, use
(1, 1) to encode xor1. Thus the boolean formula
R for the entire transition relation is given by
R(v1, v2, u1, u2, v

′
1, v

′
2) = (¬v1 ∧ v2 ∧ ¬u1 ∧ u2 ∧

¬v
′
1∧v

′
2)∨(¬v1∧v2∧u1∧u2∧v

′
1∧¬v

′
2)∨(v1∧¬v2∧

¬u1∧u2∧v
′
1∧¬v

′
2)∨(v1∧¬v2∧u1∧u2∧¬v

′
1∧v

′
2)∨

(v1∧v2∧u1∧u2∧¬v
′
1∧¬v

′
2)∨(v1∧v2∧¬u1∧u2∧

v
′
1∧v

′
2)∨(¬v1∧¬v2∧¬u1∧u2∧¬v

′
1∧¬v

′
2)∨(¬v1∧

¬v2∧u1∧u2∧v
′
1∧v

′
2)∨(¬v1∧v2∧u1∧u2∧¬v

′
1∧

¬v
′
2)∨ (v1 ∧¬v2 ∧u1 ∧u2 ∧ v

′
1 ∧¬v

′
2)∨ (v1 ∧ v2 ∧

u1∧u2∧v
′
1∧v

′
2)∨(¬v1∧¬v2∧u1∧u2∧¬v

′
1∧¬v

′
2).

Since only v2 is observable for Lucy, we only need
a boolean variable p to encode the observation of
Lucy. For the state s, if v2 = 1, let L(s) = {p}
, else let L(s) = ∅. Thus the labeling function is
represented by ÔL(s) = (¬v1∧v2∧p)∨(v1∧¬v2∧
¬p)∨ (v1 ∧ v2 ∧ p)∨ (¬v1 ∧¬v2 ∧¬p). The initial
state can be encoded as (¬v1 ∧ v2).

We consider whether there are counterexam-
ples of length 3. Let k = 3. The variables
s0, σ0, s1, σ1, s2, σ2, s3 denote a alternating finite
sequence of states and actions on a path. For sim-
plicity, in the boolean variables encoding states, for
0 ≤ i ≤ k we use si[1] to represent the first boolean
variable, si[2] to represent the second boolean vari-
able. For 0 ≤ i ≤ k − 1 we use σi[1] to represent
the first boolean variable, σi[2] to represent the
second boolean variable. Thus [M]2 = (¬s0[1] ∧
s0[2]) ∧ R(s0[1], s0[2], σ0[1], σ0[2], s1[1], s1[2]) ∧
R(s1[1], s1[2], σ1[1], σ1[2], s2[1], s2[2]) ∧ R(s2[1],
s2[2], σ2[1], σ2[2], s3[1], s3[2]).

For the action sequence σ = σ0σ1σ2,
purgeL(σ) ∈{ε, σ0,σ1, σ2,σ0σ1,σ0σ2,σ1σ2,σ0σ1σ2}.
In the following for each value of purgeL(σ), we
show how to encode counterexamples.

• For the case purgeL(σ) = ε, we need to
represent σ0, σ1, σ2 are high user actions, and
OL(s3) 6= OL(s0). Thus we have that η0 =
σ0[1] ∧ σ1[1] ∧ σ2[1] ∧OL(s3) 6= OL(s0).

• For the case purgeL(σ) = σ0, we need
to represent that σ1, σ2 are high user
actions, and for each valid path s

′
0, σ0, s

′
1,

OL(s3) 6= OL(s
′
1). Thus we have that

η1 = ∀s′0∀s
′
1((¬σ0[1]∧σ1[1]∧σ2[1]∧ I(s

′
0)∧

R(s
′
0[1], s

′
0[2], σ0[1], σ0[2], s

′
1[1], s

′
1[2]) →

OL(s3)6= OL(s
′
1)).

• For the case purgeL(σ) = σ1, we need
to represent that σ0, σ2 are high user
actions, and for each valid path s

′
0, σ1, s

′
1,

OL(s3) 6= OL(s
′
1). Thus we have that

η2 = σ0[1] ∧ ¬σ1[1] ∧ σ2[1] ∧ ∀s′0∀s
′
1(I(s

′
0) ∧

R(s
′
0[1], s

′
0[2], σ1[1], σ1[2], s

′
1[1], s

′
1[2]) →

OL(s3) 6= OL(s
′
1)).

