
Research of Replication Mechanism in P2P Network

Dongming Huang, Zong Hu
College of Education

Ningbo University
No.818 Fenghua Road, Ningbo, Zhejiang 315211, China

CHINA
huangdongming@nbu.edu.cn, nbshiny@gmail.com

Abstract: - P2P network is a dynamic self-organization network, in which peer can freely join or leave, so there
will lost a lot of important data when some important nodes fail, and there exists load imbalance of node in the
P2P network. These features are not good to the expansion of the P2P application, so this paper introduce
replicate mechanism, not only enhances the reliability of the network, but also lets the network load balance, at
the same time this paper introduce synchronize mechanism to solve the problem of data update consistency in
the p2p network.

Key-Words: - P2P Network, Replication Mechanism, Load Transfer, Synchronize Mechanism, Data Update
Consistency, Load Balance, Reliability

1 Introduction
Compared to the traditional Client/Server network,
P2P[1-3] networks has many advantages, such as
scalability, robustness, fault tolerance, so P2P
networks attract more and more people's attention,
and more and more companies development
application software in the P2P platform, for example,
file download software---BT, Emule, video
streaming media software---Pplive. But in these P2P
networks nodes can freely join or leave, and there are
more and more network attack coming out, so
directly lead to the failure of the important nodes in
the network, which led to loss these important data in
the failure nodes or not access these important data,
finally it has some effect to the entire network users.
Although some P2P platforms provide some security
mechanisms, but these security mechanisms do not
prevent the attacks of network, such as DoS attacks,
so in order to reduce the possibility of important data
loss caused by the failure network nodes, replication
mechanism need to introduce, backup some
important raw data in other nodes of the network, this
mechanism not only improve the reliability of the
network, but also reduce the delay time of user
getting resources, making full use of the network
resources, and make the network load to balance.

This paper firstly introduce the P2P network
model, analysis the problems existing in the P2P
network model, and provide the corresponding
replication mechanism to ensure data consistency.

The rest of the paper is organized as follows.
Section 2 describes the background of the replication
mechanism. In section 3 introduce the model of P2P
networks. In section 4, we give replication

mechanism, detailed describe the process of network
node load transfer. Section 5 design the algorithm of
implement update data consistency. Finally, the
conclusion is given in section 6.

2 Background
2.1 Replication mechanism
Replication related works that have recently been
published are [4-6] where the goals are somewhat
different; maximizing hit probability of access
requests for the contents in P2P community,
minimizing content searching (look-up) time,
minimizing the number of hops visited to find the
requested content, minimizing replication cost,
distributing peer (server) load, etc.

Kangasharju et al. [5] studied the problem of
optimally replication objects in P2P communities.
The goal of their work is to replicate content in order
to maximize hit probability. They especially tackled
the replication replacement problem where they
proposed LRU (least recently used) and MFU (most
frequently used) based local placement schemes to
dynamically replicate new contents in a P2P
community. Maximizing hit probability does not
satisfy the required QoA and, furthermore the two
different goals lead to different results.

Lv et al. [4] and Cohen and Shenker[6] have
recently addressed replication strategies in
unstructured P2P networks. The goal of their work is
to replicate in order to reduce random search times.

Yu and Vahdat [7] have recently addressed the
costs and limits of replication for availability. The
goal of their work is to solve the minimal replication

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1845 Issue 12, Volume 8, December 2009

cost problem for a given target availability
requirements, thus they tried to find optimal
availability for given constraint on replication cost
where the replication cost was defined to be the sum
of the cost of replica creation, replica tear down and
replica usage. Our work differs in that our goal is to
replicate content in order to satisfy different levels of
QoA values required by individual users.
Furthermore, their work does not take P2P system
specific features such as changing peers state–going
up or down - into account.

Related to supporting lookup services, there are
many ongoing research efforts such as Chord [8] and
Pastry [9]. They detail the mechanisms for
supporting the services that they offer such as
indexing, lookup, insert, search, update, and delete.
While some of them support fault tolerance by
replicating the mapping information, i.e., the
key/value binding information on multiple peers,
they do not give any availability guarantee for values,
e.g., files or multimedia contents, than that of
‘best-effort’ availability support. Furthermore, it
is not clear under which criterion the number and
location of replicas are determined.

