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Abstract: In this paper, a novel entropy-based voice activity detection (VAD) algorithm is presented in 
variable-level noise environment. Since the frequency energy of different types of noise focuses on different 
frequency subband, the effect of corrupted noise on each frequency subband is different. It is found that the 
seriously obscured frequency subbands have little word signal information left, and are harmful for detecting 
voice activity segment (VAS). First, we use bark-scale wavelet decomposition (BSWD) to split the input 
speech into 24 critical subbands. In order to discard the seriously corrupted frequency subband, a method of 
adaptive frequency subband extraction (AFSE) is then applied to only use the frequency subband. Next, we 
propose a measure of entropy defined on the spectrum domain of selected frequency subband to form a robust 
voice feature parameter. In addition, unvoiced is usually eliminated. An unvoiced detection is also integrated 
into the system to improve the intelligibility of voice. Experimental results show that the performance of this 
algorithm is superior to the G729B and other entropy-based VAD especially for variable-level background 
noise. 
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1 Introduction 
Voice activity detection (VAD) refers to the ability 
of distinguishing speech from noise and is an 
integral part of a variety of speech communication 
systems, such as speech coding, speech recognition, 
hands-free telephony, audio conferencing and echo 
cancellation [1]. In the GSM-based wireless system, 
for instance, a VAD module [2] is used for 
discontinuous transmission to save battery power. 
Similarly, a VAD device is used in any variable bit 
rate codec [3] to control the average bit rate and the 
overall coding quality of speech. In wireless systems 
based on code division multiple access, this scheme 
is important for enhancing the system capacity by 
minimizing interference. Common VAD algorithms 
use short-term energy, zero-crossing rate and LPC 
coefficients [4] as feature parameters for detecting 
voice activity segment (VAS). Cepstral features [5], 
formant shape [6], and least-square periodicity 
measure [7] are some of the more recent metrics 
used in VAD designs. In the recently proposed 
G.729B VAD [8], a set of metrics including line 
spectral frequencies (LSF), low band energy, zero-
crossing rate and full-band energy is used along 
with heuristically determined regions and 

boundaries to make a VAD decision for each 10 ms 
frame. 

In this paper we present a robust VAD algorithm 
for the detection of speech segment, which is based 
on the entropy of the spectrum domain of selected 
critical subband. First, the bark-scale wavelet 
decomposition (BSWD) is utilized to decompose the 
input speech signal into 24 critical subband signals. 
In contrast to the conventional wavelet packet 
decomposition, the BSWPD is designed to match 
the auditory critical bands as close as possible and 
has been applied into various speech processing 
systems [9]-[10]. The entropy, on the other hand, a 
measure of amount of expected information, is 
broadly used in the field of coding theory. Shen et al. 
[11] first used it on speech detection and revealed 
that voiced spectral entropy is quite different from 
non-voiced one. Based on this character, the 
entropy-based approach is more reliable than pure 
energy-based methods in some cases, particularly 
when noise-level varies with time. 

Since the frequency energy of different types of 
noise focus on different frequency subbands, the 
effect of corrupted noise on each frequency subband 
is different [12]. The seriously obscured frequency  
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Figure 1. The block diagram of proposed VAD algorithm 
 

subbands have little word signal information left, 
and are harmful for detecting VAS. Based on the 
finds, we adopt the theory of adaptive frequency 
subband extraction (AFSE) to only uses the 
frequency subband which are slightest corrupted and 
discard the seriously obscured ones. The frequency 
subband energies are sorted and only the first 
several frequency subband with the highest energy 
are selected. Experiment results show that when 
more frequency subbands are corrupted by noise, 
the number of the selected frequency subbands 
decreases with the decrease of the SNR. A measure 
of entropy defined on the spectrum domain of 
selected frequency subband by the AFSE approach 
is proposed to refine the classical entropy-based 
VAD [12]. Finally, an unvoiced detection is 
integrated into entropy-based VAD system to 
improve the intelligibility of voice. 
 
