
Research on Protocol-Level Behavioral Substitutability of Software

Components in Component-based Software System

HAIYANG HU
1,2

 HUA HU
1,3

1
College of Computer Science and Information Engineering,

Zhejiang Gongshang University, Hangzhou 310018
2
State Key Laboratory for Novel Software Technology,

 Nanjing University, Nanjing 210093
3
Hangzhou Dianzi University, Zhejiang, China, 310018

Abstract: The component-based software development (CBSD) has been paid more attention by software

practicers in recent years. How to analyze and verify behavior-level component substitutability is very

important when the component-based software system needs upgrading or maintaining. Concentrating on the

component-based software system, this paper formally specifies the components and their interaction

behaviors, analyzes the behavior of the new component compared with the old one, and then presents a set of

rules for verifying behavioral substitutability of components in software system to ensure the behavioral

compatibility whenever a component is replaced by a new one. Finally, an example of e-commerce is presented

to illustrate the feasibility and pertinence of this approach.

Key-Words: software component component composition behavioral compatibility behavioral substitutability

1 Introduction
Being an important direction in software

engineering research [1], component-based software

development (CBSD) has been paid more attention

by software researchers and developers. The

component-based software system has such

advantages as adaptability, flexibility and easy

maintenance. Moreover, component-based software

system can improve development efficiency and

software quality through reusing software component

to construct a complex software system. Thus, it can

make the software development timely to meet the

changes of the market. From the 1970s to now,

various component technology and products continue

to emerge, and there is a large number of studies

working on it. [1,2]

When we upgrade and maintain the component-

based software system, we often need to take into

account whether an old component can be replaced

by a new one or not, and whether the behavior of the

entire system after replacement can still preserve

compatible. To meet this requirement, at present,

several mature object-oriented component

productions (such as CORBA�EJB�COM/DCOM)

describe and standardize the external interaction

among components through the Interface Definition

Languages (IDLs). However, IDLs only defines the

syntax of component interaction, such as the number

of parameters, the types of parameters and their

sequences in the interface. Hence, the approach of

IDLs can’t support ensuring the correctness of

behavioral interactions among components. From the

late 1990s to now, the technology of describing and

verifying behavioral interactions among components

has been focused on by researchers. Meanwhile,

most works [3][4][5][6][7] only consider the

components’ substitutability under the case where the

provided interfaces of new component differs from

the old one’s, and they rarely take into account the

case where the components replaced can also have

requested interfaces to the external environments at

the same time. On the other hand, the components

contained in a software system may be distributed in

the network environment, and provided by different

providers. These providers may not be able to know

exactly about the specific behavioral requests from

the external users to the component. Hence, how to

replace a component without affecting all external

users needs a further study.

In this paper, based on process algebra, we

present a set of rules for verifying protocol-level

behavioral substitutability of components in software

system to ensure the behavioral compatibility in the

updated system. The rules include: for an assembly

containing only two components, 1) the rule for

ensuring substitutability when a component is

replaced by a new component with its provided

interface expanding; 2) the rule for ensuring

substitutability when the new component has

changed the behavioral of both its provided and

requested interfaces. Based on these rules, we present

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 956 Issue 6, Volume 8, June 2009

the rules for behavioral substitutability in the

multiple-component software system.

In the remainder of this paper, section 2

overviews the basic knowledge and concepts

required. In section 3, we present a formal definition

for a component with its interaction behavior

expanded. The rules for behavioral substitutability

among components are presented in section 4. In

section 5, we illustrate the features of this paper by a

specific e-commerce example. In section 6, we

discuss the related work and give a conclusion of this

paper.

2 Basic Concepts
Similar to the related work of current researchers

[8][9][10], this paper formally describes the external

behavior of component based on process algebra. We

use PA that is proposed by Bernardo.M [11]

to

formally describe and verify the behavioral

substitutability.

Definition 1 The process terms of PA is

generated by the following syntax:

E::= 0 | a.E | E/L| E\L | E[φ] | E1 + E2 | E1||S E2 | A

� 0 is the term that can’t perform any action.

� "a.E" can execute action a and then behaves as

term E.

� "E/L" behaves as term E except that each

executed action a is hidden, i.e. turned into τ ,

whenever La∈ .

� "E\L" behaves as term E except that each

executed action a is forbidden, whenever La∈ ,

and E\L≡E ||L 0.

� "E[φ]" behaves as terms E except that each

execution a becomes φ(a);

� "E1 ||S E2" asynchronously executes actions of E1

or E2 not belonging to S and synchronously

executes actions of E1 and E2 belonging to S.

� E1 + E2 behaves as either term E1 or term E2

depending on whether an action of E1 or E2 action

is executed.

The related operational semantics of PA are

shown in table 1.

Definition 2 A relation ςς ×⊆B is a weak

bisimulation, if and only if, whenever (E1, E2)∈B�

then for all a∈Act:

� whenever E1 →a E1'� then E2

a
)

a E2'� and (

E1',E2')∈ B;

� whenever E2 →a E2'� then E1

a
)

a E1'� and (

E1',E2')∈B�

The union of all weak bisimulations can be

denoted as ≈B. Here
σ
a ≡

mτ
⇒

σ
⇒

nτ
⇒ , and

σ
⇒ →→≡ naa

...1 , if σ = naa ...1 �For â , if a =τ , â =ε

�else â =a�

Definition 3 The state transition of a term E can

be defined as: E ≡ S0 → 1a S1… → −1na Sn-1 → na Sn�

if there exists a executed trace < a1, a2, .. an > for E,

and the actions of this trace can be observed.