2.2 Data consistency
In P2P systems, there are several conventional works
that address the consistency management among
replicas. In [10], the authors discuss consistency
management in P2P networks by broadcasting
invalidation reports using a hybrid push/pull
approach. In [11], the authors proposed an update
propagation method to replicas based on the
gossiping messaging. These approaches are more
optimistic in nature, whereas in our approach, the
strict consistency conditions at various levels are
maintained by broadcasting lock requests on
quorums.

In mobile database environments (but not
MANET), several consistency management
strategies that consider peer disappearance have been
proposed [12-15]. Most of these strategies assume an
environment where mobile hosts access databases at
sites in a fixed network, and replicates/caches data on
the mobile hosts because wireless communication is
more expensive than wired communication. They
address the issue of keeping consistency between
original data and its replicas or cached data with low
communication costs. These strategies assume only
one-hop wireless communication, and thus, they are
different from our approach which assumes
multi-hop communication in MANETs. Since
network partitions frequently occur, different
consistency management strategies are required in

P2P MANETs. In [15] the authors proposed a formal
theory for maintaining temporal and semantic based
conditions in terms of broadcast transactions. The
idea of maintaining temporal consistency in a group
is similar to our TC (Time-based Consistency)
described later. However, the focus in [15] was more
on time-based transaction consistency. Their idea can
be integrated with our TC in the sense that we can use
transaction’s temporal consistency condition within
a group of peers.

Recently, data replication is becoming more
popular and significant topic of research in MANET
[16-18]. Several methods have proposed for
preserving consistency among replicas in MANETs
[19-21]. In [19], the authors proposed methods by
which replicas are allocated to a fixed number of
mobile hosts that act as servers and keep the
consistency among the replicas. In there, the
consistency is maintained by employing a strategy
based on the quorum system that has been proposed
for distributed databases [22]. In [20], the authors
extended the methods proposed in [19] by applying
probabilistic quorum system [23] and gossip based
on message routing [24]. Their methods are
considered similar to ours because consistency
among replicas is maintained based on the quorum
system. However, in [19] and [20], the authors did
not assume the strict consistency but aimed to keep
the consistency in the entire network. Therefore, the
locality in P2P MANETs described in this paper, was
not taken into account.

In [21], the authors defined two different
consistency levels, local observation consistency and
global observation consistency. Global observation
consistency is equivalent to GC (Global Consistency)
considered in this paper. Local observation
consistency is almost equivalent to PC (Peer based
Consistency), except that it requires replicas to
eventually converge to the most recent version. In
[21], only two different consistency levels are
defined, whereas in here we define seven levels.
Moreover, the authors tried to keep consistency
based on an optimistic manner, i.e., transactions are
tentatively committed and the consistency is checked
afterward by using serializability graphs. Such an
optimistic approach may not work well in MANETs
because it will cause a large number of aborts and
rollbacks of transactions due to conflicts of data
operations performed in partitioned networks.

3 Model of P2P Networks
P2P networks have weakened the role of the server,
or even abolish the server, allowing any nodes in the

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1846 Issue 12, Volume 8, December 2009

network serve the role of server and client, and
exchange data among these node, not through the
intermediate server, so make full use of network
bandwidth resources, and improve the network
scalability.

3.1 Centralized directory model of P2P

networks
For example, Napster[25] (Figure 1), its network
model is similar to the traditional Client/Server
network model, the central index server in this model
will be mainly responsible for the user request and
return the node address with the aimed resource to the
users. The detail data exchange process are directly
communicate by these two nodes, and not through
other server. The network model has high efficiency
in resource search, but when the size of the network
expand to a certain extent, the central index server
will often become the performance bottleneck of the
networks, and the entire network will slide into
paralysis when the index server fail.

