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Abstract: - Searching for structural similarities of proteins has a central role in bioinformatics. Most tasks of 
bioinformatics depends on investigating the homologous protein's sequence or structure these tasks vary from 
predicting the protein structure to determine sites in protein structure where drug can be attached. Protein 
structure comparison problem is extremely important in many tasks. It can be used for determining function of 
protein, for clustering a given set of proteins by their structure, for assessment in protein fold prediction. 
Protein Structure Indexing using Suffix Array and Wavelet (PSISAW) is a hybrid approach that 
provides the ability to retrieve similarities of proteins based on their structures. Indexing the protein 
structure is one approach of searching for protein similarities.  The suffix arrays are used to index protein 
structure and the wavelet is used to compress the indexed database. Compressing the indexed database is 
supposed to make the searching time faster and memory usage lower but it affects the accuracy with accepted 
rate of error.The experimental results, which are based on the structural classification of proteins 
(SCOP) dataset, show that the proposed approach outperforms existing similar techniques in memory 
utilization and searching speed. The results show an enhancement in the memory usage with factor 
50%. 
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1 Introduction 
Searching for structural similarities has a critical 
role in many applications like prediction of protein's 
structure and functions, classification of proteins 
and drug design and discovery. Proteins with 
homologous sequence or structure can be concluded 
to have a common ancestor which is helpful for 
better understanding of life tree. There have been 
several methods proposed to compare protein 
structures and measure the degree of structural 
similarity between them. These methods have been 
based on alignment of secondary structure elements 
as well as alignment of intra and inter-molecular 
atomic distances [5]. 

The following are some of the reasons why the 
structure comparison problem is also extremely 
important [7]: 

1. For determining function: The function of a 
new protein can be determined by comparing 
its structure to some known ones. That is, 
given a set of proteins whose fold has 
already been determined and whose function 
is known, if a new one has a fold highly 
similar to a known one, then its function will 
similar as well. This type of problems 

implies the design of search algorithm for 3D 
databases, where a match must be based on 
structure similarity. Analogous problems 
have already been studied in Computational 
Geometry and Computer Vision, where a 
geometric form or object has to be identified 
by comparing it to a set of known ones. 

2. For clustering: Given a set of proteins and 
their structures, we may want to cluster them 
in families based on structure similarity. 
Furthermore, we may want to identify a 
consensus structure for each family. In this 
case, we would have to solve a multiple 
structure alignment problem. 

3. For assessment of fold Predictions: The 
Model Assessment Problem is the following: 
Given a set of “tentative” folds for a protein, 
and a “correct” one (determined 
experimentally), which of the guesses is the 
closest to the true? This is, e.g., the problem 
faced by the CASP (Critical Assessment of 
Structure Prediction) jurors, in a biannual 
competition where many research groups try 
to predict protein structure from sequence. 
The large number of predictions submitted 
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(more than 10,000) make the design of sound 
algorithms for structure comparison a 
compelling need. In particular, such 
algorithms are at the base of CAFASP, a 
recent Fully Automated CASP variant. 
 

The rapid growth of the Protein Databank (PDB) 
current holdings, > 50000 proteins at the first 
quarter of 2009, raises the need for new tools that 
perform proteins similarity searching to clarify the 
similarities in the three dimensional structures 
between related or similar proteins. 

Searching the protein structure has another 
problem, besides the rapidly growing rate of 
proteins in PDB, which is the complexity. The 
protein structure alignment is a NP-hard problem. 
Many methods were proposed to solve this problem. 

 
This problem is approached by different three 

approaches they are: 
1. Pair-wise structure-based alignment  
2. Multiple structure-based alignment 
3. Database indexing 
 

Pair-wise structure alignment methods can be 
classified into three classes [8]. The first class 
works at the residue level [9, 10]. The second 
class focuses on using secondary structure 
elements (SSEs) such as alpha-helices and beta-
strands to align two proteins approximately [11, 
12, and 13]. The third approach is to use 
geometric hashing, which can be applied at both 
the residue [14] and SSE level [9].  

