
A Hybrid Approach for Indexing and Searching Protein Structures

Tarek F. Gharib

Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
E-mail: tgharib@eun.eg

Abstract: - Searching for structural similarities of proteins has a central role in bioinformatics. Most tasks of
bioinformatics depends on investigating the homologous protein's sequence or structure these tasks vary from
predicting the protein structure to determine sites in protein structure where drug can be attached. Protein
structure comparison problem is extremely important in many tasks. It can be used for determining function of
protein, for clustering a given set of proteins by their structure, for assessment in protein fold prediction.
Protein Structure Indexing using Suffix Array and Wavelet (PSISAW) is a hybrid approach that
provides the ability to retrieve similarities of proteins based on their structures. Indexing the protein
structure is one approach of searching for protein similarities. The suffix arrays are used to index protein
structure and the wavelet is used to compress the indexed database. Compressing the indexed database is
supposed to make the searching time faster and memory usage lower but it affects the accuracy with accepted
rate of error.The experimental results, which are based on the structural classification of proteins
(SCOP) dataset, show that the proposed approach outperforms existing similar techniques in memory
utilization and searching speed. The results show an enhancement in the memory usage with factor
50%.

Key-Words: - protein structures, indexing, suffix array, wavelet

1 Introduction
Searching for structural similarities has a critical
role in many applications like prediction of protein's
structure and functions, classification of proteins
and drug design and discovery. Proteins with
homologous sequence or structure can be concluded
to have a common ancestor which is helpful for
better understanding of life tree. There have been
several methods proposed to compare protein
structures and measure the degree of structural
similarity between them. These methods have been
based on alignment of secondary structure elements
as well as alignment of intra and inter-molecular
atomic distances [5].

The following are some of the reasons why the
structure comparison problem is also extremely
important [7]:

1. For determining function: The function of a
new protein can be determined by comparing
its structure to some known ones. That is,
given a set of proteins whose fold has
already been determined and whose function
is known, if a new one has a fold highly
similar to a known one, then its function will
similar as well. This type of problems

implies the design of search algorithm for 3D
databases, where a match must be based on
structure similarity. Analogous problems
have already been studied in Computational
Geometry and Computer Vision, where a
geometric form or object has to be identified
by comparing it to a set of known ones.

2. For clustering: Given a set of proteins and
their structures, we may want to cluster them
in families based on structure similarity.
Furthermore, we may want to identify a
consensus structure for each family. In this
case, we would have to solve a multiple
structure alignment problem.

3. For assessment of fold Predictions: The
Model Assessment Problem is the following:
Given a set of “tentative” folds for a protein,
and a “correct” one (determined
experimentally), which of the guesses is the
closest to the true? This is, e.g., the problem
faced by the CASP (Critical Assessment of
Structure Prediction) jurors, in a biannual
competition where many research groups try
to predict protein structure from sequence.
The large number of predictions submitted

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 966 Issue 6, Volume 8, June 2009

mailto:tgharib@eun.eg

(more than 10,000) make the design of sound
algorithms for structure comparison a
compelling need. In particular, such
algorithms are at the base of CAFASP, a
recent Fully Automated CASP variant.

The rapid growth of the Protein Databank (PDB)
current holdings, > 50000 proteins at the first
quarter of 2009, raises the need for new tools that
perform proteins similarity searching to clarify the
similarities in the three dimensional structures
between related or similar proteins.

Searching the protein structure has another
problem, besides the rapidly growing rate of
proteins in PDB, which is the complexity. The
protein structure alignment is a NP-hard problem.
Many methods were proposed to solve this problem.

This problem is approached by different three

approaches they are:
1. Pair-wise structure-based alignment
2. Multiple structure-based alignment
3. Database indexing

Pair-wise structure alignment methods can be
classified into three classes [8]. The first class
works at the residue level [9, 10]. The second
class focuses on using secondary structure
elements (SSEs) such as alpha-helices and beta-
strands to align two proteins approximately [11,
12, and 13]. The third approach is to use
geometric hashing, which can be applied at both
the residue [14] and SSE level [9].