Figure 1 Centralized directory model

3.2 Pure distributed model of P2P networks
For example, Gnutella [26] (Figure 2), it is a pure
distributed p2p network model, which use the
flooding mechanism to search the resource of the
network. The node contains the aimed resource that
users need will send response message to the source
request node, and then these two nodes directly
exchange this resource, this model do not lead to the
paralysis of the entire network because of the failure
of someone node in the network, but the flooding
search mechanism have poor efficiency, and will
bring a lot of power exponential growth of the request
message number during the process of the resource
search, which cause serious load to the network.
From figure 2, it can be seen that the middle node
have heavy load, if not to reduce the load of the
middle node, it’s very possible that the time request
this node to deal with will become a long delay.

Figure 2 Pure distributed model

3.3 Based on super-node model of P2P

networks
This model not only takes into account the high
search efficiency of centralized directory model, but
also considers the robustness of the pure distributed
model. This model as shown in Figure 3. Although
the request of the nodes in the cluster can process
through the super-node in the cluster, decrease the
cost of the network resources caused by the flooding
message request, but there will make the super-node
to become the bottleneck of the network if there will
be a lot of request in the cluster.

Figure 3 Based on super-node model

4 Replication Mechanism
From the above three P2P network model, we will
see that there may be caused the loss or not available
of some important resource in the network because
some important nodes have heavy load or suddenly
fail. So we should introduce replicate mechanism to
the P2P network, backup some important data in
some other nodes in the network to decrease the loss
of the important data and the load imbalance of the
node in the network, transfer some load from the
nodes with heavy load to other nodes with light load,
make the entire network’s load to balance.

4.1 Classification of the replication

mechanisms
Replication mechanisms can be classified by the
reason of the causing, divide into the replication
mechanism triggered by the resource interactive

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1847 Issue 12, Volume 8, December 2009

process and replication mechanism triggered by
some heavy load nodes need to transfer some load to
other nodes. The replication mechanism triggered by
the resource interactive process[27] can be divided
into three categories:

 Replication mechanism based on the source
request node: only store the resource that request
node need on the source request node, this
method is relatively simple to achieve. It will not
bring a great deal of network loads, but it is not
obvious for the improvement of the network
performance.

 Unify replication mechanism based on the path:
store the resource on all these nodes of the path,
which is from the source request node to the
target node providing the needed resource. The
effect of this mechanism is clear, which can
significantly reduce the delay time that request
node get the needed resource, and at the same
time greatly improve the fault-tolerant of the
network, but this mechanism bring a great deal
of network load to the entire network.

 Replication mechanism between the above two
extreme ways, that is, in the path from the
request node to the target node, this mechanism
will use some algorithm to determine part of the
all node along the path to store the needed
resource. This mechanism is very flexible, not
only obtain relatively good average delay time
of user getting the needed resource, but also not
bring comparatively heavy network load to the
entire network.

4.2 Implementation of the replication

mechanism
Replication mechanism based on the source request
node and unify replication mechanism based on the
path are extreme mechanism, so we use third
replication mechanism in the general application,
namely select certain algorithm to determine some
nodes along the path to store the resources’s backup.
During the implementation process of replication
mechanism, how to select the nodes that backup the
needed resources is the key problem, as well as the
number of these nodes. If a node will become the
node backup resources or not, it has related with the
current load, on-line time, capacity of the cache, the
ability to deal with. How to determine the replication
node is NP problem, so the algorithm determines
what factors should be considered based on the
specific need in the actual application process.

4.2.1 Node load
Node load is directly with the processing ability of
this node, so when testing the actual load of the node,

we send a request message with TTL=1 to this testing
node through the part neighbor of the testing node,
after the testing node receive this request message,
the node will process and response this request
message, then the neighbor nodes received the
response message from this testing node, calculate
the time difference between the time of sending the
request message and the time of receiving the
response message to construct the collection of the
time difference, and select the minimum value of the
time difference act as the load of the testing node,
during the actual process, we have better select some
time durations to test the minimum of these time
difference. Although this time, including the
processing time of CPU and the delay of network
transmission, but to a certain extent the time
difference can be a rough measure of the current node
load. After knowing the all nodes load in the entire
network, we should calculate the current average
load value--Avgloan, at the same time every node have
to set up a data table, which record the current
network load of the all neighbors nodes.