The combinatorial extension (CE) method is an 
example of pair-wise approach. It breaks each 
structure in the query set into a series of fragments 
that it then attempts to reassemble into a complete 
alignment. A series of pairwise combinations of 
fragments called aligned fragment pairs, or AFPs, 
are used to define a similarity matrix through which 
an optimal path is generated to identify the final 
alignment. Only AFPs that meet given criteria for 
local similarity are included in the matrix as a 
means of reducing the necessary search space and 
thereby increasing efficiency [10]. A number of 
similarity metrics are possible; the original 
definition of the CE method included only structural 
superposition and inter-residue distances but has 
since been expanded to include local environmental 
properties such as secondary structure, solvent 
exposure, hydrogen-bonding patterns, and dihedral 
angles [10]. An alignment path is calculated as the 
optimal path through the similarity matrix by 
linearly progressing through the sequences and 

extending the alignment with the next possible high-
scoring AFP pair. The initial AFP pair that nucleates 
the alignment can occur at any point in the sequence 
matrix. Extensions then proceed with the next AFP 
that meets given distance criteria restricting the 
alignment to low gap sizes. The size of each AFP 
and the maximum gap size are required input 
parameters but are usually set to empirically 
determined values of 8 and 30 respectively [10]. 

The SSAP (Sequential Structure Alignment 
Program) method uses double dynamic 
programming to produce a structural alignment 
based on atom-to-atom vectors in structure space. 
SSAP algorithm is an example for the second class 
of pairwise protein structure alignment which aligns 
proteins at SSE level by using α helices and β 
strands. Instead of the alpha carbons typically used 
in structural alignment, SSAP constructs its vectors 
from the beta carbons for all residues except 
glycine, a method which thus takes into account the 
rotameric state of each residue as well as its location 
along the backbone.  

SSAP works by first constructing a series of 
inter-residue distance vectors between each residue 
and its nearest non-contiguous neighbors on each 
protein. A series of matrices are then constructed 
containing the vector differences between neighbors 
for each pair of residues for which vectors were 
constructed. Dynamic programming applied to each 
resulting matrix determines a series of optimal local 
alignments which are then summed into a 
"summary" matrix to which dynamic programming 
is applied again to determine the overall structural 
alignment [13]. 

The second approach for solving the problem is 
multiple structure alignments. This approach is 
based on geometric hashing [16], or SSE 
information [15]. The pair-wise and multiple 
structure alignment approaches are not suitable for 
searching for similarity over thousands of protein 
structures. Database indexing and scalable searching 
approaches satisfy this requirement. 

The definition of the Multiple Structural 
Alignment problem is not a straightforward issue. 
Given m input molecules, should all m molecules 
participate in the alignment or only a subset of the m 
molecules? Certainly, we wish to detect the best 
subsets which give a good multiple structure 
alignments. Consider an example where among 100 
input molecules there are 40 structurally similar 
molecules from family “A”, 50 structurally similar 
molecules from family “B” and additional 10 
molecules, which are structurally dissimilar to any 
other molecule in the input. Naturally, we require 
from a Multiple Structural Alignment algorithm to 
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detect simultaneously the similarity between the 40 
molecules from family “A” and between the 50 
molecules from family “B”. Also, there might be 
only a sub-structure (motif, domain) that is similar 
between some molecules. Thus, partial similarities 
between the input molecules should also be reported 
by the Multiple Structural Alignment algorithm 
[20].  

Obviously, the number of all possible solutions 
could be exponential in the number of input 
molecules. For example, consider proteins which 
contain α-helices. Each pair of α-helices could be 
structurally aligned (at least partially, if they are 
different in their lengths). Any combination of α-
helices from different molecules gives us some 
solution to the Multiple Structural Alignment 
problem. The number of such combinations is 
exponential. Thus, it is not practical to output (even 
if the algorithm is capable to detect) all possible 
solutions [20].  

Multiple Protein Structural Alignment (MltiPort) 
method is an example of the Multiple Structural 
Alignment approach. It is based on the pivoting 
technique, i.e. there is a pivot molecule that has to 
participate in all the alignments. In other words, the 
rest of the molecules are aligned with respect to the 
pivot molecule. In order not to be dependent on the 
choice of the pivot, we iteratively choose every 
molecule to be the pivot one.  