The combinatorial extension (CE) method is an
example of pair-wise approach. It breaks each
structure in the query set into a series of fragments
that it then attempts to reassemble into a complete
alignment. A series of pairwise combinations of
fragments called aligned fragment pairs, or AFPs,
are used to define a similarity matrix through which
an optimal path is generated to identify the final
alignment. Only AFPs that meet given criteria for
local similarity are included in the matrix as a
means of reducing the necessary search space and
thereby increasing efficiency [10]. A number of
similarity metrics are possible; the original
definition of the CE method included only structural
superposition and inter-residue distances but has
since been expanded to include local environmental
properties such as secondary structure, solvent
exposure, hydrogen-bonding patterns, and dihedral
angles [10]. An alignment path is calculated as the
optimal path through the similarity matrix by
linearly progressing through the sequences and

extending the alignment with the next possible high-
scoring AFP pair. The initial AFP pair that nucleates
the alignment can occur at any point in the sequence
matrix. Extensions then proceed with the next AFP
that meets given distance criteria restricting the
alignment to low gap sizes. The size of each AFP
and the maximum gap size are required input
parameters but are usually set to empirically
determined values of 8 and 30 respectively [10].

The SSAP (Sequential Structure Alignment
Program) method uses double dynamic
programming to produce a structural alignment
based on atom-to-atom vectors in structure space.
SSAP algorithm is an example for the second class
of pairwise protein structure alignment which aligns
proteins at SSE level by using α helices and β
strands. Instead of the alpha carbons typically used
in structural alignment, SSAP constructs its vectors
from the beta carbons for all residues except
glycine, a method which thus takes into account the
rotameric state of each residue as well as its location
along the backbone.

SSAP works by first constructing a series of
inter-residue distance vectors between each residue
and its nearest non-contiguous neighbors on each
protein. A series of matrices are then constructed
containing the vector differences between neighbors
for each pair of residues for which vectors were
constructed. Dynamic programming applied to each
resulting matrix determines a series of optimal local
alignments which are then summed into a
"summary" matrix to which dynamic programming
is applied again to determine the overall structural
alignment [13].

The second approach for solving the problem is
multiple structure alignments. This approach is
based on geometric hashing [16], or SSE
information [15]. The pair-wise and multiple
structure alignment approaches are not suitable for
searching for similarity over thousands of protein
structures. Database indexing and scalable searching
approaches satisfy this requirement.

The definition of the Multiple Structural
Alignment problem is not a straightforward issue.
Given m input molecules, should all m molecules
participate in the alignment or only a subset of the m
molecules? Certainly, we wish to detect the best
subsets which give a good multiple structure
alignments. Consider an example where among 100
input molecules there are 40 structurally similar
molecules from family “A”, 50 structurally similar
molecules from family “B” and additional 10
molecules, which are structurally dissimilar to any
other molecule in the input. Naturally, we require
from a Multiple Structural Alignment algorithm to

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 967 Issue 6, Volume 8, June 2009

detect simultaneously the similarity between the 40
molecules from family “A” and between the 50
molecules from family “B”. Also, there might be
only a sub-structure (motif, domain) that is similar
between some molecules. Thus, partial similarities
between the input molecules should also be reported
by the Multiple Structural Alignment algorithm
[20].

Obviously, the number of all possible solutions
could be exponential in the number of input
molecules. For example, consider proteins which
contain α-helices. Each pair of α-helices could be
structurally aligned (at least partially, if they are
different in their lengths). Any combination of α-
helices from different molecules gives us some
solution to the Multiple Structural Alignment
problem. The number of such combinations is
exponential. Thus, it is not practical to output (even
if the algorithm is capable to detect) all possible
solutions [20].

Multiple Protein Structural Alignment (MltiPort)
method is an example of the Multiple Structural
Alignment approach. It is based on the pivoting
technique, i.e. there is a pivot molecule that has to
participate in all the alignments. In other words, the
rest of the molecules are aligned with respect to the
pivot molecule. In order not to be dependent on the
choice of the pivot, we iteratively choose every
molecule to be the pivot one.

The goal of the Multiple Structural Alignment
with Pivot algorithm is to detect the largest
structural cores between the input molecules with
respect to the pivot molecule. The algorithm
requires that the pivot molecule participates in the
multiple alignments, but it does not require that all
the input molecules from the set S’ are included in
the multiple alignment. Thus, the method detects the
best partial multiple alignments [21].

The third approach for solving the problem is
protein structure indexing according to the
representation of the local features. Local
features can be extracted at residue level [19] or
SSEs level to approximate the structure of the
protein [18, 4].

Due to their time complexity, the pair-wise and
multiple structure alignment approaches are not
suitable for searching for similarity over thousands
of protein structures. Database indexing and
scalable searching approaches meet the online
searching requirement [2].

ProGreSS algorithm is an example of this
approach. It extracts the features for both the
structure and sequence, within a sliding window
over the backbone. The algorithm extracts a number

of feature vectors on sequence and structure
components of each protein in the database by
sliding a window. Each feature vector maps to a
point in a multi-dimensional space. Thus, a protein
is represented by a number of points. This multi-
dimensional space consists of orthogonal
dimensions for sequence and structure. Later, the
algorithm partitions the space with the help of a grid
and indexes these points using Minimum Bounding
Rectangles (MBRs).