Deadlock in the process reflects that a process is

in a blocked state where the process is not terminated

successfully, and it can’t continue to execute any

action. The deadlock-free process can be formally

defined as following:

Definition 4 A term E is said to be deadlock

free, if and only if, for each state s of its underlying

state transition graph, there exist an observable action

a and a state s', such that s
a

⇒ s'�

A simulation relation between two processes is

formally defined as:

Definition 5 A relation ςς ×⊆B is a simulation,

if and only if for (E1, E2) B∈ , whenever E1

σ
a E1',

there exists E2', E2

σ
a E2' and (E1', E2') B∈ .

3 System Model
In current component-based system, component

model describes the provided and requested

interfaces of a component, and its interactions with

other ones through the interfaces, and etc. We present

a formal component model with expansion of

behavioral protocol as following:

1. a.E →a E 2.
LELE

EE
a

a

/'/

'

→

→
if a∉L 3.

LELE

EE
a

/'/

'

→

→
τ if a ∈ L

4.
2121

11

||'||

'

EEEE

EE

S

a

S

a

→

→
 if a∉S 5.

'||||

'

2121

22

EEEE

EE

S

a

S

a

→

→
 if a∉S

6.
'||'||

','

2121

2211

EEEE

EEEE

S

a

S

aa

→

→→
 if a∈S 7.

'

'

21

1

EEE

EE
a

a

→+

→
 8.

'

'

21

2

EEE

EE
a

a

→+

→

9.
]['][

'
)(ϕϕ ϕ

EE

EE
a

a

→

→
 10.

'

'

EA

EE
a

a

→

→
 if A ∆ E

Table 1� Operational semantics for PA

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 957 Issue 6, Volume 8, June 2009

Definition 6 A component C with expansion of

behavioral protocol is defined as such a tuple, C�

< P

CI , R

CI , CA , CL , CP >, where:

� P

CI is a set of interfaces provided by C. For any

Itei∈ P

CI �Itei provides a set of operations that are

called by other components;

� R

CI is a set of requested interfaces. For any

Itei∈ R

CI , Itei contains a set of operations which

are requested by other components;

� CA is the set of executed actions, including three

parts, requested, provided and internal actions,

which are denoted as R

CA , P

CA and H

CA

respectively. These three parts are disjoint;

� CL is a set of connections between C and other

components. For any connection li ∈ Lc , li =<

RIte, PIte, Ins, PL >�which denotes that C is

connected with some other component. In the

tuple, RIte∈ R

CI is one of C’s requested

interfaces, PIte is the corresponding interface

provided by the external component iC and RIte

and PIte are matched in syntax. Hence, C is able

to call iC through PIte. The item Ins is an

instance of iC and PL is the location of iC .

� CP denotes the behavioural protocol of C, which

is formal defined by PA. CP is defined in such a

tuple (CS , CΓ), where CS a finite set of states.

We use Inits and Finas denote the initial and

terminative state, respectively. CΓ ⊆ CS × CA × CS

is a finite set of transitions between states, such

that CΓ ={ j

a

iCCjiji ssAaSsssas →∧∈∈ ,,|),,(}.

This paper supposes that CP is defined as

preserving determinacy, which means that if

CP
σ

⇒ 'CP ∈ CP
σ

⇒ "CP � then it holds 'CP ≈B "CP . CP

also holds correctly-terminated, which is for any

state s' CS∈ , whenever s'≠ Finas , there exist a σ ∈ *

CA

and s'
σ

⇒ Finas . We also use)(Cco Ptrace denote

)(Cco Ptrace ={σ |σ ∈ *

CA and Inits
σ

⇒ Finas }.

For two components iC =< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC =< P
C j

I , R
C j

I ,
jCA ,

jCL ,
jCP > connected

with each other through an interface Ite provided

by jC , we will analyze their interaction behavior,

iCP Ite||
jCP . If iC and jC are connected through more

than one interfaces, we use),(ji CCe denote the set

of these interfaces, and the actions in these

interfaces are denoted as),(ji CCa = U
|),(|1 ji CCek

kIte
≤≤

),(jik CCeIte ∈). Clearly, if two components are

disconnected, it holds that),(ji CCe =φ . During the

interactions, iC and jC will asynchronously execute

the actions belonging to),(ji CCa . Based on this, we

present the notion of behavioral compatibility as

following:

Definition 7 For two components iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC �

< P
C j

I , R
C j

I ,
jCA ,

jCL ,
jCP > assembled together through

an interface Ite, iC and jC is behavioral

compatibility on Ite if and only if, for the initial

states of
iCP Ite||

jCP , (j
Init

i
Init ss ,), there exists a

σ ∈ *)(
ji CC AA ∪ ∧ σ ↑Ite ≠ < >, and it holds that

(j
Init

i
Init ss ,)

σ

⇒ (j
Fina

i
Fina ss ,).