The goal of the Multiple Structural Alignment 
with Pivot algorithm is to detect the largest 
structural cores between the input molecules with 
respect to the pivot molecule. The algorithm 
requires that the pivot molecule participates in the 
multiple alignments, but it does not require that all 
the input molecules from the set S’ are included in 
the multiple alignment. Thus, the method detects the 
best partial multiple alignments [21]. 

The third approach for solving the problem is 
protein structure indexing according to the 
representation of the local features. Local 
features can be extracted at residue level [19] or 
SSEs level to approximate the structure of the 
protein [18, 4]. 

Due to their time complexity, the pair-wise and 
multiple structure alignment approaches are not 
suitable for searching for similarity over thousands 
of protein structures. Database indexing and 
scalable searching approaches meet the online 
searching requirement [2]. 

ProGreSS algorithm is an example of this 
approach. It extracts the features for both the 
structure and sequence, within a sliding window 
over the backbone. The algorithm extracts a number 

of feature vectors on sequence and structure 
components of each protein in the database by 
sliding a window. Each feature vector maps to a 
point in a multi-dimensional space. Thus, a protein 
is represented by a number of points. This multi-
dimensional space consists of orthogonal 
dimensions for sequence and structure. Later, the 
algorithm partitions the space with the help of a grid 
and indexes these points using Minimum Bounding 
Rectangles (MBRs). 

Given a query, the search method runs in three 
phases: 

Phase 1 (index search): Feature vectors (i.e., 
points) are extracted from the query protein. For 
each of these query points, all the database points 
that are within εq and εt distance along the sequence 
and the structure dimensions are found using the 
index structure. Each such point casts a vote for the 
protein to which it belongs as in geometric hashing 
[22]. 

Phase 2 (statistical significance): For each 
database protein, a statistical significance value is 
computed based on the votes it obtained in Phase 1 
and its length. 

Phase 3 (post-processing): The top c proteins of 
highest significance are selected, where c is a 
predefined cutoff. The optimal pair-wise alignment 
of these c proteins to the query protein is then 
computed using the SW technique. Finally, the Cα 
atoms of the matching residues are super-positioned 
using the least-squares method [23], to find the 
optimal RMSD (Root Mean Square Distance). 

It is a fast, novel protein indexing method called 
PSIST (which stands for Protein Structure Indexing 
using Suffix Trees). As the name implies, the new 
approach transforms the local structural information 
of a protein into a sequence, on which a suffix tree 
is built for fast matches. The algorithm first extracts 
local structural feature vectors using a sliding a 
window along the backbone. For a pair of residues, 
the distance between their Cα atoms and the angle 
between the planes formed by Cα, N and C atoms of 
each residue are calculated. The feature vectors for a 
given window include all the distances and angles 
between the first residue and the rest of the residues 
within the window. Compared with the local 
features from a single residue, our feature vectors 
contain both the translational and rotational 
information. After normalizing the feature vectors, 
the protein structure is converted to a sequence 
(called the structure-feature sequence or SF-
sequence) of discredited symbols. 

For a given query, all the maximal matches are 
retrieved from the suffix tree and chained into 
alignments using dynamic programming. The top 
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proteins with the highest alignment scores are 
finally selected. The results show classification 
accuracy up to 97.8% and 99.4% at the super-family 
and class level according to the SCOP classification, 
and show that on average 7.49 out of 10 proteins 
from the same super-family are obtained among the 
top n matches. These results are competitive with 
the best previous methods [2]. 

Protein structure index (PSI) method prunes 
unpromising protein for the given protein query. It 
is based on extracting feature vector for each protein 
in database then indexing it using the R* tree. R* 
trees are used to prune the search space to be used 
by VAST structural alignment algorithm, this 
reduction in search space resulting in reduce the 
searching time [18]. 

The construction of index structure in this 
algorithm is proceeds in four steps:  
1. SSE approximation. 
2. Triplet construction. 
3. Feature vector extraction. 
4. Multidimensional index structure construction. 

Let D = {a1, a2, … , ad} be the set of protein 
structures in the dataset.  