Given a query, the search method runs in three
phases:

Phase 1 (index search): Feature vectors (i.e.,
points) are extracted from the query protein. For
each of these query points, all the database points
that are within εq and εt distance along the sequence
and the structure dimensions are found using the
index structure. Each such point casts a vote for the
protein to which it belongs as in geometric hashing
[22].

Phase 2 (statistical significance): For each
database protein, a statistical significance value is
computed based on the votes it obtained in Phase 1
and its length.

Phase 3 (post-processing): The top c proteins of
highest significance are selected, where c is a
predefined cutoff. The optimal pair-wise alignment
of these c proteins to the query protein is then
computed using the SW technique. Finally, the Cα
atoms of the matching residues are super-positioned
using the least-squares method [23], to find the
optimal RMSD (Root Mean Square Distance).

It is a fast, novel protein indexing method called
PSIST (which stands for Protein Structure Indexing
using Suffix Trees). As the name implies, the new
approach transforms the local structural information
of a protein into a sequence, on which a suffix tree
is built for fast matches. The algorithm first extracts
local structural feature vectors using a sliding a
window along the backbone. For a pair of residues,
the distance between their Cα atoms and the angle
between the planes formed by Cα, N and C atoms of
each residue are calculated. The feature vectors for a
given window include all the distances and angles
between the first residue and the rest of the residues
within the window. Compared with the local
features from a single residue, our feature vectors
contain both the translational and rotational
information. After normalizing the feature vectors,
the protein structure is converted to a sequence
(called the structure-feature sequence or SF-
sequence) of discredited symbols.

For a given query, all the maximal matches are
retrieved from the suffix tree and chained into
alignments using dynamic programming. The top

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 968 Issue 6, Volume 8, June 2009

proteins with the highest alignment scores are
finally selected. The results show classification
accuracy up to 97.8% and 99.4% at the super-family
and class level according to the SCOP classification,
and show that on average 7.49 out of 10 proteins
from the same super-family are obtained among the
top n matches. These results are competitive with
the best previous methods [2].

Protein structure index (PSI) method prunes
unpromising protein for the given protein query. It
is based on extracting feature vector for each protein
in database then indexing it using the R* tree. R*
trees are used to prune the search space to be used
by VAST structural alignment algorithm, this
reduction in search space resulting in reduce the
searching time [18].

The construction of index structure in this
algorithm is proceeds in four steps:
1. SSE approximation.
2. Triplet construction.
3. Feature vector extraction.
4. Multidimensional index structure construction.

Let D = {a1, a2, … , ad} be the set of protein
structures in the dataset.

SSE approximation is the first step in this
algorithm. Let a belongs to D be a protein structure,
where Sa = {s1,s2, …, sna} is the SSEs of a. let Rsi
= {ri,1, ri,2, …, ri,k}be the residues which
constitute si. The algorithm splits the Rsi into two
equal sized sets Rsi1 and Rsi2. C1 and c2 are
defined as the centers of mass of the residues in R-
si1 and Rsi2. A line segment approximation to si is
achieved by extending the line segment [c1, c2] by
half of the Euclidean distance between c1 and c2 in
both directions.

PSISA algorithm is used in searching for protein
structural similarities. The algorithm follows the
indexed database approach to solve the problem of
searching protein structure. Generalized Suffix
Array was used as the indexing structure; it is a
novel usage of this data structure to approach this
problem. The algorithm input is a set or all of the
known structure proteins which are used to build the
indexed database, Generalized Suffix Array. A
query protein(s) is given to build another
generalized suffix array, which is compared with
indexed database to find out all similar structure
proteins.

 FASTA algorithm and Smith-Waterman
algorithm are used as a final ranking step. This step
ranks the found proteins from the above mentioned
matching step between indexed database and query
generalized suffix array. The proteins are listed
according to how close they are similar in structure

to query protein. The memory usage of PSISA
algorithm outperforms all previous algorithms.

In this paper, we present a hybrid approach for
indexing the protein structure. The proposed
approach based on PSISA algorithm [1, 17] and
PSIST algorithm [2]. The proposed approach uses
the PSIST approach for extracting the feature
vector. And the suffix array structure used to index
data as in PSISA. The main contribution of the
proposed approach is that it investigates the usage of
wavelet in purpose of compressing the indexed
database. Therefore, the proposed approach
decreases the searching time required for queries.