 

2 Implementation of the proposed 
VAD algorithm 
In the block diagram shown in Fig. 1, the proposed 
VAD algorithm consists of five main parts: bark-
scale wavelet decomposition, adaptive frequency 
subband extraction, calculation of spectral entropy, 
adaptive noise estimation, and unvoiced decision. In 
this section, the five main parts are described in turn. 
 
 
2.1 Bark-scale wavelet decomposition  
Critical subband is widely used in perceptual 
auditory modeling [13]. In this section, we propose 

the wavelet tree structure of BSWD to mimic the 
time-frequency analysis of the critical subbands 
according to the hearing characteristics of human 
cochlea. A BSWD is used to decompose the speech 
signal into 24 critical wavelet subband signals, and 
it is implemented with an efficient five-level tree 
structure. The corresponding BSWD decomposition 
tree can be constructed as shown in Fig. 2. 
Observing the Fig.2, the input speech signal is 
obtained by using the high-pass filter and low-pass 
filter [14], implemented with the Daubechies family 
wavelet, where the symbol ↓2 denotes an operator 
of downsampling by 2. 
 
 
2.2 Adaptive frequency subband extraction 
In fact, the frequency energies of difference types of 
noise are concentrated on different frequency 
subbands. This observation demonstrates that not all 
the frequency subbands have harmful word signal 
information. In our algorithm, we must use only the 
useful frequency subbands or discard the harmful 
subbands for detecting VAS. Since our goal is to 
select some useful frequency subbands having the 
maximum word signal information, we need a 
parameter to stand for the amount of word signal 
information of each frequency subband. According 
to Wu et al. [12], the estimated pure speech signal is 
a good indicator. The frequency subbands energy of 
pure speech signal is accomplished by removing the 
frequency energy of background noise from the 
frequency energy of input noisy speech. 
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Figure 2. The Bark-scale wavelet decomposition (BSWD) tree 
 
 

 

Figure 3. The results of correct detection accuracy 
with number of different frequency subband at –5dB, 
10 dB and 30 dB under three types of noise 
 

For the thm  frame, the spectral energy of the 
thξ  subband is evaluated by the sum of squares:   

,

,

2
( , ) ( , ) ,

h

l

E m X m
ξ

ξ

ω

ω
ξ ω=∑  (1) 

where ( , )X mω  means the thω  wavelet coeffience.   

,lξω  and ,hξω  denote the lower boundaries and the 

upper boundaries of the thξ  subband, respectively. 
The thξ  frequency subbands energy of pure speech 

signal of the thm  frame ( , )E mξɶ  is estimated:  

( , ) ( , ) ( , ),E m E m N mξ ξ ξ= −ɶ ɶ  (2) 

where ( , )N mξɶ  is the noise power of the thξ  
frequency subband. 

During the initialization period, the noisy signal is 
assumed to be noise-only and the noise spectrum is 
estimated by averaging the initial 10 frames. To 
recursively estimate the noise power spectrum, the 
subband noise power, ( , )N mξɶ , can be adaptively 
estimated by smoothing filtering and be discussed 
later. 

It is found that the more the frequency subband 
covered by noise would result in the smaller the 

( , )E mξɶ . Since the frequency subband with higher   

( , )E mξɶ  contains more pure speech information, we 
should sort the frequency subband according to their   

( , )E mξɶ  value. 
That is, 

1 2( , ) ( , ) ( , ),NE I m E I m E I m≥ ≥ ≥ɶ ɶ ɶ⋯  (3) 

where iI  is the index of the frequency subband with 
the thi  max energy.  

It means that the index of the frequency subband 
with higher energy is the more useful index of one. 
Moreover, we should only select the useful 
frequency subbands for VAD results output. That is, 
the first N  frequency subbands 1 2, , , NI I I…  are 
selected and denoted as the useful number of 
frequency subband, ubN , for the succeeding 
calculation of spectral entropy.  