SSE approximation is the first step in this 
algorithm. Let a belongs to D be a protein structure, 
where Sa = {s1,s2, …, sna} is the SSEs of a. let Rsi 
= {ri,1, ri,2, …, ri,k}be the residues which 
constitute si. The algorithm splits the Rsi into two 
equal sized sets Rsi1 and Rsi2. C1 and c2 are 
defined as the centers of mass of the residues in R-
si1 and Rsi2. A line segment approximation to si is 
achieved by extending the line segment [c1, c2] by 
half of the Euclidean distance between c1 and c2 in 
both directions. 

PSISA algorithm is used in searching for protein 
structural similarities. The algorithm follows the 
indexed database approach to solve the problem of 
searching protein structure. Generalized Suffix 
Array was used as the indexing structure; it is a 
novel usage of this data structure to approach this 
problem. The algorithm input is a set or all of the 
known structure proteins which are used to build the 
indexed database, Generalized Suffix Array. A 
query protein(s) is given to build another 
generalized suffix array, which is compared with 
indexed database to find out all similar structure 
proteins. 

 FASTA algorithm and Smith-Waterman 
algorithm are used as a final ranking step. This step 
ranks the found proteins from the above mentioned 
matching step between indexed database and query 
generalized suffix array. The proteins are listed 
according to how close they are similar in structure 

to query protein. The memory usage of PSISA 
algorithm outperforms all previous algorithms.  

In this paper, we present a hybrid approach for 
indexing the protein structure. The proposed 
approach based on PSISA algorithm [1, 17] and 
PSIST algorithm [2]. The proposed approach uses 
the PSIST approach for extracting the feature 
vector. And the suffix array structure used to index 
data as in PSISA. The main contribution of the 
proposed approach is that it investigates the usage of 
wavelet in purpose of compressing the indexed 
database. Therefore, the proposed approach 
decreases the searching time required for queries. 

Given a protein as a query, the generalized suffix 
array is searched to find all the proteins that have 
matching length greater than or equal to a certain 
threshold. These proteins are ranked according to 
the similarity to the query protein.  

 
 

2 Wavelet Background 
A wavelet is a mathematical function used to divide 
a given function or continuous-time signal into 
different frequency components and study each 
component with a resolution that matches its scale. 
The wavelet transform is relatively new (early 80s) 
and has some similarities with the Fourier 
transform. Wavelets differ from Fourier methods in 
that they allow the localization of a signal in both 
time and frequency. 

The fundamental idea behind wavelets is to 
analyze according to scale. A wavelet transform is 
the representation of a function by wavelets. The 
wavelets are scaled and translated copies (known as 
"daughter wavelets") of a finite-length or fast-
decaying oscillating waveform (known as the 
"mother wavelet (ψ)") [24, 25]. Wavelet transforms 
have advantages over traditional Fourier transforms 
for representing functions that have discontinuities 
and sharp peaks, and for accurately deconstructing 
and reconstructing finite, non-periodic and/or non-
stationary signals. Wavelets are functions that 
satisfy certain mathematical requirements and are 
used in representing data or other functions. If we 
look at a signal with a large “window" we would 
notice gross features. Similarly, if we look at a 
signal with a small “window" we would notice small 
features. The result in wavelet analysis is to see both 
the forest and the trees, so to speak. 

The scaling function of wavelet produces a 
smoother version of the data set, which is half the 
size of the input data set. Wavelet algorithms are 
recursive and the smoothed data becomes the input 
for the next step of the wavelet transform. The 
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simplest example of a mother wavelet is the Haar 
basis, Equation (1) is the Haar wavelet scaling 
function: 

2
1ssa ii

i
+

+
=    (1) 

where ai is a smoothed value and data sample si, si+1 
are data samples. The Haar transform preserves the 
average in the smoothed values. This is not true of 
all wavelet transforms.  

In digital signal processing terms, the wavelet 
function is a high pass filter. A high pass filter 
allows the high frequency components of a signal 
through while suppressing the low frequency 
components. For example, the differences that are 
captured by the Haar wavelet function represent 
high frequency change between an odd and an even 
value.  

In digital signal processing terms, the scaling 
function is a low pass filter. A low pass filter 
suppresses the high frequency components of a 
signal and allows the low frequency components 
through. The Haar scaling function calculates the 
average of an even and an odd element, which 
results in a smoother, low pass signal. 