Given a protein as a query, the generalized suffix
array is searched to find all the proteins that have
matching length greater than or equal to a certain
threshold. These proteins are ranked according to
the similarity to the query protein.

2 Wavelet Background
A wavelet is a mathematical function used to divide
a given function or continuous-time signal into
different frequency components and study each
component with a resolution that matches its scale.
The wavelet transform is relatively new (early 80s)
and has some similarities with the Fourier
transform. Wavelets differ from Fourier methods in
that they allow the localization of a signal in both
time and frequency.

The fundamental idea behind wavelets is to
analyze according to scale. A wavelet transform is
the representation of a function by wavelets. The
wavelets are scaled and translated copies (known as
"daughter wavelets") of a finite-length or fast-
decaying oscillating waveform (known as the
"mother wavelet (ψ)") [24, 25]. Wavelet transforms
have advantages over traditional Fourier transforms
for representing functions that have discontinuities
and sharp peaks, and for accurately deconstructing
and reconstructing finite, non-periodic and/or non-
stationary signals. Wavelets are functions that
satisfy certain mathematical requirements and are
used in representing data or other functions. If we
look at a signal with a large “window" we would
notice gross features. Similarly, if we look at a
signal with a small “window" we would notice small
features. The result in wavelet analysis is to see both
the forest and the trees, so to speak.

The scaling function of wavelet produces a
smoother version of the data set, which is half the
size of the input data set. Wavelet algorithms are
recursive and the smoothed data becomes the input
for the next step of the wavelet transform. The

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 969 Issue 6, Volume 8, June 2009

simplest example of a mother wavelet is the Haar
basis, Equation (1) is the Haar wavelet scaling
function:

2
1ssa ii

i
+

+
= (1)

where ai is a smoothed value and data sample si, si+1
are data samples. The Haar transform preserves the
average in the smoothed values. This is not true of
all wavelet transforms.

In digital signal processing terms, the wavelet
function is a high pass filter. A high pass filter
allows the high frequency components of a signal
through while suppressing the low frequency
components. For example, the differences that are
captured by the Haar wavelet function represent
high frequency change between an odd and an even
value.

In digital signal processing terms, the scaling
function is a low pass filter. A low pass filter
suppresses the high frequency components of a
signal and allows the low frequency components
through. The Haar scaling function calculates the
average of an even and an odd element, which
results in a smoother, low pass signal.

The wavelet transform have two forms
continuous and discrete. The continuous wavelet
transform, (CWT) for a function f (t) is defined by
equation (2):

∫
∞

∞−

− −
= dt

a
bttfbafCWT a)()(),,(2/1 ψ (2)

where a (the scale parameter) > 0, b (the translation
parameter). The continuous wavelet transform maps
a one-dimensional signal to a two-dimensional time-
scale joint representation. It is calculated by
continuously shifting a continuously scalable
function over a signal and calculating the correlation
between the two.

A wavelet decomposes a signal into several
groups (vectors) of coefficients. Different
coefficient vectors contain information about
characteristics of the sequence at different scales.
Coefficients at coarse scales capture gross and
global features of the signal while coefficients at
fine scales contain local details. The discrete
wavelet transform is an economical way to compute
the wavelet, because it is computed only on a dyadic
grid of points, where the subsampling is at a
different rate for different scales. The discrete
wavelet transform is commonly introduced using a
matrix or a computational form. In matrix form we

can represent the discrete wavelet transform [24]
through an orthogonal matrix.

The discrete wavelet transform is computed by
successive lowpass and highpass filtering of the
discrete time-domain signal as shown in fig. 1. This
is called the Mallat algorithm or Mallat-tree
decomposition. Its significance is in the manner it
connects the continuous-time multi-resolution to
discrete-time filters. In the figure, the signal is
denoted by the sequence x[n], where n is an integer.
The low pass filter is denoted by G0 while the high
pass filter is denoted by H0. At each level, the high
pass filter produces detail information; d[n], while
the low pass filter associated with scaling function
produces coarse approximations, a[n].

Fig. 1 three level wavelet decomposition trees

At each decomposition level, the half band filters
produce signals spanning only half the frequency
band. This doubles the frequency resolution as the
uncertainty in frequency is reduced by half.

There are a number of basis functions that can be
used as the mother wavelet for Wavelet
Transformation. Since the mother wavelet produces
all wavelet functions used in the transformation
through translation and scaling, it determines the
characteristics of the resulting Wavelet Transform.
Therefore, the details of the particular application
should be taken into account and the appropriate
mother wavelet should be chosen in order to use the
Wavelet Transform effectively.