4.2.2 Selection of the replication node
Selection of the replication node is the core of the
whole replication mechanism, because it needs to
consider a lot of factors. There are many heuristic
algorithms[28]: such as, the random heuristic
algorithm, which use a random generator to
determine the node of store resources according to a
uniform distribution probability, this algorithm does
not consider the current load of the node, as well as
the on-line time of the node. HighlyUpFirst[29]
heuristic algorithm, in accordance with the length of
the on-line time of the node to determine the
replication node, But the HighlyAvailableFirst[29]
heuristic algorithm use the available information of
the node to determine the replication nodes.
Although these heuristic algorithms are relatively
simple, these algorithms can improve the
performance of the network to a certain extent.

On the assumption that we have already mastered
all the network load of the nodes in the network, here
we select replication nodes based on the network load
of the node first, the cache size of the node second,
and the restriction total number of replication to
determine what nodes should be replication node.

4.2.3 Implementation of the replication algorithm
When these nodes having the needed resources
receive the request message from the request node,
go to process, then return corresponding response
message, this message carry in backup data and
return along to the original path. When this message
arrival at one node, replication algorithm determine

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1848 Issue 12, Volume 8, December 2009

whether this node is fit for the replication node or not
according to the network load of this node, if the load
value of this node is less than the given maximum
load value MAXloan, then this algorithm consider the
left size of storage cache of the node. if the left
storage cache of the node is bigger than the size of the
backup data, this algorithm will put the backup data
carried by the message onto the node, then go to
return this message, until reach the given total
number of the replication—MAXcopy, or this response
message arrival at the source request node to
complete the implementation of the replication
algorithm.

During the implementation process, when one
node is determined to act as the replication node, and
save the backup data, this replication mechanism
need to record the source node address having the
source backup data in the local data table, and return
a message to the source node to ask that the source
node update the backup statistics data table. When
there are same request for certain resource sent to the
source node next time, then the source node will
match some data item with the data statistics table,
and return all nodes address list, including the source
data and backup data, the request node select the
nearest data node to interact according the data table.
This data table will be used to maintain the data
consistency between the source data and backup data
in the next section.

4.3 Load transfer[29]
The load value of every node will be changed at any
time, when the load value of the node change, the
node will send this newly load value to its neighbors
to ask for updating the load value table of its
neighbors. When some nodes’s total load value is
bigger than the given maximum load value, namely
these nodes are overload. In order to make these
overload nodes to normal handle with the request
message, the replication algorithm should go to
transfer the network load, which is from heavy load
nodes to light load nodes, finally ensuring that the
network have high implementation efficiency.

Load-transfer process: According to the neighbor
nodes load data table stored in the node, the node
select the minimum load node from all the nodes in
the load data table, then send a inquiry message to
this node with the minimum load value to ask for the
backup resources list existing in this node. The
minimum load node deal with the request, return all
backup resources list of this node to the source
request node, which receive the message, and
compare the local resources list with the backup
resources list of the message, then random select
some resources that the minimum load node have not,

according to the information of these resources to
produce a load transfer request message, and send to
the minimum load node. The minimum load node
receive the load transfer request message, use the
above node selection algorithm to judge whether the
added load total is bigger than the given maximum
load value and the local cache is bigger than these
backup resources needed to transfer. If these
conditions are satisfied, the minimum load node store
the backup resource. At the same time this node get
the source node information from the backup data
through this message, then send the newly update
message to the source node of the backup resources
to ask for the source node to update its backup
resources data table. If there are this backup resource
message request sent to the source node in the next
time, the source node will return a newly data address
list, namely some heavy load nodes transfer some
resource to others light load nodes, so for some
resources request change from the heavy load nodes
to light load nodes, thus decrease the load
information of the source node, from Figure 4, at first
there is only node F, which have certain resource,
while in the network the other node want to get the
resource, they must send a resource request message
to node F for this resource through node G,E and I,
node F have heavy load because of a lot of request, so
we should select the current minimum load value
node I to act as the node implementation of load
transfer from all its neighbor nodes, then implement
the transfer of load through the replication
mechanism. When node I have this backup resource,
these nodes that firstly ask node F for this resource or
near node I can redirect to node I to get the needed
resources, so part of the load of node F transfer to the
node I. At the same time the load of node I change, so
node I will send the newly local load value
information to all the neighbor nodes to update their
local load data table. If the load value of node F is
bigger than the given maximum load value MAXloan,
node F will go to do the similar operation of
transferring network load.