• For the case purgeL(σ) = σ2, we need
to represent that σ0, σ1 are high user
actions, and for each valid path s

′
0, σ2, s

′
1,

OL(s3) 6= OL(s
′
1). Thus we have that

η3 = σ0[1] ∧ σ1[1] ∧ ¬σ2[1] ∧ ∀s′0∀s
′
1(I(s

′
0) ∧

R(s
′
0[1], s

′
0[2], σ2[1], σ2[2], s

′
1[1], s

′
1[2]) →

OL(s3) 6= OL(s
′
1)).

• For the case purgeL(σ) = σ0σ1, we need
to represent that σ2 are high user actions,
and for each valid path s

′
0, σ0, s

′
1, σ1, s

′
2,

OL(s3) 6= OL(s
′
2). Thus we have that η4 =

¬σ0[1] ∧ ¬σ1[1] ∧ σ2[1] ∧ ∀s′0∀s
′
1∀s

′
2(I(s

′
0) ∧

R(s
′
0[1], s

′
0[2], σ0[1], σ0[2], s

′
1[1], s

′
1[2]) ∧

R(s
′
1[1], s

′
1[2], σ1[1], σ1[2], s

′
2[1], s

′
2[2]) →

OL(s3) 6= OL(s
′
2)).

• For the case purgeL(σ) = σ0σ2, we need
to represent that σ1 are high user actions,
and for each valid path s

′
0, σ0, s

′
1, σ2, s

′
2,

OL(s3) 6= OL(s
′
2). Thus we have that η5 =

¬σ0[1] ∧ σ1[1] ∧ ¬σ2[1] ∧ ∀s′0∀s
′
1∀s

′
2(I(s

′
0) ∧

R(s
′
0[1], s

′
0[2], σ0[1], σ0[2], s

′
1[1], s

′
1[2]) ∧

R(s
′
1[1], s

′
1[2], σ2[1], σ2[2], s

′
2[1], s

′
2[2]) →

OL(s3) 6= OL(s
′
2)).

• For the case purgeL(σ) = σ1σ2, we need
to represent that σ0 are high user actions,
and for each valid path s

′
0, σ1, s

′
1, σ2, s

′
2,

OL(s3) 6= OL(s
′
2). Thus we have that

η6 = ¬σ0[1]∧σ1[1]∧σ2[1]∧∀s′0∀s
′
1∀s

′
2(I(s

′
0)∧

R(s
′
0[1], s

′
0[2], σ1[1], σ1[2], s

′
1[1], s

′
1[2]) ∧

R(s
′
1[1], s

′
1[2], σ2[1], σ2[2], s

′
2[1], s

′
2[2]) →

OL(s3) 6= OL(s
′
2)).

• For the case purgeL(σ) = σ0σ1σ2,since there
are no high user actions in σ, we do not need
to consider this case.

Therefore, we have that [M, GNI]3 =
∃s0∃σ0∃s1∃σ1∃s2∃σ2∃s3(I(s0) ∧ [M]k ∧ (η0 ∨
η1 ∨ η2 ∨ η3 ∨ η4 ∨ η5 ∨ η6)). It is easy to
claim that [M, GNI]3 is satisfiable. The path
s0, xor0, s0, xor0, s0, xor1, s1 is an assignment
making [M, GNI]k true.

Now we show how to compute the overap-
proximation of the minimal counterexample length,
i.e. the recurrence diameter of MD2

. We first
present how to compute the deterministic system
construction MD of M . First, let sD

0 = {s0}.
Then we compute the successor states of sD

0 :since
R(s0, xor0) = {s0}, RD(sD

0 , xor0) = sD
0 ;

since R(s0, xor1) = {s0, s1}, RD(sD
0 , xor1) =

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 983 Issue 6, Volume 8, June 2009

9

0 0{ }D
s s=

0xor

1 0 1{ , }D
s s s=

0, 1xor xor

1xor

2 2{ }D
s s=

0xor

3 2 3{ , }D
s s s=

0, 1xor xor

1xor

Fig. 4: The deterministic system construction of M :
MD

sD
1 ,where sD

1 = {s0, s1}. In the same way, we can
other states and local transitions. The final result is
shown in Fig. 4.