Haar wavelet is one of the oldest and simplest
wavelet. Therefore, any discussion of wavelets starts
with the Haar wavelet. Daubechies wavelets are the
most popular wavelets. They represent the
foundations of wavelet signal processing and are
used in numerous applications. These are also called
Maxflat wavelets as their frequency responses have
maximum flatness at frequencies 0 and π. This is a
very desirable property in some applications. The
Haar, Daubechies, Symlets and Coiflets are
compactly supported orthogonal wavelets. These
wavelets along with Meyer wavelets are capable of
perfect reconstruction. The Meyer, Morlet and
Mexican Hat wavelets are symmetric in shape. The
wavelets are chosen based on their shape and their
ability to analyze the signal in a particular
application.

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 970 Issue 6, Volume 8, June 2009

3 Methodology
In this paper, we present three different
implementations for the Haar transform. Wavelet
compression is a form of data compression well
suited for image compression (sometimes also video
compression and audio compression). The goal is to
use this compression method for compressing the
data which present proteins.

For extracting the local feature vector we used
the same method used in the PSIST. Considering
using the sliding window technique, we slide the
window through the backbone of the protein, where
the window size (w) presents the number of residues
in the window. The feature vector contains 2 * (w-1)
values, these values describe the relation between
the first residue and other residues in the window.
For the first residue in the window and each other
residue we calculate two values, they are the
Euclidean distances between the Cα in the two
residues which presents the distance between these
two residues. The second value is the angle between
these two planes containing these two residues.

Each protein is presented by a 2D array of varied
number of columns depends on the number of
amino acids comprising protein and even number of
rows depends on the window size. The three
methods are based on compressing the 2D data of
the array which presents proteins to half the size.
The different between every each method is based in
how the data are divided in four sub-arrays.

The first column in the array contains data for
the first position of the sliding window; the second
column in the array contains data for the second
position of the sliding window and so on. The
number of items in each column must be even
number.

The first method compress data as follow: it
takes each pair of data in each column and present it
by one value which is the average of the pair values.

So data compressed to half the size. Fig. 2
depicts the data which averaged by first method.

Fig. 2 first method of compression

The second method compress data as follow: it
takes the first element of the first column and the
corresponding value in the next column and
calculates the average of the pair values. So data
compressed to half the size. In other words this
method use the column with odd index and the next
column with even index, by taking just two column
at once to compress data by compressing pairs of
element in the odd column and the corresponding
element in the next even index column. Fig. 3
depicts the data which averaged by the second
method.

Fig. 3 second method of compression

The third method compress data as follow: it
takes two columns one with even index and next
column with odd index then we calculate the
average of data for each four adjacent elements.
Two columns with even number of elements can be
divided into number of squares equals half of the
number of elements in the two columns. Each
square of data is presented by the average of all
elements in this square, the four elements. Fig.4
depicts the data which averaged by the third
method.

Fig. 4 third method of compression

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 971 Issue 6, Volume 8, June 2009

Fig. 5 pseudo-code for the second method

Fig. 5 state the algorithm of the second method.

We just state the second method because it gives the
best results in accuracy meanwhile all of the three
methods are equal in memory usage and query
processing speed. The method input is
“FeatureVectorList” which is a list of feature
vectors. Each feature vector contains even number
of values. Method starts by a loop “outer for” to
read all the input feature vectors. Each new iteration
starts by creating “newFeatureVector” which is a
new feature vector to hold the new values. Then the
inner loop starts to calculate the average of the first
component of ith feature vector and the
corresponding component of (i + 1)th feature vector.
The average value is stored in the
newFeatureVecotr. The process of calculating the
average of the jth component of both ith and (i+1)th
vectors is repeated till the last component in both
vectors. Final to steps in the outer loop is to replace
the ith feature vector with the newFeatureVector and
delete the (i + 1)th feature vector. The result is
replacing two feature vectors with one feature
vector. The compression ratio is exactly the half
size.

Fig. 6 pseudo-code for searching algorithm

In searching for similarity algorithm we consider

that the query GSA length is n and the database
GSA length is m, where m >> n. qSA is the query
suffix array, dbSA is the database suffix array, and l
is threshold of the maximal matching length. i is the
qSA iterator and j is the dbSA iterator. MList is a
list that contains all matched proteins resulting from
the search process with length of the maximal
matching. MaximalMatchesSearch is a function that
matches two suffixes one form qSA and the other
from dbSA; it starts matching form the first symbol
in both suffixes and finally returns the number of
successive matched symbols. It stops matching with
the first mismatched symbol.