Figure 4 Load transfer

When the cache of the node is full, this node is

impossible to store the new backup resource

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1849 Issue 12, Volume 8, December 2009

according to the previous replication algorithm, but
part of the backup resource stored on this node maybe
have small visitors, so it is necessary to replace or
clear these backup resources not often used to save a
lot of cache to store those backup resources often
used. Now there are some mature replacement
algorithm, such as LRU (Least Recently Used), LFU
(Least Frequently Used). When some backup
resources are replaced in some nodes, these nodes
will match these replacement backup resources with
the backup resource data table, find the source node
that have this backup resource, then send the request
message to this source node, ask for the source node
to clear the corresponding record of the replacement
resource from the data table, and also remove the
backup data record that have already removed from
the cache in the local backup data table.

4.4 Performance analysis of replication

mechanism
4.4.1 replication placement model
To investigate the sensitivity of replication
placement performance to client locations, we look
into several client replication placement models. Our
goal is not to explore all possible client replication
placements, but to consider the extreme cases, along
with the random case, because the extreme cases can
give us the boundary of expected performance.

The first model we look into is the random client
replication placement, where the client nodes are
selected at random with uniform probability.

We also look into the extreme client replication
placement as defined in [30], namely extreme affinity
and extreme disaffinity. The extreme affinity model
places the clients replication as close as possible to
each other; the extreme disaffinity model places the
clients replication as far as possible from each other.
The particular algorithm we use to place a number of
clients replication on a graph according to the
affinity/disaffinity model is described in [31]. Below
is a brief summary of that algorithm. The first client
replication is selected at random among all nodes.
Then, we assign to each node ni that is not selected
yet the probability

i
i

p
w β

α
=

where wi is the closest distance between node ni and a
node that is already selected as a client, α is
calculated such that 1

i
in

p =∑ , and β is the

parameter that defines the degree of affinity or
disaffinity. After a node is chosen to be a client, the
probabilities of the remaining nodes are recomputed

and the process is repeated until the desired number
of clients is selected. Similar to [31], in our
experiments we use β = 15 and β = -15 for extreme
affinity and disaffinity respectively.

To verify our results with real-world data, we use
web server access logs to create the population of
clients. In particular, we collect the unique IP
addresses of all clients that have accessed the same
Web server within some period of time. Then, we run
a traceroute to each of the client addresses. Finally,
we intersect each of the traceroute paths with the
Internet map to find the last-hop router toward a Web
client that is on that map. The set of all last-hop
routers is our web clients set that can be used to
represent the population of the real-world Web
clients.

4.4.2 Performance analysis
Here we use the special two parameters to measure
the performance of the network, such as the average
customer latency and the overall network overhead.
For the convenience to analysis, assuming that the
latency between the two nodes has related with the
hop between the two nodes (in the actual network,
latency is directly related with the hops of the route
layer), at the same time we assume that all the
network bandwidth among these nodes are same (in
the real networks, all nodes have the same network
bandwidth is impossible). In these two premise, we
can get the average client latency value
AveClientLatency,

()()
(, ())

1client c
Dist c replica c

AveClientLatency
NumberOfClients

=
∑

where replica(c) is the replication node for client c,
and Dist(c, replica(c)) is the distance between them in
number of hops.

The total network load have divided into two part,

such as the load caused by transferring the source
resource from the source node to all the replication
node, and the load caused by transferring the backup
data from the backup node to all the user node. But in
fact, the number of backup nodes for saving these
source resources are limited, so the load caused by
transferring the source resource from the source node
to all the replication node is far less than the load
caused by transferring the backup data from the
backup node to all the user node. Here we rough
regard put the latter network load as the total load of
the network, but the latter network load is directly
related with the hops from every client to the

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1850 Issue 12, Volume 8, December 2009

replication nodes of object resource, so the total
network load can be seen as

()
()

(, ()) 2
clients c

NetworkOverhead Dist c replica c= ∑

In our analysis, we are not interested in the absolute
client latency or absolute network overhead
parameter. Instead, we are interested in the relative
client latency or relative network overhead. Based on
our assumptions, we have

()3NetworkOverheadAveClientLatency
NumberOfClients

=

In Figure 4, when node F transfer part of load to node
I, we can calculate that the average network latency
after the load transfer is significantly less than the
average network latency before the load transfer.
The larger the network, the improvement of network
performance will be better through this replication
mechanism.