A software system containing n components {C1,

C2,…, Cn }(iC =< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP >) is formally

defined is as follows:

Definition 8 A software system, MCS, containing

n component, is denoted as MCS

= >< MMMMM PTIEV ,,,, , where:

� MV = { C1, C2,…, Cn } is a set of software

components assembled in the system, and iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP >;

� ME = U
jinji

ji CCe
≠≤≤ ,,1

),(is the set of all interfaces

through which the components interact with

each other;

� MI is the set of interfaces through which MCS

interacts with its external environment. For

MI = R
M

P
M II ∪ , P

MI � M

ni

P

C EI
i 








≤≤
U

1

is the set of

interfaced provided by MCS, and R
MI �

M

ni

R

C EI
i 








≤≤
U

1

is the set of interfaces requested by

it;

� MT is a set of all connections in MCS,

MT = U
ni

Ci
L

≤≤1

;

� MP is the internal behavior of MCS and it is

defined as as MP =
1CP),(21

|| CCa 2CP),(),(3231
|| CCaCCa ∪ 3CP

||...),(...),(11
||

nnn CCaCCa −∪∪ nCP .

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 958 Issue 6, Volume 8, June 2009

The state Ms of MP is denoted as Ms = (s1,…, sn)

where si∈ iCS , 1 ≤ i ≤ n. Then, the state transitions

of MP change as following:

Definition 9 Suppose s and s' are two different

states of MP , s = (s1,…, sn) and s' = (s1',…, sn').

When one of the two following conditions are

satisfied, MP transits from state s to state s' by

executing an action a, which is s →a
s'.

� there are an action a H

Ci
A∈ and such a state

transition (si, a, si')∈ iCΓ , and for the states

of the other component Cj (1 ≤ j ≤ n, j ≠ i), it

holds sj = sj';

� there are an action a∈ Ite, Ite∈ e(Ci, Cj) (1 ≤ i,

j ≤ n, i ≠ j), and two state transitions (si, a, si'

)∈
iCΓ and (sj, a, sj')∈ jCΓ , and for the states

of the other components Ck (1 ≤ k ≤ n, k ≠i,

j), it holds that sk = sk'.

The deadlock-free behavior of MCS, MP , means

that executing any synchronous actions in the

interfaces makes none of the components into a dead-

lock state. A system with a deadlock-free behavior

can be formally defined as following:

Definition 10 For a MCS containing n

components, {C1, C2,…, Cn }(iC �< P

Ci
I , R

Ci
I ,

iCA ,

iCL ,
iCP >), its behavior MP is deadlock-free, if and

only if, for MP ’s Initial state(n
InitInitInit sss ,...,, 21), there

exists a trace σ ∈ *

1

)(U
ni

Ci
A

≤≤

with σ ↑(U
jinji

ji CCa
≠≤≤ ,,1

),() ≠ <

>, and it holds that

(n

InitInitInit sss ,...,, 21)
σ

⇒ (n

FinaFinaFina sss ,...,, 21).

For a software components system MCS holding

a deadlock-free behavior, if one of its components

jC is replaced by a new one 'jC , and 'jC still

preserves behavioral compatibility with other

components in the system, we say that jC can be

replaced by 'jC . Suppose a component iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > will be replaced by a new one

'iC � < P

Ci
I ' , R

Ci
I ' , 'iCA , 'iCL , 'iCP >. To meet the

requirement of replacement, a necessary condition

must be holding, which is R

Ci
I ' ⊆

R

Ci
I ∧ R

Ci
A ' ⊆

R

Ci
A . It

means that the new component can’t require more

things from the environment than the old one.

4 Verification of Behavioural Substitut-

ability
4.1 Behavioral Compatibility Between Two

Components

Suppose component Ci interacts with jC through

an interface Ite provided by jC . To preserve

behavioral compatibility, Ci only concerns the

behavior of jC shown on Ite. The same to jC , it only

concerns whether the corresponding request behavior

of Ci showing on the interface meets its requirements.

So, if Cj can support all the requests from Ci on this

interface, and simultaneously, the behavior of Ci

meets the conditions needed by Cj, then they will

interact with each other compatibly.

Theorem 1 Suppose two components iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC �< P

C j
I , R

C j
I ,

jCA ,

jCL ,
jCP > interact with each other through an

interface provided by jC , Ite. If the two following

conditions hold, the behavior of the interactions

between iC and jC on Ite is compatible:

� (
iCP || Ite jCP)/D1≈B iCP /D2�here D1 =

iCA
jCA∪ �

Ite�D2 =
iCA � Ite�

� traceco(iCP)↑Ite ⊆ traceco(jCP)↑Ite;

The proof of theorem 1 is in [15], which gives a

condition of a partial order behavioral compatibility

between two components interaction. In this scene,

only one component has requests for the other. While

in some scenes, both of the two components have

requests for the other. Suppose two components iC

and jC interact with each other through the interfaces

Ite1 and Ite2 provided by iC and jC , respectively. If

each component can meet the requirements of the

other one on the provided interface, and follow the

conditions needed by the other one on the requested

interface, they will interact with each other

compatibly.