INPUT : qSA , l
OUTPUT : list of matched proteins MList
dbSA, l)
 j = 1
FOR i = 1 TO n DO
 Clear querylist
 Querylist. Add (i)
 queryFirstSymbol = qSA[i].firstsymbol
 i = i + 1
 WHILE qSA[i].firstsymbol = qSA[i-1].firstsymbol DO
 Querylist.add(i)
 i = i + 1
 ENDWHILE
 WHILE dbSA[j].firstsymbol < queryFirstSymbol DO
 j = j + 1
 ENDWHILE
 IF dbSA[j].firstsymbol > queryFirstSymbol THEN
 GOTO next FOR iteration
 ENDIF
 WHILE !querylist.empty() AND j < m DO
 FOR K = 0 TO querylist.length DO
 matchedLength = MaximalMatchesSearch (
 dbSA[j] , qSA[querylist.get(K)])
 IF matchedLength >= l THEN
 Foreach proteinNo Pq in qSA[querylist.get(K)] Do
 Foreach proteinNo Pdb in dbSA[j] DO
 Add(Pq, Pdb, matchedLength) to Mlist
 ELSE
 IF qSA[querylist.get(K)].FirstMismatchedsymbol

 < dbSA[j]. FirstMismatchedsymbol THEN
 Querylist.reomve(K)
 ELSE
 Exit FOR
 ENDIF
 ENDIF
 ENDFOR
 j = j + 1
 ENDWHILE
ENDFOR

INPUT: FeatureVectorList
OUTUPT: CompressedFeatureVectorList

FOR I = 0 TO FeatureVectorList.size()-1 DO

Create newFeatureVector

FOR J = 0 TO
FeatureVectorList.getVector(i).size DO

1. Newfaturevector.add(
FeatureVectorList.getVector(i).getComp
onent(j) + FeatureVectorList.getVector(i
+ 1).getComponent(j)

ENDFOR

1. Replace ith FeatureVector with
newFeatureVector

2. Delete (i +1)th
 featurevector

ENDFOR

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 972 Issue 6, Volume 8, June 2009

Fig. 6 states the searching algorithm; we scan the
dbSA and qSA elements only one time. The
searching process starts by grouping the qSA
elements into groups according to the first symbol
of these elements. Each group is presented by a list
called query list. Working on these lists is sequential
so we prepare the first list and match it to some
elements from dbSA then we prepare the second list
and match it too the same way till we finish all
elements in the qSA. So the qSA is scanned only
one time.

Having the first query list prepared from qSA as
described above, we start matching all the list
elements with the first element in the dbSA,
supposed its index is dbSA iterator, starting with the
same symbol as query list elements. Then we
increase the dbSA iterator by one to decide if that
new element starts with same symbol as elements of
the query list or not. We stop increasing the dbSA
iterator when we reach to dbSA element with first
symbol logographically greater than the first symbol
of query list elements. The reason for stopping the
matching process that we know both the qSA, in
turn query list, and dbSA are logographically
ordered. For example if we prepared the query list
of all qSA elements that starting with symbol 'A', so
we will match list elements with all elements of
dbSA appears before the first dbSA element that
starting with symbol 'B'. Since the matching length
between any element of the query list and the first
element of dbSA starting with symbol 'B' is zero
which is less than l and that is true for all dbSA
elements come after this element, the one starting by
symbol 'B'.

After stopping matching because of the reasons
we stated above, a new query list is prepared from
qSA and matching will start not from the beginning
of dbSA but from the dbSA element where the
previous step stopped at. For example, if matching
of the query list of elements starting with symbol 'A'
is finished, then we prepare a new query list that
contains elements starting by symbol 'B' and the
matching process will start from the first element of
dbSA that starting by symbol 'B', the one where we
stopped at from the previous step.

4 Experimental Results and Discussion
Many databases that hold information about the
protein exist nowadays; some of them provide
information about the protein sequence only. Others
provide information about the secondary and tertiary
structure, but the widely used databases are for the
secondary structure since the functions of protein
can predicted from its structure better than its
sequence.

Genbank, the National Institute of Health (NIH),
is built by National Center for Biotechnology
Information (NCBI), SWISS-PORT, Protein
Information Resource (PIR), Protein Databank
(PDB), and Structural Classification Of Protein
(SCOP), are some of long list of organizations that
produce database for protein.

SCOP database is a classified version of PDB,
scientist manually, by visual inspection, classify the
data in the PDB files they first clustered the protein
with similar domains then producing a set of
families then families are grouped into super-
families in turn it grouped into folds. SCOP now has
7 domains applying this classification on each
domain.