In the following, we will present how to com-
pute the double construction of MD. According
the definition of double construction, let SD2

0 =
(sD

0 , sD
0). Then we compute the successor states

of SD2

0 : since xor0 ∈ ΣL, RD(sD
0 , xor0) =

sD
0 , we have that RD2

(SD2

0 , xor0) = SD2

0 ; since
xor1 ∈ ΣH , RD(sD

0 , xor1) = sD
1 , we have that

RD2
(SD2

0 , xor1) = (sD
1 , sD

0). In the same way,
we can other states and local transitions. The final
result is shown in Fig. 5. We recall that the longest
loop-free path is the longest path satisfying there
are no two same states in the path. Henceforth,
rd(MD2

) = 1. That is in M , the length of minimal
counterexample is no more than 1. It is easy to
justify that the action sequence σ = xor1 is a
minimal counterexample.

2

0 0 0(,)D D D
s s s=

0xor 0, 1xor xor

1xor

0xor 0, 1xor xor

1xor

2

1 1 0(,)D D D
s s s=

2

2 2 2(,)D D D
s s s=

2

3 3 2(,)D D D
s s s=

Fig. 5: The double construction of MD: MD2

TABLE I: Experiments with the length of the
minimal counterexample 4

Problem States Actions A1 A2

ELEV(1,4) 158 99 1.97 2.75
ELEV(2,4) 1062 299 52.68 32.43
ELEV(3,4) 7121 783 1771.24 364.83
ELEV(4,4) 43440 1939 N/A N/A
MMGT(2,4) 817 114 14.01 12.73
MMGT(3,4) 7703 172 71.52 60.97
MMGT(4,4) 66309 232 1277.15 663.78
RING(3,4) 87 33 0.42 0.67
RING(5,4) 1290 55 16.30 14.38
RING(7,4) 17000 77 401.02 219.74
RING(9,4) 211528 99 N/A 783.18

TABLE II: Experiments with the length of the
minimal counterexample 6

Problem States Actions A1 A2

ELEV(1,6) 158 99 11.65 9.42
ELEV(2,6) 1062 299 346.08 176.39
ELEV(3,6) 7121 783 N/A 2137.25
ELEV(4,6) 43440 1939 N/A N/A
MMGT(2,6) 817 114 22.98 16.80
MMGT(3,6) 7703 172 213.44 167.62
MMGT(4,6) 66309 232 2050.32 1245.78
RING(3,6) 87 33 2.13 3.01
RING(5,6) 1290 55 59.74 46.20
RING(7,6) 17000 77 1682.94 829.45
RING(9,6) 211528 99 N/A 1752.71

V. EXPERIMENTAL RESULTS

The solution we proposed mainly consists of two
components: the counterexample search component
[M, GNI]k, and the induction proof component
[M, GNI]IN

k . In this section we will evaluate these
two components. We conducted experimental eval-
uation using a Linux workstation with a 3.06GHZ
Pentium processor and 2048MByte memory. We
choosed Quantor [12] as the prover. All bench-
marks used in the experiment were taken from
[22]. They have been converted from communicat-
ing state machines to Nomdeterministic Security
Labeled Kripke Structures. In the conversion, for
each action we assigned a security class randomly,
and rename some actions such that systems are
nondeterministic.

We first evaluate the counterexample
search component [M, GNI]k. For the
fairness of evaluation and simplicity, we use
k ≤ rd(MD2

)instead of the termination criteria
I(sD2

0) ∧ loopfree(sD2

0 , σ0, ..., σk−1, s
D2

k) of
Algorithm 2. We collected three kinds of
assignment satisfying that the length of the minimal

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 984 Issue 6, Volume 8, June 2009

10

TABLE III: Experiments with the length of the
minimal counterexample 8

Problem States Actions A1 A2

ELEV(1,8) 158 99 25.28 18.57
ELEV(2,8) 1062 299 890.15 407.46
ELEV(3,8) 7121 783 N/A N/A
ELEV(4,8) 43440 1939 N/A N/A
MMGT(2,8) 817 114 39.88 24.68
MMGT(3,8) 7703 172 418.95 313.01
MMGT(4,8) 66309 232 N/A 1912.76
RING(3,8) 87 33 6.35 7.22
RING(5,8) 1290 55 189.38 113.19
RING(7,8) 17000 77 N/A N/A
RING(9,8) 211528 99 N/A N/A

counterexample are 4, 6 and 8 respectively. The
experimental results can be found in Table I,II,III.
The columns are
• Problem: The problem name with the size

of the instance and the length of minimal
counterexample in parenthesis.