5 Consistency solution of replication
mechanism
At present, many P2P networks access the network
primary based on the read operation, so it will not be
involved in data synchronization or data consistency,
but in the future P2P applications will broad across
every walk of life, including e-commerce,
coordination process. These applications not only
need the read operation, but also need the write
operation to complete the data coordination and
synchronization, so how to maintain the data
synchronization or consistency between the source
data and backup data is the key to the expansion of
the P2P network in the future.

At present, there are mainly three solutions to
maintain the network data consistency:
① Active way, using the push method. When the

data of the source node have changed, the source
node will put this update message to broadcast in
the network, after all the nodes of the networks
receive the message, these nodes determine if
there exist data backup resource through the
operation of match, if exist the resource, go to
download and update. This update operation is
launched from the source node, more suitable for

application in the static networks. The
advantages of this way is that all the backup data
will be timely update, and decrease the latency
time of user request for the newly backup data,
but the defect of this way is the broadcasting data
update, this mechanism will make the load of
network become heavy, and seriously effect the
communication quality of the network.

② Passive way, using the poll method, after the
source node modify the data, it do not directly
send the update message to others nodes to tell
them to update the data resource of the source
node, but only modify the version of the data
related with the source data node. When others
nodes having this backup data need to handle
with these data, the program will take out the
source node having this backup data from the
local data table, then send a request message,
which carry on the version of corresponding data
in the current node. When the source node
receive this message, find that the data version in
replication nodes is not the newest, the source
node will send the newest data resource to this
backup node according to the data modification
information among the version of the data to
complete the update operation. This way is
launched from the backup node, comparatively
suit for the dynamic network environment. The
advantages of this way is that do not immediately
update, only go to update when the user need to
use this data, but the defect is that the latency that
user get the newest update data will become
longer.

③ Push & poll way, a mixed approach, considering
the advantages of the push way and the poll way,
when the source data node update the data in the
node, the source node will send update message
to part of other nodes having this backup data,
and ask for these nodes to immediately update.
When there are some part of these nodes have not
update these data, so these nodes will automatic
link to the source data node during a period of
time, determine whether the data should update
or not through compared with the version
number, and further to deal with. Of course, the
time intervals will change along with the change
of the network data, if the network data change
quickly, the time interval will be become shorter.

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1851 Issue 12, Volume 8, December 2009

Figure 5 Data consistency algorithm

Reference[32] provide that data consistency is
built on the above premise: the resources can only be
modified through the owner of the document to
implement. But this premise is not feasible in the
co-processing applications of the actual network, so
here we provide a newly improvement data
consistency, data can be modified in any backup node,
but the modified data of the backup node should
synchronize with the data of the source data node.
Here we use the above 3 way to maintain data
consistency, the algorithm is described as shown in
Figure 5, the algorithm use the improved push and
pull methods. Among which the improved push
method require the source data node to select a subset
of the backup data set from the data table, then send
the update message request to all the nodes of the
subset. The improved pull method ask the backup
node to automatic link to the source data node to
update the data resource during a period of time.
Through this algorithm, it does not increase the
network load due to many data modified operation of

the backup node, and it can decrease the latency of
getting data. This algorithm introduce the update
queue of the data source node to ensure the data
synchronization during the data modify process.

6 Conclusion
This paper introduce replication mechanism to the
P2P networks, not only solve the loss of the
important data because of the failure of some
important node in the network, and through the load
transfer operation among the nodes this replication
mechanism make the P2P networks load to balance,
efficient use the resources of the P2P network, and
ensure the update data synchronization of the P2P
network through the data consistency algorithm,
further promote the commercial application of the
P2P networks.