The experiment is based on SCOP database.
Since SCOP classifies data in classes of similar
structure proteins. SCOP was used as reference for
measuring the accuracy of the proposed algorithm
for retrieving correct proteins. The algorithm was
implemented using java. The experiments were
performed on a PC with core duo 1.86GHz
processor and 1 GB RAM on window Vista XP SP2
edition.

The experiment used a prepared dataset DDS
which consisted of 181 * 10 = 1810 protein
structures. These protein structures were collected
from different 181 superfamilies. Super-families
belongs to domains which are α, all β, α + β and α /
β. The dataset of query proteins, DQ, was obtained
by choosing a protein structure at random from each
superfamily. The results shown below for PSISAW
are the results of the second method explained in the
previous section, since the second method gives the
best performance.

Table 1 Running Time for query

Algorithm Algorithm query time
in second

PSISA 2.49

PSIST 1.5

PAST 0.44

PSISAW 0.6

Table 2 Searching time for different

Algorithms

Algorithm Searching time in
second

PSISA 0.45
PSIST 0.68
PAST 0.44

PISSAW 0.43

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 973 Issue 6, Volume 8, June 2009

Table 1 shows the query average time for PSIST
algorithm which is 1.5seconds. Meanwhile it is for
PSISA is 2.5 seconds that is means that PSIST is
faster than PSISA by 1.55 times approximately. We
notice that the average query time of PSISAW is 0.6
second. Because of the usage of the Wavelet as a
compression technique, preprocessing step, with
PSISA the average query time is reduced to more
than half of PSIST time. PAST average time is 0.44
seconds, since PAST uses a simple feature extractor
technique which does not consume a lot of time as
previous algorithms. Table 2 shows the comparison
of searching time without calculating the pre and
post-processing steps. Table 2 shows that PSISA
searching time is 0.45 second and PSIST time is
0.68, we can conclude that PSISA is faster than
PSIST with 1.5 times. PSISAW searching time is
043 seconds. Finally we conclude that PSISAW is
faster than other algorithms because the PSISW
search a smaller suffix array than PSISA in memory
size.

Table 3 the memory usage of algorithms

Algorithm Algorithm Memory usage
in MB

PSIST 111

PSISA 61

PAST 58

PSISAW 31

Table 3 shows the memory usage for PSISA,

PSIST and PSISAW. The table shows that PSISA
use approximately half the memory size used by
PSIST. PAST algorithm memory consumption is 58
MB. The memory used by PSISAW is 31 MB. We
conclude that memory usage for PSISAW reduces
to the half memory size of PSISA approximately
because of the uses of wavelet as a compression,
preprocessing, step for PSISA algorithm.

0

20

40

60

80

100

120

D6 D7 D8 D9 D10

Datasets

S
iz
e
o
f
In
d
ex

ed
 D
at
as

et
 i
n
 M

B

P S IS T

P S IS A

P S IS AW

Fig. 7 Memory usage comparison

Fig. 7 depicts the memory usage for PSIST,
PSISA and PSISAW for different datasets. We
prepared 5 datasets differ in size for the experiment
D6, D7, D8, D9 and D10. All the datasets contain
proteins from different 181 superfamilies from the
four classes. considering Dn dataset , n presents the
number of the proteins which are taken from each
superfamily, so the size of each dataset is n
multiplied by 181, the number of superfamilies, for
example the D8 dataset contains 1448 (8 * 181)
proteins.

Table 4 Accuracy of the algorithms

Algorithm SUPERFAMILY CLASS

PSIST 96.6% 98.3%

PSISA 96.6% 98.3%

PAST 100% 48%

PSISAW 82.5% 86%

Table 4 shows the accuracy of the proposed

algorithm PSISAW comparing with PSIST, PSISA
and PAST algorithms [4]. The proposed algorithm
outperforms the PAST algorithm in accuracy
meanwhile it gives accuracy less than PSISA and
PSIST because of the uses the lossy compression
technique as the preprocessing step for PSISA.

4 Conclusion

In this paper, we have presented a hybrid
approach that provides the ability to retrieve
similarities of proteins based on their structures. We
have used the wavelet to compress the indexed data.
As a result the accuracy is less than the best known
accuracy by PSIST with 10% meanwhile the speed
is enhanced five times. The experiment results show
that our proposed algorithm outperforms the PSISA
in memory usage with factor exceeds 50%.

References:

[1] Tarek F. Gharib, A. Salah and Abdel-Badeeh M.
Salem "PSISA: an Algorithm for Indexing and
Searching Protein Structure using Suffix Arrays" In
The WSEAS International Conference on
Computers, pages 775-780, 2008.