Theorem 2 Suppose two components iC =

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC =

< P

C j
I , R

C j
I ,

jCA ,
jCL ,

jCP > interact with each other

through two interfaces Ite1 and Ite2,

Ite1∈ ∩P

Ci
I R

C j
I ∧ Ite2∈ R

Ci
I P

C j
I∩ , which are provided by

iC and jC , respectively. If the following two

conditions hold simultaneously, the behavior of the

interactions between iC and jC on the interfaces Ite1

and Ite2 is compatible:

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 959 Issue 6, Volume 8, June 2009

� (
iCP

21
|| IteIte ∪ jCP)/D1≈B iCP /D2, and

traceco(iCP)↑Ite2 ⊆ traceco(jCP)↑Ite2, where

D1= (
iCA ∈

jCA)�Ite2�D2 =
iCA �Ite2;

� (
iCP

21
|| IteIte ∪ jCP)/D3≈B jCP /D4, and

traceco(jCP)↑Ite1 ⊆ traceco(iCP)↑Ite1, where D3

�(
iCA ∈

jCA)�Ite1�D4 =
jCA � Ite1.

The proof of theorem 2 is also in [15].

4.2 Behavioral Substitutability in a Two-

Component Assembly

Suppose two components iC and jC interact with

each other through an interface Ite provided by C.

Their behavioral compatibility follows the conditions

presented in theorem 1. Now, C will be updated by a

new component C' that has a new provided interface

Ite' corresponding to Ite. To preserve behavioral

compatibility in the updated system, three conditions

must be satisfied simultaneously: 1) All the

operations provided in Ite must also be provided in

Ite', which means Ite ⊆ Ite' ; 2) To meet the external

requirements from other components, all the

behavior of C shown on Ite will be also supported by

C'; 3) As Ite' may contain some new operations that

don’t appear in Ite, the execution of these new

operations will not affect the execution of the old

operations. We present this rule as following:

Theorem 3 Suppose two components iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC �

< P

C j
I , R

C j
I ,

jCA ,
jCL ,

jCP > are assembled through an

interface Ite provided by jC . Their behavioral

compatibility follow the conditions presented in

theorem 1. Now, jC will be updated by a new one

'jC = < P

C j
I ' , R

C j
I ' , 'jCA , 'jCL , 'jCP > with a provided

interface Ite' corresponding to Ite, and Ite ⊆ Ite'. If it

holds that ('jCP \(Ite'−Ite))/('jCA −Ite')≈B

jCP /(
jCA −Ite), jC can be behaviorally substituted by

'jC .

The proof of theorem 3 is in [16]. It shows the

fact that Ite' provided by the new component may

contain a set of new operations, Ite' −Ite. And

execution of these new operations will not influence

the executions of other operations.

Often, the new component doesn’t include

additional operations in Ite', which means Ite'�Ite

=φ . It may just extend the provided behavior on the

interface. However, theorem 3 can’t verify this case.

Here, we first introduce a notion of dual component,

and based on it we present another rule to verify the

behavioral compatibility under this case.

Definition 11 Component C is a dual

component of C, if the following conditions hold

(1) R

C
A = P

CA ∈ P

C
A = R

CA ∈ H

C
A = H

CA ; (2) R

C
I = P

CI ∈ P

C
I = R

CI ; 3)

C
P ≡ CP .

From the definition, we can see that the

behavioral protocol of C is the same as the one of C,

except that all requested operations become provided

operations, and all requested operations become

provided operations in the dual component.

Lemma 4 Suppose two components iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC �

< P

C j
I , R

C j
I ,

jCA ,
jCL ,

jCP > interact with each other

through an interface Ite provided by jC . Their

behavioral compatibility satisfies the conditions

presented in theorem 1. Now, suppose jC is the dual

component of component jC ,
jC

P /D can

simulate
iCP /D2, where D =

jC
A −Ite.

The proof of lemma 4 is presented in [16]. From

the lemma 4, if the behavior of the interactions

between iC and jC are compatible on Ite, and the

request behavior of iC on Ite is just a subset of the

one of jC . Hence, we can analyze the requested

behavior of iC on Ite, by the behavior of its dual

component jC . Obviously, for the new component

'jC , if it meets the behavioral requirements requested

by jC on Ite� it can also satisfy all the possible

behavioral requirements requested by iC on Ite. The

rule is presented as following

Theorem 5 Suppose two components iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC �

< P

C j
I , R

C j
I ,

jCA ,
jCL ,

jCP > interact with each other

through an interface Ite provided by jC . Their

behavioral compatibility follow the conditions

presented in theorem 1. Now, a new component 'jC �

< P

C j
I ' ,

R

C j
I ' , 'jCA , 'jCL , 'jCP > will be used to replace jC ,

and 'jC has a provided interface Ite' corresponding to

Ite. Let jC be the dual component of jC . If
jC

P and

'jCP satisfy the following conditions: 1)(
jC

P ||Ite'

'jCP)/D≈B
jC

P /D', where D =(
iC

A 'jCA∪)�Ite', D' =
jC

A

� Ite'; and 2) traceco(
jC

P)↑Ite' ⊆ traceco('jCP)↑Ite' ,

then jC can be behaviorally substituted by 'jC .