The wavelet transform have two forms 
continuous and discrete. The continuous wavelet 
transform, (CWT) for a function f (t) is defined by 
equation (2): 

∫
∞

∞−

− −
= dt

a
bttfbafCWT a )()(),,( 2/1 ψ  (2) 

where a (the scale parameter) > 0, b (the translation 
parameter). The continuous wavelet transform maps 
a one-dimensional signal to a two-dimensional time-
scale joint representation. It is calculated by 
continuously shifting a continuously scalable 
function over a signal and calculating the correlation 
between the two. 

A wavelet decomposes a signal into several 
groups (vectors) of coefficients. Different 
coefficient vectors contain information about 
characteristics of the sequence at different scales. 
Coefficients at coarse scales capture gross and 
global features of the signal while coefficients at 
fine scales contain local details. The discrete 
wavelet transform is an economical way to compute 
the wavelet, because it is computed only on a dyadic 
grid of points, where the subsampling is at a 
different rate for different scales. The discrete 
wavelet transform is commonly introduced using a 
matrix or a computational form. In matrix form we 

can represent the discrete wavelet transform [24] 
through an orthogonal matrix. 

The discrete wavelet transform is computed by 
successive lowpass and highpass filtering of the 
discrete time-domain signal as shown in fig. 1. This 
is called the Mallat algorithm or Mallat-tree 
decomposition. Its significance is in the manner it 
connects the continuous-time multi-resolution to 
discrete-time filters. In the figure, the signal is 
denoted by the sequence x[n], where n is an integer. 
The low pass filter is denoted by G0 while the high 
pass filter is denoted by H0. At each level, the high 
pass filter produces detail information; d[n], while 
the low pass filter associated with scaling function 
produces coarse approximations, a[n].  

 

Fig. 1 three level wavelet decomposition trees 

At each decomposition level, the half band filters 
produce signals spanning only half the frequency 
band. This doubles the frequency resolution as the 
uncertainty in frequency is reduced by half. 

There are a number of basis functions that can be 
used as the mother wavelet for Wavelet 
Transformation. Since the mother wavelet produces 
all wavelet functions used in the transformation 
through translation and scaling, it determines the 
characteristics of the resulting Wavelet Transform. 
Therefore, the details of the particular application 
should be taken into account and the appropriate 
mother wavelet should be chosen in order to use the 
Wavelet Transform effectively.  

Haar wavelet is one of the oldest and simplest 
wavelet. Therefore, any discussion of wavelets starts 
with the Haar wavelet. Daubechies wavelets are the 
most popular wavelets. They represent the 
foundations of wavelet signal processing and are 
used in numerous applications. These are also called 
Maxflat wavelets as their frequency responses have 
maximum flatness at frequencies 0 and π. This is a 
very desirable property in some applications. The 
Haar, Daubechies, Symlets and Coiflets are 
compactly supported orthogonal wavelets. These 
wavelets along with Meyer wavelets are capable of 
perfect reconstruction. The Meyer, Morlet and 
Mexican Hat wavelets are symmetric in shape. The 
wavelets are chosen based on their shape and their 
ability to analyze the signal in a particular 
application.  
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3 Methodology 
In this paper, we present three different 
implementations for the Haar transform. Wavelet 
compression is a form of data compression well 
suited for image compression (sometimes also video 
compression and audio compression). The goal is to 
use this compression method for compressing the 
data which present proteins. 

For extracting the local feature vector we used 
the same method used in the PSIST. Considering 
using the sliding window technique, we slide the 
window through the backbone of the protein, where 
the window size (w) presents the number of residues 
in the window. The feature vector contains 2 * (w-1) 
values, these values describe the relation between 
the first residue and other residues in the window. 
For the first residue in the window and each other 
residue we calculate two values, they are the 
Euclidean distances between the Cα in the two 
residues which presents the distance between these 
two residues. The second value is the angle between 
these two planes containing these two residues. 

Each protein is presented by a 2D array of varied 
number of columns depends on the number of 
amino acids comprising protein and even number of 
rows depends on the window size. The three 
methods are based on compressing the 2D data of 
the array which presents proteins to half the size. 
The different between every each method is based in 
how the data are divided in four sub-arrays.  