[2] Feng Gao, Mohammed J. Zaki, PSIST: Indexing
Protein Structures using Suffix Trees, in IEEE
Computational Systems Bioinformatics Conference,
Palo Alto, CA, August 2005.

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 974 Issue 6, Volume 8, June 2009

[3] A. Murzin, S. Brenner, T. Hubbard, and C.
Chothia. SCOP: a structural classification of
proteins database for the investigation of sequences
and structures. J. Mol. Biol., 247:536. 540, 1995

[4] Hanjo Taubig, Arno Buchner and Jan Griebsch
"PAST: fast structure-based searching in the PDB",
Nucleic Acids Research, Vol. 34, p.p. w20-w23
Web Server issue, 2006.

[5] Amit P. Singh, Douglas L. Brutlag, Protein
Structure Alignment: A Comparison of Methods,
2000.

[6] S. Mallat. A Wavelet Tour of Signal Processing.
Academic, New York, 2nd edition, 1999.

[7] JACQUES COHEN, Bioinformatics—An
Introduction for Computer Scientists, ACM
Computing Surveys, Vol. 36, No. 2, pp. 122–158,
June 2004.

[8] I. Eidhammer, I. Jonassen, and W. Taylor.
Structure comparison and structure patterns. Journal
of Computational Biology, 7(5):685.716, 2000.

[9] L. Holm and C. Sander. Protein structure
comparison by alignment of distance matrices. J.
Mol. Biol, 233:123.138, 1993.

[10] I. Shindyalov and P. Bourne. Protein structure
alignment by incremental combinatorial
extension(ce) of the optimal path. Protein Eng.,
11(9):739.747, 1998.

[11] T. Madej, J. Gibrat, and S. Bryant. Threading a
database of protein cores. Proteins, 23:356.369,
1995.

 [12] K. Mizoguchi and N. Go. Comparison of
spatial arrangements of secondary structural
elements in proteins. Protein Engineering,
8:353.362, 1995.

[13] C. Orengo and W. Taylor. SSAP: Sequential
structure alignment program for protein structure
comparisons. Methods in Enzymol., 266:617.634,
1996.

[14] Y. Lamdan and H. Wolfson. Geometric
hashing: a general and efficient model-based
recognition scheme. Intl. Conf. On Computer
Vision (ICCV), pages 238.249, 1988.

[15] O. Dror, H. Benyamini, R. Nussinov, and H.
Wolfson. MASS: Multiple structural alignment by
secondary structures. Bioinformatics,
19(12):95.104, 2003.

[16] R. Nussinov, N. Leibowit, and H. Wolfson.
MUSTA: a general, efficient, automated method for
multiple structure alignment and detection of
common motifs: Application to proteins. J. Comp.
Bio., 8(2):93.121, 2001.

[17] Tarek F. Gharib, A. Salah, I. M. El Henawy
and Abdel-Badeeh M. Salem "Protein Structure
Searching using Suffix Arrays" In The International
Conference on Bioinformatics & Computational
Biology (BIOCOMP), pages 688-691, 2008.

[18] O. C¸ amoglu, T. Kahveci, and A. Singh.
Towards index based similarity search for protein
structure databases. IEEE Computer Society
Bioinformatics Conference (CSB), pages 148.158,
2003.

[19] A. Bhattacharya, T. Can, T. Kahveci, A. Singh,
and Y.Wang. Progress: Simultaneous searching of
protein databases by sequence and structure. Pacific
Symp. Bioinformatics, pages 264.275, 2004.

[20] M. Shatsky, R. Nussinov, and H. Wolfson,
Multiprot – a multiple protein structural alignment
algorithm. Proteins, 56:143.156, 2004.

[21] A. D. McNaught and A. Wilkinson,
Compendium of Chemical Terminology second
edition, 1997.

[22] H. J.Wolfson and I. Rigoutsos. Geometric
hashing: An introduction. IEEE Computational
Science & Engineering, pp. 10–21, Oct-Dec 1997.

[23] K. S. Arun, T.S. Huang, and S.D. Blostein.
Least-squares fitting of two 3-D point sets. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, PAMI-9(5)698–700, September 1987.

[24] Mallat,S.G., A theory for multiresolution signal
decomposition:the wavelet representation. IEEE
Trans. Pattern Analysis and Machine Intelligence,
11, 674–693, 1989.

[25] Daubechies,I. Ten Lectures on Wavelets.
SIAM, Philadelphia, 1992.

WSEAS TRANSACTIONS on COMPUTERS Tarek F. Gharib

ISSN: 1109-2750 975 Issue 6, Volume 8, June 2009