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 960 Issue 6, Volume 8, June 2009

The proof of theorem 5 is presented in [16]. It

can be used to verify the behavioral substitutability

when the new component may extend both its

operations and behavior on the interface

simultaneously. However, in an assembly containing

two components iC and jC , where both components

have requests for the other, theorem 3 and 5 can’t

verify the behaviorally substitutability in the case. In

this case, if a new component 'jC is able to replace

Cj, its behavior of requirements from other

components can’t be expanded more than the one of

Cj, and its behavior of provision to other components

can’t be weaken less than the one of Cj

simultaneously. In this way, iC can meet the

requirements of 'jC and 'jC can satisfy the

requirements of iC at the same time. A rule to verify

the substitutability under this scenario is given as

following:

Theorem 6 Suppose two components iC =

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP > and jC =

< P

C j
I , R

C j
I ,

jCA ,
jCL ,

jCP > interact with each other

through two interfaces Ite1 and Ite2, Ite1∈ ∩P

Ci
I R

C j
I

and Ite2∈ R

Ci
I P

C j
I∩ . Their behavioral compatibility

satisfies the conditions presented in theorem 2. Now,

a new component 'jC = < P

C j
I ' ,

R

C j
I ' , 'jCA , 'jCL , 'jCP > is

use to replace jC . Its new provided interface is Ite2'

corresponding to Ite2, with Ite2 ⊆ Ite2', and its

requested interface is still Ite1. Let jC be the dual

component of component jC , if
jC

P and 'jCP satisfy

the following conditions:

� ('jCP '21
|| IteIte ∪

jC
P)/('jCA ∪

jC
A �Ite2')≈B

jC
P /(

jC
A �

Ite2'), and traceco(
jC

P)↑Ite2'⊆ traceco('jCP)↑Ite2';

� ('jCP '21
|| IteIte ∪

jC
P)/('jCA ∪

jC
A �Ite1)≈B 'jCP /('jCA �

Ite1), and traceco('jCP)↑Ite1 ⊆ traceco(
jC

P)↑Ite1.

then jC can be behaviorally substituted by 'jC

The proof of theorem 6 is presented in [16].

4.3 Behavioral Substitutability in the System

Containing Multiple Components

In the current component-based software system,

a component may interact with multiple components

through different interfaces. In this scenario, we also

study the difference of the interaction behavior

between the new component and the old one

replaced, and then present our verification rules.

Let MP ≡

1CP),(21
|| CCa 2CP),(),(3231

|| CCaCCa ∪ 3CP ||...),(...),(11
||

nnn CCaCCa −∪∪

nCP denote the behavior of the system. Clearly, MP

can also be defined in such a form, MP ≡
iCP

iS|| iP ,

where Si = U
iknk

ik CCa
≠≤≤ ,1

),(and iP ≡
1CP),(21

|| CCa 2CP

),(),(3231
|| CCaCCa ∪ 3CP ||..),(...),(1211

||
−−− ∪∪ iii CCaCCa 1−iCP

),(...),(1111
||

+−+ ∪∪ iii CCaCCa 1+iCP ||...),(...),(11
||

nnn CCaCCa −∪∪

),(...),(11
||

nnn CCaCCa −∪∪ nCP . Let iC be such a component

that it provides several interfaces to other

components for use and has no requirements for

other ones. Now, iC will be updated by a new one

'iC . Obviously, if 'iC can support all the provided

behavior supported by iC , and still has no

requirements for other ones simultaneously, iC can

be replaced by 'iC successfully.

Theorem 7 Suppose a MCS contain a set of n

components, {C1, C2,…, Cn }(iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP >) and its behavior MP be

MP =
1CP),(21

|| CCa 2CP),(),(3231
|| CCaCCa ∪

3CP ||...

),(...),(11
||

nnn CCaCCa −∪∪ nCP . There is a component iC in MCS

with R

Ci
I = φ , and its behavior

iCP satisfying the

following conditions: 1)(
iCP

iS|| iP)/D≈B
iP /D',

where D = U
nk

Ck
A

≤≤1

�Si and D' = U
iknk

Ck
A
≠≤≤ ,1

�Si; and 2)

traceco(
iP)↑Si ⊆ traceco(iCP)↑Si. Now, a new

component 'iC �< P

Ci
I ' ,

R

Ci
I ' , 'iCA , 'iCL , 'iCP > is used to

replace iC , and it holds that P

Ci
I ⊆ P

Ci
I ' and P

Ci
A ⊆ P

Ci
A ' .

Let 'iS = U
iknk

ik CCa
≠≤≤ ,1

)',(, and jC be the dual component

of jC . If
jC

P and 'jCP satisfy the following conditions:

� (
iC

P '||
iS 'iCP)/D1≈B

iC
P /D2, where D1 =

iC
A ∪ 'iCA

� 'iS and D2 =
iC

A � 'iS ;

� traceco(
iC

P)↑ 'iS ⊆ traceco('iCP)↑ 'iS ;

then iC can be behaviorally substituted by 'iC in

MCS.

The proof of theorem 7 is presented in [16]. In

another scenario, a component may have both the

provided and requested behavior to interact with

other components. We take the behavioral

compatibility of these two aspects into account.