• States: Number of reachable states in the
SLKS.

• Actions: Number of actions in the SLKS.
• Ai: The time required by Algorithm i to find

a counterexample for the value of k.

p p
1
p

p p p
1
p

p,h l ,h l ,h l

,h l

1
M

 • • •

'

0
s

'

1
s '

2
s '

3
s

,h l ,h l ,h l

,h l

,h l

'

0
s '

1
s '

4
s '

5
s

2
M

l l l

l l l

p p p
1
p • • •,h l ,h l ,h l

,h l

,h l

'

0
s '

1
s '

6
s '

7
s

3
M

l l l

Fig. 6: Three small NSLKSs not satisfying gener-
alized noninterference

We now evaluate the induction proof compo-
nent [M, GNI]IN

k . For evaluation purposes, we
delete the counterexample search procedure in Al-
gorithm 3. We now consider how to construct some
benchmarks. We first construct three tiny NSLKS
M1,M2,M3 shown in Fig. 6 such that the lengths
of minimal counterexamples are 3,5,and 7 respec-
tively. Then based on M1,M2,M3, we consider

TABLE IV: Experiments with the lengths of the
induction depth 3

Problem States Actions A3

ELEV(1)⊕M1 162 101 43.71
ELEV(2)⊕M1 1066 301 569.32
ELEV(3)⊕M1 7125 785 N/A
ELEV(4)⊕M1 43444 1941 N/A
MMGT(2)⊕M1 821 116 27.64
MMGT(3)⊕M1 7707 174 301.79
MMGT(4)⊕M1 66313 234 N/A
RING(3)⊕M1 91 35 19.85
RING(5)⊕M1 1294 57 537.77
RING(7)⊕M1 17004 79 N/A
RING(9)⊕M1 211532 101 N/A

constructing benchmarks such that these bench-
marks satisfies generalized noninterference and the
induction proof depths are 3,5 and 7 respectively.
The construction procedure is designed as follows:

1. For benchmarks used in Table 1 we assigned a
security class randomly for each action again
such that these benchmarks satisfies general-
ized noninterference. Let B represent the set
of these benchmarks.

2. Define a composition operation. Let N1 =
(S1, s1

in,Σ1,Σ1
L,Σ1

H , R1, AP 1, O1
L), N2 =

(S2, s2
in,Σ2,Σ2

L,Σ2
H , R2, AP 2, O2

L). If S1 ∩
S2 = ∅, Σ1 ∩ Σ2 = ∅, we define N1 ⊕N2 as
follows: (S1∪S2, s1

in,Σ1∪Σ2,Σ1
L∪Σ2

L,Σ1
H∪

Σ2
H , R1 ∪ R2, AP 1 ∪ AP 2, OL), where for

s ∈ S1, OL(s) = O1
L(s), for s ∈ S2, OL(s) =

O2
L(s). Note that the initial state of N1 ⊕N2

is the initial state of N1.
3. Define the set of benchmarks: {M = b1 ⊕

b2|b1 ∈ B, b2 ∈ {M1,M2,M3}}.
From the definition of ⊕ it is easy to justify that

if b1 satisfies noninterference, then b1⊕ b2 satisfies
generalized noninterference also. That is each el-
ement of M satisfies generalized noninterference.
The experimental results can be found in Table
IV,V,VI. Note that in Algorithm 3, we have deleted
the counterexample search procedure.