The first column in the array contains data for 
the first position of the sliding window; the second 
column in the array contains data for the second 
position of the sliding window and so on. The 
number of items in each column must be even 
number. 

The first method compress data as follow: it 
takes each pair of data in each column and present it 
by one value which is the average of the pair values.  

So data compressed to half the size. Fig. 2 
depicts the data which averaged by first method. 

Fig. 2 first method of compression 
 

The second method compress data as follow: it 
takes the first element of the first column and the 
corresponding value in the next column and 
calculates the average of the pair values. So data 
compressed to half the size. In other words this 
method use the column with odd index and the next 
column with even index, by taking just two column 
at once to compress data by compressing pairs of 
element in the odd column and the corresponding 
element in the next even index column. Fig. 3 
depicts the data which averaged by the second 
method. 

 

 

 

 

Fig. 3 second method of compression 

The third method compress data as follow: it 
takes two columns one with even index and next 
column with odd index then we calculate the 
average of data for each four adjacent elements. 
Two columns with even number of elements can be 
divided into number of squares equals half of the 
number of elements in the two columns. Each 
square of data is presented by the average of all 
elements in this square, the four elements. Fig.4 
depicts the data which averaged by the third 
method. 

 

 

 

 

 
Fig. 4 third method of compression 
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Fig. 5 pseudo-code for the second method  
 
Fig. 5 state the algorithm of the second method. 

We just state the second method because it gives the 
best results in accuracy meanwhile all of the three 
methods are equal in memory usage and query 
processing speed. The method input is 
“FeatureVectorList” which is a list of feature 
vectors. Each feature vector contains even number 
of values. Method starts by a loop “outer for” to 
read all the input feature vectors. Each new iteration 
starts by creating “newFeatureVector” which is a 
new feature vector to hold the new values. Then the 
inner loop starts to calculate the average of the first 
component of ith feature vector and the 
corresponding component of (i + 1)th feature vector. 
The average value is stored in the 
newFeatureVecotr. The process of calculating the 
average of the jth component of both ith and (i+1)th 
vectors is repeated till the last component  in both 
vectors. Final to steps in the outer loop is to replace 
the ith feature vector with the newFeatureVector and 
delete the (i + 1)th feature vector. The result is 
replacing two feature vectors with one feature 
vector. The compression ratio is exactly the half 
size. 

  

 
Fig. 6 pseudo-code for searching algorithm 
 
In searching for similarity algorithm we consider 

that the query GSA length is n and the database 
GSA length is m, where m >> n. qSA is the query 
suffix array, dbSA is the database suffix array, and l 
is threshold of the maximal matching length. i is the 
qSA iterator and j is the dbSA iterator.  MList is a 
list that contains all matched proteins resulting from 
the search process with length of the maximal 
matching. MaximalMatchesSearch is a function that 
matches two suffixes one form qSA and the other 
from dbSA; it starts matching form the first symbol 
in both suffixes and finally returns the number of 
successive matched symbols. It stops matching with 
the first mismatched symbol.  

 

INPUT              :    qSA ,  l 
OUTPUT          :    list of matched proteins MList 
dbSA, l) 
 j = 1  
FOR i  = 1 TO n DO 
     Clear querylist 
     Querylist. Add ( i) 
     queryFirstSymbol = qSA[i].firstsymbol 
     i  = i  + 1 
     WHILE qSA[i].firstsymbol =  qSA[i-1].firstsymbol DO
          Querylist.add(i) 
          i  = i   + 1 
     ENDWHILE 
     WHILE dbSA[j].firstsymbol <  queryFirstSymbol DO 
          j = j + 1 
     ENDWHILE 
     IF dbSA[j].firstsymbol >  queryFirstSymbol THEN 
     GOTO next FOR iteration 
     ENDIF 
     WHILE !querylist.empty()  AND  j <  m DO 
       FOR  K = 0 TO querylist.length DO 
          matchedLength = MaximalMatchesSearch ( 
                                       dbSA[j] , qSA[querylist.get(K)] ) 
          IF matchedLength >= l THEN 
              Foreach proteinNo Pq in qSA[querylist.get(K)] Do
        Foreach proteinNo Pdb in dbSA[j] DO 
        Add(Pq, Pdb, matchedLength) to Mlist 
          ELSE 
              IF qSA[querylist.get(K)].FirstMismatchedsymbol  