Obviously, compared to the behavior of the old

component, if a new component can take the place of

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 961 Issue 6, Volume 8, June 2009

the old one, its behavior of requirements for other

components can’t be expanded, and its behavior of

provision to other components can’t be weaken

simultaneously. Based on this, we present the

following rule:

Theorem 8 Suppose a MCS contain a set of n

components, {C1, C2,…, Cn }(iC �

< P

Ci
I , R

Ci
I ,

iCA ,
iCL ,

iCP >), and its behavior MP be

MP =
1CP),(21

|| CCa 2CP),(),(3231
|| CCaCCa ∪ 3CP ||

...),(...),(11
||

nnn CCaCCa −∪∪ nCP . There is a component iC in

MCS with R

Ci
I ≠φ ∈ P

Ci
I ≠φ . Let Si = U

iknk

ik CCa
≠≤≤ ,1

),(, R

iS =

Si I U
||1 R

iC
Ik

kIte
≤≤

(R

Ck i
IIte ∈), and P

iS = Si

I U
||1

P

iC
Ik

kIte
≤≤

(P

Ck i
IIte ∈). The behavior of iC ,

iCP meets

the following conditions: 1) (
iCP

iS|| iP)/(U
nk

Ck
A

≤≤1

�

P

iS)≈B
iP /(U

iknk

Ck
A
≠≤≤ ,1

�
P

iS), and traceco(
iP)↑ P

iS ⊆

traceco(iCP)↑ P

iS ; 2) (
iCP

iS|| iP)/(U
nk

Ck
A

≤≤1

�

R

iS)≈B iCP /(
iCA �

R

iS), and traceco(iCP)↑ R

iS ⊆

traceco(
iP)↑ R

iS . Now, a new component 'iC �

< P

Ci
I ' ,

R

Ci
I ' , 'iCA , 'iCL , 'iCP > is used to replace iC , and it

holds that P

Ci
I ⊆ P

Ci
I ' ∧ P

Ci
A ⊆ P

Ci
A ' and R

Ci
I ' ⊆

R

Ci
I ∧

R

Ci
A ' ⊆ R

Ci
A . Let 'iS � U

iknk

ik CCa
≠≤≤ ,1

)',(,

P

iS ' = 'iS I U
||1
'

P

iC
Ik

kIte
≤≤

(P

Ck i
IIte '∈), and iC be the dual

component of iC . If
iC

P and 'iCP satisfy the following

conditions:

� ('iCP '||
iS

iC
P)/('iCA ∪

iC
A �

R
iS)≈B 'iCP /('iCA �

R
iS),

and traceco('iCP)↑ R
iS ⊆ traceco(

iC
P)↑ R

iS ;

� ('iCP '||
iS

iC
P)/('iCA ∪

iC
A �

P
iS ')≈B

iC
P /(

iC
A �

P
iS '),

and traceco(
iC

P)↑ P
iS ' ⊆ traceco('iCP)↑ P

iS ' ;

then iC can be behaviorally substituted by 'iC in

MCS.

The proof of theorem 8 is presented in [16].

5 An e-commerce Example
In this paper, we express the characteristics of

the rules through a specific example of e-

commerce. In this example, the persons buy

books on an e-commerce system, and three

components are included in this system, BookShop

(BSC), BookBroker (BBC) and Bank (BAC). In the system�

the component BookShop registers at BookBroker

first. When a user wants to buy books, it will call the

interface operation getABook provided by component

BookBroker. BookBroker inquires BookShop whether

there is the book in stock by calling the interface

inStock provided by BookShop. If BookShop has the

book, BookBroker will order the book by calling the

operation Order, allow BookShop deliver books to

User by calling the operation deliver, and deposit

money in BookShop’s bank account by calling the

operation deposit provided by Bank. Their assembly

structure, interfaces described in IDLs and

definitions are given in Figure 1~3. Obviously, the

behavioral compatibility between BSC and BBC on

interfaces ShopBookIte _ and ShopBroIte ker_ satisfies the

conditions in theorem 2, and the behavioral

compatibility between BBC and BAC on

interfaces tBankAccounIte satisfies the conditions presented

in theorem 1.

Now, the system is upgraded to provide more

functions. Two new components Bank' and

Bookshop' are used to replace the old ones,

respectively. The IDL interfaces, and formal

definitions of these new components are shown in

Figure 4 and 5. Component Bank' add a new

operation Query in its provided interface, which will

be used to query the client’s deposit. Component

Bookshop' add a new function to cancel the orders of

books in its interface, cancelOrder. Their behavioral

is also adapted. Now we will verify whether the new

components Bank' and Bookshop' can replace the old

ones successfully. In the upgraded system,

component Bank' only interacts with BookBroker

through the interface, and it has no requests for other

components in the environment. Theorem 3 and 5

can verify the behavioral compatibility under this

scenario. Clearly, it holds that ('BACP \D1)/D2≈B

BACP /D3, where D1=IteBankAccount' � IteBankAccount

={query,query_r}, D2= 'BACA − IteBankAccount '= φ and

D3=
BACA − IteBankAccount= φ . It meets the conditions

presented in theorem 3. On the other hand,

component Bookshop' only interacts with

BookBroker through two interfaces. We will use the

theorem 6 to verify the behavioral compatibility

under this scenario.