While (the update queue of the data source node have update message, namely, the request
queue is not empty)
/ * Through the queue to maintain the revised data synchronization * /
{
Get the head element of the update queue;
If (the head element is the source node (on behalf of the party to launch update operation))
{
 Update the source data in the source node, and update the version of the source data;
 Random select a subset of the update queue; / / the improved push algorithm
 Send update message to all the nodes in the subset;
 Extract the version carried in the response message returned from the subset;
 Determine which part of data has been changed through the comparison between these
different data version;
 Send the changed data blocks to the backup node;
}
Else (the head element is the backup node)
{
 The backup node send the backup data version to the source data;
 The backup node determine whether to update the data of the current node according to
the message returned from the source node;
 / * The detailed steps of this operation: the source node receive the data version of the
backup node, and match the version number. If the version number is not the same, the
source node determine what data block have already modified in this version, then send the
modified data block to backup node to update; If the version number is same, it is shown that
the data in the backup node is the newest data, so it is not necessary to update the data.* /
 The backup node update the data source; / * update operation launched by the backup
node. * /
 The backup node send the update data to the source node to update the data in the source
node, and update the data version, and then recursive select a subset to update data based on
the source node.
 }

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1852 Issue 12, Volume 8, December 2009

References:
[1] Jaime Lloret, Juan R.Diaz, Jose M.Jimenez,

Manuel Esteve. The Popularity Parameter in
Unstructured P2P File Sharing Networks.
WSEAS TRANSACTIONS on COMPUTERS,
vol. 3, pp. 2118-2133, December 2004

[2] M. Sasabe, N. Wakamiya, and M. Murata.
Adaptive and Robust P2P Media Streaming.
WSEAS TRANSACTIONS on
COMMUNICATIONS, vol. 4, pp. 425–430,
July 2005.

[3] Zheng Yan and Peng Zhang. Trust Collaboration
in P2P Systems Based on Trusted Computing
Platforms. WSEAS Transactions on Information
Science and Applications, Issue 2, Vol. 3, pp.
275-282, February 2006.

[4] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured
peer-to-peer networks. In Proc. of the 16th
annual ACM International Conf. on
Supercomputing (ICS’02), New York, USA,
June 2002.

[5] J. Kangasharju, K.W. Ross, and D. Turner.
Optimal Content Replication in P2P
Communities. Manuscript. 2002.

[6] E. Cohen and S. Shenker. Replication Strategies
in unstructured peer-to-peer networks. In Proc. of
ACM SIGCOMM’02, Pittsburgh, USA, Aug.
2002.

[7] Haifeng Yu and Amin Vahdat. Minimal
Replication Cost for Availability. In Proc. of the
21th ACM Symposium on Principles of
Distributed Computing (PODC), July 2002.

[8] Stoica, R. Morris, D. Karger, M.F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for Internet applications. In Proc.
of ACM SIGCOMM’01, San Diego, USA, Aug.
2001.

[9] A. Rowstron and P. Druschel. Pastry: Scalable,
distributed object location and routing for
large-scale peer-to-peer systems. In Proc. of the
IFIP/ACM International Conf. on Distributed
Systems Platforms, Oct. 2001.

[10] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham.
Consistency maintenance in peer-to-peer file
sharing networks. Proc. IEEE Workshop on
Internet Applications, pp.90-94, 2003.

[11] A. Datta, M. Hauswirth, and K. Aberer.
Updates in highly unreliable, replicated
peer-to-peer systems. Proc. ICDCS’03, pp.
76-85, 2003.

[12] Y. Huang, P. Sistla, and O. Wolfson. Data
replication for mobile computer. Proc.
ACMSIGMOD’94, pp.13-24, 1994.

[13] S.K. Madria. Timestamps to detect R-W
conflicts in mobile computing. Proc. Int’ l.
Workshop on Mobile Data Access (MDA’98),
pp.242-253, Nov. 1998.

[14] E. Pitoura and B. Bhargava. Maintaining
consistency of data in mobile distributed
environments. Proc. IEEE ICDCS’95,
pp.404-413, 1995.