According to the relation between the number of 
useful frequency subbands ubN  and SNR  (shown as 
Fig. 3), we can see that the number of useful 
frequency subband increases with the increase of   
SNR  under three types noises including white noise, 
factory noise and vehicle noise. 9ubN =  and 

24ubN =  denote the boundary of   among the range 
from -5dB to 30dB, respectively. Based on the 
above finds, a linear function can be used to 
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simulate the relationship between ubN  and SNR , 
and shown as Fig. 4.         
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where [ ]  is the round off operator and ( )SNR m  

denotes a frame-based posterior SNR for thethm  
frame. 

In addition, ( )SNR m  is depended on the all 
summation of subbnad-based posterior SNR 

( , )snr mξ  on the thξ  useful subband and defined as: 
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2.3 Calculation of spectral entropy 
To calculate the spectral entropy, the probability 
density function (pdf) and the entropy calculation 
are both necessary steps. 
The pdf for the spectrum can be estimated by 
normalized the frequency componemts: 

1

( , ) ( , ) ( , )
N

P m E m E m
ω

ξ ξ ω
=

= ∑  (6) 

where ( , )P mξ  is the corresponding probability 
density, and N  denotes the total number of critical 
subbnad divided by BSWD ( 24N =  in this paper). 
Some frequency subbands, however, are corrupted 
seriously by additive noise, and those harmful 
subbands may result in low performance of entropy-
based VAD if those are extracted. Moreover, we use 
only the useful frequency subbands to calculate a 
measure of entropy defined on the spectrum domain 
of selected frequency subbands. The probability 
associated with subband energy modified from (6) is 
described as follows: 

1

( , ) ( , ) ( , ),
ubN

P m E m E m
ω

ξ ξ ω
=

= ∑  (7) 

where ubN  is the number of useful frequency 
subbands. 
Having finishing applying the above constraints, the 
spectral entropy ( )H m  of frame m  can be defined 
below. 

1

( ) ( , ) log[ ( , )].
ubN

H m P m P m
ξ

ξ ξ
=

= − ⋅∑  (8) 

The foregoing calculation of the spectral entropy 
parameter implies that the spectral entropy depends  

 
Figure 4.  A linear function of the relationship 
between ubN  and SNR  
 
only on the variation of the spectral energy but not 
on the amount of spectral energy. Consequently, the 
spectral entropy parameter is robust against 
changing level of noise. 
 
 
2.4 Adaptive noise estimation 
To recursively estimate the noise power spectrum, 
the spectral power of subband noise can be 
estimated by averaging past spectral power values 
using a time and frequency dependent smoothing 
parameter as following: 

( , ) ( , ) ( , 1)

                (1 ( , )) ( , )

N m m N m

m E m

ξ α ξ ξ
α ξ ξ

= ⋅ −
+ − ⋅

ɶ ɶ
 (9) 

where ( , )mα ξ  means the smoothing parameter and 
be defined as 

( ( , ) )

1,                             if VAD(m-1)=1,
( , ) 1

,     otherwise.  
1 k snr m T

m

e ξ

α ξ
− ⋅ −


= 
 +

 (10) 

where T  is used for center-offset of the transition 
curve in Sigmoid.  

Observing (10), it is found that the smoothing 
parameter set one when previous speech-dominated 
frame, the spectral power of subband noise keep 
until noise-dominated frame. Otherwise, the 
smoothing parameter may be chosen as a Sigmoid 
functions when noise-dominated frame. 
 
 
2.5 Unvoiced decision 
More unvoiced information is eliminated from 
conventional VAD algorithm. In order to overcome 
this drawback, a method of unvoiced decision is 
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proposed in this section. According to the structure 
of BSWD tree (shown as Fig. 2), the three sub-
energies corresponding to the wavelet subband 
signals are defined as 
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The unvoiced segments are determined as: 

2 1 0 0 21       , if   and 0.99

0      , otherwise. 

unvoiced

L L L L L

S

E E E E E

=
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 (12) 

 
 
2.6 Voice activity segment detection 
Finally, the voice activity segment (VAS) is derived 
as: 

{ } { }1 1 .voiced unvoicedVAS H S= = =∪  (13) 

where voicedH  is the pre-defined H . 
 