Fig.1 An e-commerce instance

BookShop

Bank BookBroker

 User

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 962 Issue 6, Volume 8, June 2009

An interface provided by Bank : BankAccount�

interface BankAccount{

 void login(in string accountNO);

float getBalance();

 string deposit(in float amount);

 string withdraw(in float amount);

 void logout();

};

An interface provided by BookShop: Book_Shop�

interface Book_Shop{

 struct BookRef { string ISBN, float price; }

 boolean inStock(in string title, in string author);

 void order(in BookRef b, out account a, out string purchaseID);

 date deliver(in string purchaseID, in string rcpt, in string addr);

};

An interface provided by BookBroker: Broker_User�

interface Broker_User{

boolean getABook(in string author, in string title,

in float maxprice, in string addr,

out date when);

};

An interface provided by BookBroker: Broker_Shop�

interface Broker_Shop{

 void register (in Bookshop b);

 void unregister (in Bookshop b);

};

Fig.2 IDL interfaces provided by components Bank�BookShop and BookBroker

BookShop� BSC � < P

CBS
I , R

CBS
I ,

BSCA ,
BSCL ,

BSCP >

P

CBS
I : { IteBook_Shop }; IteBook_Shop = {inStock,

 inStock_r, order, deliver, deliver_r}
R

CBS
I : { IteBroker_Shop }; IteBroker_Shop= { register,

unregister }

BSCA : (
P

C

R

C BSBS
AA , , H

CBS
A);

R

CBS
A : { register, unregister}; H

CBS
A :φ ;

P

CBS
A : { inStock, inStock_r, order, deliver, deliver_r };

BSCL : {< IteBroker_Shop, IteBroker_Shop,

 BookBroker_Inst, BookBroker _Host >};

BSCP : {
BSCP ∆ P[Shop]Init

P[Shop]Init ∆ register.P[Shop]1

P[Shop]1 ∆ inStock.inStock_r.P[Shop]2

P[Shop]2 ∆ order.deliver.deliver_r.

P[Shop]1 + unregister.P[Shop]Fina

 P[Shop]Fina ∆ 0 }�

BookBroker: BBC �< P

CBB
I , R

CBB
I ,

BBCA ,
BBCL ,

BBCP >

 P

BBI :{ IteBroker_User , IteBroker_Shop }; IteBroker_User={

getABook, getABook_r}; IteBroker_Shop={ register,

unregister};
R

CBB
I : { IteBook_Shop, IteBankAccount }; IteBook_Shop = {inStock, inStock_r, order,

deliver, deliver_r};

IteBankAccount ={login, getBalance, getBalance_r,

deposit, deposit_r, withdraw, withdraw_r,logout}

BBCA : (P

C

R

C BBBB
AA , , H

CBB
A);

R

CBB
A : { inStock, inStock_r, order, login, deposit,deposit_r,

logout, deliver, deliver_r }; H

CBB
A :φ ;

P

CBB
A : { getABook, getABook_r, register, unregister};

BBCL : {< IteBook_Shop, IteBook_Shop, BookShop_Inst,

BookShop_Host >, < IteBankAccount, IteBankAccount, Bank_Inst, Bank_Host

>};

BBCP : { BBCP ∆ P[Broker]Init

P[Broker]Init ∆ register.P[Broker]1

 P[Broker]1 ∆ getABook.P[Broker]2

 P[Broker]2 ∆ inStock.inStock_r.

getABook_r.P[Broker]3

P[Broker]3 ∆ order.P[Broker]4

+unregister.P[Broker]Fina

P[Broker]4 ∆ login.deposit.deposit_r.

logout.deliver.deliver_r.

P[Broker]1

 P[Broker]Fina ∆ 0 }�

Bank : BAC � < P

CBA
I , R

CBA
I ,

BACA ,
BACL ,

BACP >

P

CBA
I : { IteBankAccount}; IteBankAccount ={login, getBalance,

getBalance_r, deposit, deposit_r, withdraw, withdraw_r,

logout};
R

CBA
I :φ ;

BACA : (
P

C

R

C BABA
AA , , H

CBA
A);

R

CBA
A : φ ; H

CBA
A : φ

P

CBA
A : { login, getBalance,getBalance_r, deposit,

deposit_r, withdraw, withdraw_r, logout };

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 963 Issue 6, Volume 8, June 2009

BACL : φ ;

BACP : {
BACP ∆ P[Bank]Init

P[Bank]Init ∆ login.P[Bank]1

P[Bank]1 ∆ getBalance. getBalance_r.P[Bank]1+ deposit. deposit_r.P[Bank]1 +withdraw.

withdraw_r.P[Bank]1+ logout.P[Bank]Fina.

. P[Bank]Fina. ∆ 0 }�

Fig.3 Specifications of components Bank, BookShop and BookBroker

Clear, we can see that the following two

conditions hold: 1) (
BSC

P ||Ite1∈Ite2’ 'BSCP)/D3≈B
BSC

P /D4,

where Ite1=IteBroker_Shop, Ite2'= IteBook_Shop', D3=

'BSCA ∪
BSC

A �IteBook_Shop'={register, unregister}, D4=

BSC
A � IteBook_Shop'={register, unregister}, and

traceco(
BSC

P)↑Ite2'⊆ traceco('BSCP) ↑Ite2'; 2)

(
BSC

P ||Ite1∈Ite2’ 'BSCP)/D5≈B 'BSCP /D6, where D5=

'BSCA ∪
BSC

A �IteBroker_Shop={ inStock, inStock_r, order,

deliver, cancelOrder, cancelOrder_r, deliver_r}, D6

� 'BSCA � IteBroker_Shop={ inStock, inStock_r, order,

deliver, cancelOrder, cancelOrder_r, deliver_r},

traceco ('BSCP)↑Ite1 ⊆ traceco(
BSC

P)↑Ite1. Hence, the

components can be replaced by the new ones

successfully.