[15] E. Pitoura, P.K. Chrysanthis, and K.
Ramamritham. Characterizing the temporal and
semantic coherency of broadcastbased data
dissemination. Proc. Int’l Conf. on Database
Theory (ICDT’03), pp.410-424, 2003

[16] G. Cao, L. Yin, C.R. Das. Cooperative
cache-based data access in ad hoc networks.
IEEE Computer, Vol.37, No.2, pp.32-39, 2004.

[17] L.D. Fife and L. Gruenwald. Research issues for
data communication in mobile ad-hoc network
database systems. SIGMOD Record, Vol.32,
No.2, pp.42-47, 2003.

[18] K. Wang and B. Li. Efficient and guaranteed
service coverage in partitionable mobile ad-hoc
networks. Proc. IEEE Infocom’02, Vol.2,
pp.1089-1098, 2002.

[19] G. Karumanchi, S. Muralidharan, and R.
Prakash. Information dissemination in
partitionable mobile ad hoc networks. Proc.
SRDS’99, pp.4-13, 1999.

[20] J. Luo, J.P. Hubaux, and P. Eugster. PAN:
Providing reliable storage in mobile ad hoc
networks with probabilistic quorum systems.
Proc. ACM MobiHoc 2003, pp.1-12, 2003.

[21] K. Rothermel, C. Becker, and J. Hahner.
Consistent update diffusion in mobile ad hoc
networks. Technical Report 2002/04, Computer
Science Department, University of Stuttgart,
2002.

[22] D. Barbara and H. Garcia-Molina. The
reliability of vote mechanisms. IEEE Trans. on
Computers, Vol.36, No.10, pp.1197-1208, 1987.

[23] D. Malkhi, M.K. Reiter, and A. Wool.
Probabilistic quorum systems. Information and
Computation, Vol.170, No.2, pp.184-206, 2001.

[24] Z.J. Haas, J.Y. Halpern, and L. Li.Gossip-based
ad hoc routing. Proc. IEEE Infocom 2002,
pp.1707-1716, 2002.

[25] Napster Website[EB/ OL] . http://www.
napster. com

[26] Gnutella Website[EB/ OL] . http://www.
gnutella. com

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1853 Issue 12, Volume 8, December 2009

[27] Yamamoto, H.; Maruta, D.; Oie, Y..Replication
methods for load balancing on distributed
storages in P2P networks.Applications and the
Internet, 2005. Proceedings. The 2005
Symposium on 31 Jan.-4 Feb. 2005 Page(s):264 -
271

[28] Drougas, Y.; Kalogeraki, V.A fair resource
allocation algorithm for peer-to-peer
overlays.INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and
Communications Societies. Proceedings IEEE
Volume 4, 13-17 March 2005 Page(s):2853 -
2858 vol. 4

[29] On, G.; Schmitt, J.; Steinmetz, R..The
effectiveness of realistic replication strategies on
quality of availability for peer-to-peer
systems.Peer-to-Peer Computing, 2003. (P2P
2003). Proceedings. Third International
Conference on1-3 Sept. 2003 Page(s):57 - 64

 [30] Graham Phillips, Scott Shenker, and Hongsuda
Tangmunarunkit. Scaling of Multicast Trees:
Comments on the Chuang-Sirbu scaling law. In
Proceedings of the ACM SIGCOMM'99,
Cambridge, Massachusetts, USA, August 1999.

[31] Tina Wong and Randy Katz. An Analysis of
Multicast Forwarding State Scalability. In
Proceedings of the 8th IEEE International
Conference on Network Protocols (ICNP 2000),
Osaka, Japan, November 2000.

[32] Jiang Lan; Xiaotao Liu; Prashant Shenoy; Krithi
Ramamritham. Consistency maintenance in
peer-to-peer file sharing networks.Internet
Applications. WIAPP 2003. Proceedings. The
Third IEEE Workshop on 23-24 June 2003
Page(s):90 - 94

WSEAS TRANSACTIONS on COMPUTERS Dongming Huang, Zong Hu

ISSN: 1109-2750 1854 Issue 12, Volume 8, December 2009