The set of experiments we used is too small
to say anything conclusive about the performance
of our methods. There are, however, still some
interesting observations to be made as follows.
• Whether the explicit algorithm i.e. Algorithm

1 or the QBF-based symbolic algorithm i.e.
Algorithm 2, then can handle with systems
with small minimal counterexamples quickly.
And for systems with small induction depth,
the induction proof can also be implemented

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 985 Issue 6, Volume 8, June 2009

11

TABLE V: Experiments with the lengths of the
induction depth 5

Problem States Actions A3

ELEV(1)⊕M2 164 101 215.22
ELEV(2)⊕M2 1068 301 N/A
ELEV(3)⊕M2 7127 785 N/A
ELEV(4)⊕M2 43446 1941 N/A
MMGT(2)⊕M2 822 117 196.15
MMGT(3)⊕M2 7708 175 N/A
MMGT(4)⊕M2 66315 234 N/A
RING(3)⊕M2 93 35 94.41
RING(5)⊕M2 1296 57 2249.38
RING(7)⊕M2 17006 79 N/A
RING(9)⊕M2 211534 101 N/A

TABLE VI: Experiments with the lengths of the
induction depth 7

Problem States Actions A3

ELEV(1)⊕M3 166 101 1155.73
ELEV(2)⊕M3 1070 301 N/A
ELEV(3)⊕M3 7129 785 N/A
ELEV(4)⊕M3 43448 1941 N/A
MMGT(2)⊕M3 825 116 1763.39
MMGT(3)⊕M3 7711 174 N/A
MMGT(4)⊕M3 66317 234 N/A
RING(3)⊕M3 95 35 778.88
RING(5)⊕M3 1298 57 N/A
RING(7)⊕M3 17008 79 N/A
RING(9)⊕M3 211536 101 N/A

quickly.
• For very small systems, the explicit approach

outperforms the QBF-based verification ap-
proach since the latter needs time to encode
counterexamples. While for large systems,
QBF-based verification approach outperforms
the explicit approach very much. That is there
exists lots of systems which can be verified
by Algorithm 2, but can not be verified by
Algorithm 1 in limited time.

• In our approach the bound k is increased until
a counterexample is found, or the induction
proof holds, or some pre-computed bound
is reached. Unfortunately, the pre-computed
bounds may be too large to effectively explore
the associated bounded search space, such as
in Table I. ELEV(4) with k = 4. Therefore,
for a large system with a large bound, our
approach is complete in theory. However, in
practice limited by space and time our ap-
proach is not feasible.

VI. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is to present
an algorithmic approach to checking generalized
noninterference, and our approach is sound and
complete. The main advantage of our approach
includes two aspects. First, our approach combines
the counterexamples search strategy and the win-
dow induction proof technique. The counterexam-
ples search strategy makes us find the counterexam-
ple of minimal length rapidly. The window induc-
tion proof technique strengthens the induction hy-
pothesis. Second, our approach can be implemented
using a QBF-solver. Other contributions includes:
in order to make the search procedure terminate as
soon as possible, we discuss a over approximation
on the length of minimal counterexamples.

There are many interesting avenues for future
research. Our current work concentrates on three
directions. First we are extending our approach to
other information flow security properties. Second,
we are introducing the abstraction technique such
that we can abstract the finite state behaviors from
infinite state systems while preserving noninter-
ference. Third, since our technique translates the
search of counterexamples of increasing length into
a sequence of quantified propositional satisfiability
checks, we will exploit the similarity of these QBF
instances by conflict-driven learning during conflict
analysis from one instance to the next.

ACKNOWLEDGMENT

The authors’ work is supported by the Na-
tional Natural Science Foundation of China No.
60773049, the People with Ability Foundation of
Jiangsu University No. 07JDG014,the Fundamental
Research Project of the Natural Science in Colleges
of Jiangsu Province No. 08KJD520015

REFERENCES

[1] R. Focardi and R. Gorrieri. The compositional security
checker: A tool for the verification of information flow
security properties. IEEE Transactions on Software En-
gineering, 27(1997),pp.550-571.

[2] Jonathan Millen, 20 Years of Covert Channel Modeling
and Analysis, Proceedings of the 1999 IEEE Symposium
on Security and Privacy, Page(s):113-114.

[3] S. H. Qing. Covet channel analysis in secure operating
systems with high security levels. Journal of Software,
15(12)(2004),pp.1837-1849.