 

3 Experimental Results 
The speech database contained 60 speech phrases 
(in Mandarin and in English) spoken by 35 native 
speakers (20 males and 15 females), sampled at 4 
KHz with 16-bit resolution. To set up the noisy 
signal for test, we add the prepared noise signals to 
the recorded speech signal with different SNRs 
range from - 5dB to 30 dB. The noise signals are all 
taken from the noise database NOISEX-92 [15]. Of 
the various noises available on the NOISEX 
database, white noise, factory noise and vehicle 
noise are selected as speech containment.  

Fig. 5 shows the VAD result of the proposed 
algorithm on the noisy speech signal "May-I-Help-
you" under variable-level of noise. It is founded that 
the VAS of the proposed algorithm can correctly 
extract speech segments especially for unvoiced 
segment /H/ occurred at /Help/ sentence in Fig. 5(b). 
Conversely, in Fig. 5(c) the VAS of standard G729B 
performs fail during high variable-level of noise 
segment and unvoiced segment. In order to compare 
with other VADs specified in the ITU standard 
G.729B, we introduce three criteria: 1) the 
probability of correctly detecting speech frames cSP  
is the ratio of the correct speech decision to the total 
number of hand-labeled speech frames. 2) the 
probability of correctly detecting noise frames cNP  

is the ratio of the correct noise decision to the total 
number of hand-labeled noise frames. 3) the false-
alarm fP  is the ratio of the false speech decision or 

false noise decision to the total hand-labeled frames. 
Under a variety of SNR's, the cSP , cNP  and fP  of the 

proposed algorithm are compared with those of the 
VAD specified in the ITU standard G.729B [8] and 
other entropy-based VAD [11]. The experimental 
results are summarized in Table I. It is shown that. 
In high SNR, the result of Shen's VAD is 
comparable to proposed VAD. But, the proposed 
VAD has superior performance to the Shen's VAD 
and G.729B particularly in low SNR. 
 
 

4 Conclusion 
In this paper, a novel entropy-based VAD algorithm 
has been presented in non-stationary environment. 
The algorithm is based on bark-scale wavelet 
decomposition to decompose the input speech signal 
into critical sub-band signals. Motivated by the 
concept of adaptive frequency subband extraction, 
we use the frequency subband that are slightest 
corrupted and discard the seriously obscured ones. It 
is found that the proposed algorithm improves the 
classic entropy-based approach.  

Experimental results show that the performance 
of this algorithm is superior to the G.729B and other 
entropy-based approach in low SNR. The proposed 
algorithm has excellent presentation especially for 
variable-level background noise. 
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Figure 5.  Comparison between the two VADs: (a) Waveform of a clean speech ‘May I help you?’ (b) The 
VAS of proposed VAD (c) The VAS of G.729B 
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Table I. 
Performance comparisons for three noise types and levels  

 

Noise Conditions cSP (%) cNP (%) fP (%) 

Type SNR(dB) Proposed 
VAD G.729B Shen et 

al. [11] 
Proposed 

VAD G.729B Shen et 
al. [11] 

Proposed 
VAD G.729B Shen et 

al. [11] 

30 99.8 93.1 99.1 99.2 84.6 99.8 1.5 12.9 1.6 

10 95.6 85.2 94.6 98.7 81.5 95.4 4.6 17.3 4.9 
White 
Noise 

-5 92.4 78.1 85.2 92.1 72.7 82.3 8.4 25.5 10.2 

30 94.6 92.9 94.3 93.1 88.9 93.0 10.2 13.6 10.8 

10 89.7 84.3 85.1 89.7 83.3 85.1 13.2 18.4 15.7 Factory 
Noise 

-5 80.5 74.6 74.8 85.3 73.6 76.5 16.2 24.2 20.1 

30 96.8 95.3 96.5 94.2 92.3 93.1 6.3 14.3 6.5 

10 92.5 90.1 91.1 89.6 84.1 85.3 9.5 17.4 12.4 
Vehicle 
Noise 

-5 88.4 81.4 82.7 84.1 79.4 82.4 14.7 21.5 19.6 
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