                     <  dbSA[j]. FirstMismatchedsymbol  THEN  
                     Querylist.reomve(K) 
              ELSE 
                     Exit FOR  
              ENDIF 
         ENDIF 
       ENDFOR 
        j = j + 1 
     ENDWHILE 
ENDFOR 
 

INPUT: FeatureVectorList 
OUTUPT: CompressedFeatureVectorList 
 
FOR I = 0 TO FeatureVectorList.size()-1 DO 
 
Create newFeatureVector 
 
FOR J = 0 TO 
FeatureVectorList.getVector(i).size DO 
 

1. Newfaturevector.add( 
FeatureVectorList.getVector(i).getComp
onent(j) + FeatureVectorList.getVector(i 
+ 1).getComponent(j) 

 
ENDFOR 

1. Replace ith FeatureVector with 
newFeatureVector 

2. Delete (i +1)th
 featurevector 

ENDFOR 
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Fig. 6 states the searching algorithm; we scan the 
dbSA and qSA elements only one time. The 
searching process starts by grouping the qSA 
elements into groups according to the first symbol 
of these elements. Each group is presented by a list 
called query list. Working on these lists is sequential 
so we prepare the first list and match it to some 
elements from dbSA then we prepare the second list 
and match it too the same way till we finish all 
elements in the qSA. So the qSA is scanned only 
one time.  

Having the first query list prepared from qSA as 
described above, we start matching all the list 
elements with the first element in the dbSA, 
supposed its index is dbSA iterator, starting with the 
same symbol as query list elements. Then we 
increase the dbSA iterator by one to decide if that 
new element starts with same symbol as elements of 
the query list or not. We stop increasing the dbSA 
iterator when we reach to dbSA element with first 
symbol logographically greater than the first symbol 
of query list elements. The reason for stopping the 
matching process that we know both the qSA, in 
turn query list, and dbSA are logographically 
ordered. For example if we prepared the query list 
of all qSA elements that starting with symbol 'A', so 
we will match list elements with all elements of 
dbSA appears before the first dbSA element that 
starting with symbol 'B'. Since the matching length 
between any element of the query list and the first 
element of dbSA starting with symbol 'B' is zero 
which is less than l and that is true for all dbSA 
elements come after this element, the one starting by 
symbol 'B'. 

After stopping matching because of the reasons 
we stated above, a new query list is prepared from 
qSA and matching will start not from the beginning 
of dbSA but from the dbSA element where the 
previous step stopped at. For example, if matching 
of the query list of elements starting with symbol 'A' 
is finished, then we prepare a new query list that 
contains elements starting by symbol 'B' and the 
matching process will start from the first element of 
dbSA that starting by symbol 'B', the one where we 
stopped at from the previous step. 

 
4 Experimental Results and Discussion 
Many databases that hold information about the 
protein exist nowadays; some of them provide 
information about the protein sequence only. Others 
provide information about the secondary and tertiary 
structure, but the widely used databases are for the 
secondary structure since the functions of protein 
can predicted from its structure better than its 
sequence. 

Genbank, the National Institute of Health (NIH), 
is built by National Center for Biotechnology 
Information (NCBI), SWISS-PORT, Protein 
Information Resource (PIR), Protein Databank 
(PDB), and Structural Classification Of Protein 
(SCOP), are some of long list of organizations that 
produce database for protein. 

SCOP database is a classified version of PDB, 
scientist manually, by visual inspection, classify the 
data in the PDB files they first clustered the protein 
with similar domains then  producing a set of 
families then families are grouped into super-
families in turn it grouped into folds. SCOP now has 
7 domains applying this classification on each 
domain. 

The experiment is based on SCOP database. 
Since SCOP classifies data in classes of similar 
structure proteins. SCOP was used as reference for 
measuring the accuracy of the proposed algorithm 
for retrieving correct proteins. The algorithm was 
implemented using java. The experiments were 
performed on a PC with core duo 1.86GHz 
processor and 1 GB RAM on window Vista XP SP2 
edition. 