6 Related Works and Conclusion
At present, some research works focus on the

behavioral compatibility in component-based

systems. In [3], the authors describe and analyze the

behavioral compatibility between two components by

using π calculus, but they didn’t taken into account

the scenario where the new components may change

its external behavior, nor did they take into account

the scenario where a system may contain multiple

components.

In [6], the authors concerned behavioral

inheritance in component-based software system by

using Petri Nets. They presented several rules for

testing whether the components are suitable for the

requirements of system by analyzing the

correspondences between the component’s external

behavior and the descriptions of the system. They

defined a type of inheritance called project

inheritance. Through this inheritance, the system can

ensure the component replaced meet the

requirements of the system without impacting its

external behavior. But in [6], the author didn’t focus

on the scenario where a new component has the

external request behavior to the environment.

The similar works were also presented to ensure

the feasibility of component replacement in [4], [5]

and [7]. In these works, the author studied the

behavioral subtype relationship between objects by

using CSP, and presented three behavioral subtypes:

weak subtype, safe subtype and optimization

subtype. These three behavioral subtypes can be used

to analyze object substitutability in the object-based

system, but it has not yet consider scenes where

software entities replaced can have external request

behavior.

Current component technology and tools ensure

the component substitution mainly through the IDL

interface file, and they don’t pay much attention to

the property of behavior. From the middle of the

1990s to now, researchers have focused on the

behavioral substitutability in component-based

software system. This paper, based on the existing

work, analyzes the behavior of the component in

both their external requested and provided interfaces,

and present a set of rules for the upgraded system

still preserving deadlock-free characteristics. Our

future work will focus on some other prospects of the

behavioral compatibility in component-based

software components, such as the description and

verification of system performance, the Qos-based

component assembly and substitutability, the type of

connections among components, and etc.

Acknowledgement:
This paper is supported by National Natural Science

Foundation of China granted by Nos. 60873022, the

Science and Technology Foundation of Zhejiang

province granted by Nos. 2008C23034, 2008C13082

and the open fund provided by State Key Laboratory

for Novel Software Technology of Nanjing

University, and the Natural Science Foundation of

Zhejiang Province of China under Grant

No.Y1080148.

References:

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 964 Issue 6, Volume 8, June 2009

[1] Heineman GT, Councill WT. Component-based

software engineering. Boston: Addison-Wesley,

2001.

[2] Szyperski C. Component software: Beyond

Object-Oriented programming. Pearson

Education Limited, 2003.

[3] Canal C, Pimentel E, Troya JM. Compatibility

and inheritance in software architectures. Science

of Computer Programming, 2001,41:105-138.

[4] Wehrheim, H. Relating State-based and

Behaviour-oriented Subtyping. Nordic Journal of

Computing 2002, 9(4),405-435

[5] Schrefl M. Stumptner M. Behavior-Consistent

Specialization of Object Life Cycles. ACM

Transaction on Software Engineering and

Methodology, 11(1), 92-148,2002.

[6] Van Der Aalst W.M.P., Toorn R.A. Component-

based software architectures: a framework based

on inheritance of behavior. Science of Computer

Programming 42:129-171, 2002.

[7] Wehrheim, H. Checking Behavioural Subtypes

via Refinement. In FMOODS 2002: Formal

methods for Open Object-Based Distributed

Systems. Kluwer, 79-93.

[8] Bernardo M, Ciancarini P, Donatiello L.

Architecting families of software systems with

process algebras. ACM Transaction on Software

Engineering and Methodology, 2002, 11(4): 386-

426.

[9] Canal C, Pimentel E, Troya J. Specification and

refinement for dynamic software architectures.

Software Architecture. Netherlands. Kluwer

Academic Publisher, 1999: 107-126.

[10] Allen R, Garlan D. A formal basis for

architectural connection. ACM Transaction on

Software Engineering and Methodology. 1997,

16(3):213-249.

[11] Bernardo M. Theory and Application of

Extended Markovian Process Algebra.[Ph.D]

Dottorato di Ricerca in Informatica, University di

Bologna, Padova, Venezia. 1999.

[12] Mei H, Chen F, Feng YD, Yang J. ABC: An

architecture based, component oriented approach

to software development. Journal of Software,

2003,14(4):721-732(in Chinese with English

abstract).

[13] Magee J, Kramer J. Dynamic structure in

software architectures. ACM SIGSOFT Software

Engineering Notes, 1996, 21(6):3-14.

[14] Hu HY, Yang M, Tao XP, Lu J. Research

and implementation of late assembly technology

in Cogent. ACTA ELECTRONICA SINCA,

2002,30(12): 1823- 1827(in Chinese with English

abstract).

[15] Hu HY, Lu J, Ma XX, Tao XP. Research on

Behavioral Compatibility of Components in

Software Architecture Using Object-Oriented

Paradigm Journal of software,2006,17(6):1276-

1286.

[16] Haiyang Hu. Study on the technology of

softare component assembly. Ph.D Dissertation.

Nanjing University, 2006.

WSEAS TRANSACTIONS on COMPUTERS Haiyang Hu, Hua Hu

ISSN: 1109-2750 965 Issue 6, Volume 8, June 2009