[4] Goguen and J. Meseguer, Security Policies and Security
Models. Proceedings of the IEEE Symposium on Secu-
rity and Privacy, Oackland, California, 1982, Pages: 11-
21.

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 986 Issue 6, Volume 8, June 2009

12

[5] D. McCullough, Specifications for multilevel security
and a hookup property, Proceedings of the 18th IEEE
Computer Society Symposium on Research in Security
and Privacy, 1987, pp. 161-166.

[6] McLean, J., A general theory of composition for trace
sets closed under selective interleaving functions, Pro-
ceedings of the IEEE Symposium on Research in Secu-
rity and Privacy (1994), pp. 79-93.

[7] A. Zakinthinos and E. S. Lee, A general theory of secu-
rity properties, Proceedings of the 18th IEEE Computer
Society Symposium on Research in Security and Privacy,
1997.

[8] Ron van der Meyden, Chenyi Zhang, Algorithmic Verifi-
cation of Noninterference Properties, Electronic Notes in
Theoretical Computer Science, Volume 168, 8 February
2007, Pages 61-75.

[9] Enrico Giunchiglia, Massimo Narizzano and Armando
Tacchella, QBF Reasoning on Real-World Instances, Lec-
ture Notes in Computer Science, 2005,3542:105-121.

[10] Luca Pulina, Armando Tacchella, QuBIS : An
(In)complete Solver for Quantified Boolean Formulas
, Lecture Notes in Computer Science, Volume 5317,
34-43,2008.

[11] Rowley, A.G.D., Gent, I.P., Hoos, H.H., Smyth, K.: Using
Stochastic Local Search to Solve Quantified Boolean
Formulae. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833,
pp. 348-362. Springer, Heidelberg (2003)

[12] A. Biere. Resolve and Expand. In Seventh Intl. Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT’04), volume 3542 of LNCS, 59-70,2005.

[13] Pan, G., Vardi, M.Y.: Symbolic Decision Procedures for
QBF. In:Wallace, M. (ed.) CP 2004. LNCS, vol. 3258,
pp. 453-67. Springer, Heidelberg (2004).

[14] Nachum Dershowitz , Ziyad Hanna and Jacob Katz,
Bounded Model Checking with QBF, Lecture Notes in
Computer Science, Volume 3569, 408-414,2005.

[15] Toni Jussila, Armin Biere, Compressing BMC Encodings
with QBF, Electronic Notes in Theoretical Computer
Science (ENTCS), Volume 174 , Issue 3, Pages 45-
56,2007.

[16] Conghua Zhou, Zhenyu Chen, and Zhihong Tao, QBF-
Based Symbolic Model Checking for Knowledge and
Time, Lecture Notes in Computer Science, Volume 4484,
386-397,2007.

[17] Roy Armoni, Limor Fix, Ranan Fraer, Scott Huddleston,
Nir Piterman, Moshe Y. Vardi,SAT-based Induction for
Temporal Safety Properties, Electronic Notes in Theoret-
ical Computer Science Volume 119, Issue 2, 14 March
2005, Pages 3-16.

[18] Hantao Zhang. SATO: An Efficient Propositional
Prover. In William McCune, editor, Proceedings of the
14th International Conference on Automated Deduction
(CADE), volume 1249 of Lecture Notes in Computer
Science, pages 272-275. Springer, July 1997.

[19] Joseph A. Goguen and Sose Meseguer. Unwinding and
Inference Control, Proceedings of the Symposium on Se-
curity and Privacy. pages 75-86. IEEE Computer Society,
May 1984.

[20] Lintao Zhang, Searching for Truth:techniques for satis-
fiability of boolean formulas, Ph. D. Thesis, Princeton
University.

[21] Matt Bishop, Computer Security: Art and Science. Ad-
dison Wesley, 2002.

[22] J. C. Corbett. Evaluating deadlock detection methods
for concurrent software. IEEE Transactions on Software
Engineering, Volume 22 , Issue 3,Pages: 161-180, 1996.

WSEAS TRANSACTIONS on COMPUTERS Conghua Zhou

ISSN: 1109-2750 987 Issue 6, Volume 8, June 2009