The experiment used a prepared dataset DDS 
which consisted of 181 * 10 = 1810 protein 
structures. These protein structures were collected 
from different 181 superfamilies. Super-families 
belongs to domains which are α, all β, α + β and α / 
β. The dataset of query proteins, DQ, was obtained 
by choosing a protein structure at random from each 
superfamily. The results shown below for PSISAW 
are the results of the second method explained in the 
previous section, since the second method gives the 
best performance. 

Table 1 Running Time for query 

Algorithm Algorithm query time 
in  second 

PSISA 2.49 

PSIST 1.5 

PAST 0.44 

PSISAW 0.6 

 
Table 2 Searching time for different 

Algorithms 

Algorithm Searching time in 
second 

PSISA 0.45 
PSIST 0.68 
PAST 0.44 

PISSAW 0.43 
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Table 1 shows the query average time for PSIST 
algorithm which is 1.5seconds. Meanwhile it is for 
PSISA is 2.5 seconds that is means that PSIST is 
faster than PSISA by 1.55 times approximately. We 
notice that the average query time of PSISAW is 0.6 
second. Because of the usage of the Wavelet as a 
compression technique, preprocessing step, with 
PSISA the average query time is reduced to more 
than half of PSIST time. PAST average time is 0.44 
seconds, since PAST uses a simple feature extractor 
technique which does not consume a lot of time as 
previous algorithms. Table 2 shows the comparison 
of searching time without calculating the pre and 
post-processing steps.  Table 2 shows that PSISA 
searching time is 0.45 second and PSIST time is 
0.68, we can conclude that PSISA is faster than 
PSIST with 1.5 times. PSISAW searching time is 
043 seconds. Finally we conclude that PSISAW is 
faster than other algorithms because the PSISW 
search a smaller suffix array than PSISA in memory 
size. 

 
Table 3 the memory usage of algorithms 

Algorithm Algorithm Memory usage 
in MB 

PSIST 111 

PSISA 61 

PAST 58 

PSISAW 31 

 
Table 3 shows the memory usage for PSISA, 

PSIST and PSISAW. The table shows that PSISA 
use approximately half the memory size used by 
PSIST. PAST algorithm memory consumption is 58 
MB.  The memory used by PSISAW is 31 MB. We 
conclude that memory usage for PSISAW reduces 
to the half memory size of PSISA approximately 
because of the uses of wavelet as a compression, 
preprocessing, step for PSISA algorithm. 
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Fig. 7 Memory usage comparison 
 

Fig. 7 depicts the memory usage for PSIST, 
PSISA and PSISAW for different datasets. We 
prepared 5 datasets differ in size for the experiment 
D6, D7, D8, D9 and D10. All the datasets contain 
proteins from different 181 superfamilies from the 
four classes. considering  Dn dataset , n presents the 
number of the proteins which are taken from each 
superfamily, so the size of each dataset is n 
multiplied by 181, the number of superfamilies, for 
example the D8 dataset contains 1448 (8 * 181) 
proteins. 

Table 4 Accuracy of the algorithms 

Algorithm SUPERFAMILY CLASS 

PSIST 96.6% 98.3% 

PSISA 96.6% 98.3% 

PAST 100% 48% 

PSISAW 82.5% 86% 

 
Table 4 shows the accuracy of the proposed 

algorithm PSISAW comparing with PSIST, PSISA 
and PAST algorithms [4]. The proposed algorithm 
outperforms the PAST algorithm in accuracy 
meanwhile it gives accuracy less than PSISA and 
PSIST because of the uses the lossy compression 
technique as the preprocessing step for PSISA. 
 
4 Conclusion 

In this paper, we have presented a hybrid 
approach that provides the ability to retrieve 
similarities of proteins based on their structures. We 
have used the wavelet to compress the indexed data. 
As a result the accuracy is less than the best known 
accuracy by PSIST with 10% meanwhile the speed 
is enhanced five times. The experiment results show 
that our proposed algorithm outperforms the PSISA 
in memory usage with factor exceeds 50%. 
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