
Τhe Function Block Model in Embedded Control and Automation
From IEC61131 to IEC61499

KLEANTHIS THRAMBOULIDIS
Electrical & Computer Engineering

University of Patras
26500 Patras

GREECE
thrambo@ece.upatras.gr http://seg.ee.upatras.gr/thrambo

Abstract: - The Function Block (FB) model was first standardized by the 1131 standard of the International
Electrotechnical Commission (IEC) for programmable controllers. This standard was successfully adopted by
the industry but it seems to have several constraints for the development of today’s complex embedded control
and automation systems. These constraints are mainly imposed by the procedural programming paradigm and
the device centric approach that are adopted by the standard. The IEC to address these constraints proposed the
61499 standard that is an attempt to exploit object-orientation and the application-centric paradigm in the
control and automation domain. In this paper, the FB models of 1131 and 61499 are briefly described and
several unclear issues related to the programming paradigms adopted, interoperability, composability and
execution semantics of these FB models are clarified. The paper focuses on the execution semantics of the
61499 standard since this is one of the most important reasons that the industry has not yet accepted this
standard.

Key-Words: - embedded control and automation systems, IEC 61131; IEC 61499; 1131 Function Block Model;
IEC61499 execution environment; execution model semantics; Factory Automation.

1 Introduction
The IEC61131 standard [1] was an attempt to unify,
at least at the semantic level, the main types of
languages used in practice for PLC programming
around the world [2]. The standard that was
published in 1993 defines among the five languages
the Function Block Diagram which established the
so called Function Block (FB) model in the
industrial control programming domain. The 1131
FB is based on the procedural programming
paradigm and promotes the device centric approach
in the development of industrial systems
development. A great push to the adoption of the FB
model from industry was given by the PLCOpen
association that was created to promote the usage
and supply of products in conformance with the
1131 standard [3].

However, the increased complexity of embedded
systems in the control and automation domain
cannot be effectively addressed by the procedural
and device centric paradigms. As Lewis states in [4]
“There are a number of limitations with the original
function block concept introduced by the (…) 1131.
With the (…) (FBD) graphical language, function
blocks can be linked by simply connecting data flow

connections between block inputs and output
variables.”

Software engineering has to demonstrate
significant progress with technologies such as object
and component technology and model driven
engineering that can be exploited to improve the
development process of embedded control and
automation systems. To address today’s challenges
in industrial automation systems development, the
International Electrotechnical Commission (IEC) has
defined the 61499 FB model [5] as an extension to
the 1131 FB. This was also an attempt of the IEC to
“open” the industrial systems market and meet
among others, requirements such as interoperability,
portability, distribution, agility, run-time
reconfigurability, higher availability and reliability.

The new model is assumed to introduce a
paradigm shift from the procedural approach adopted
by the 1131 FB model to the object oriented one and
also a shift from the device to the application centric
approach. However, it is clear that this standard has
been influenced very much from the 1131 FB model
and fails in successfully exploiting current software
engineering practices. Even though it has been
officially accepted by the year 2005 it is not yet

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1597 Issue 9, Volume 8, September 2009

adopted by the industry and its status in the academic
research community is questionable.

In this paper, an attempt to clarify a number of
unclear issues on these FB models is done. More
emphasis is given to the execution semantics of these
models since the open issues in the execution
semantics of the 61499 is probably the most
important reason for the fact that the industry has not
yet adopted this standard. The ongoing discussion
for enhancing the 1131 FB model to support the OO
paradigm is discussed and compared to the 61499
approach.

The remainder of this paper is organized as
follows. In the next 2 sections a brief introduction to
the 1131 and IEC61499 function block models is
given. In section 4, the main important aspects of
the 1131 and 61499 are discussed. In section 5, the
execution semantics of the FB model are discussed,
with more emphasis on IEC61499. Finally, the
paper is concluded in the last section.

2 The IEC61131 Function Block
Model
Figure 1 presents in terms of a semi formal UML
model the basic constructs of the 1131 FB model. It
also captures the main concepts defined by the 1131

standard that are required for the specification and
execution of 1131 based applications.

The term configuration is used to refer to the
organization of the software that solves a specific
control problem. A configuration is usually used to
specify the control application that is executed in one
PLC. However, for complex control problems the
control application will be defined as an aggregation
of configurations running on separate PLCs. A
configuration is executed on a network of
interconnected devices that are usually PLCs. Each
device has one or more processing units, and each
unit normally has one resource but it may also have
more resources, as shown in fig. 1. The resource
provides the services, i.e. the infrastructure required
for the execution of 1131 programs. One of the most
important services provided by the resource is the
functionality required to implement the interface of
the software with the physical I/O channels of the
PLC.

3 A Brief Introduction to the
IEC61499 Function Block Model
The 61499 FB was defined as an extension of the
1131 FB to address today’s challenges in industrial
automation systems development. The FB is defined

Fig. 1. The IEC 1131 Function Block Model.

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1598 Issue 9, Volume 8, September 2009

as a design level construct to encapsulate industrial
algorithms and the data that these algorithms operate
on. It consists of a head and a body; the head of the
FB type is used to capture the dynamics and the
body is used to capture the functionality, as shown in
fig. 2. The head is connected to the event flows and
the body to the data flows. The functionality of the
function block is provided by means of algorithms,
which process inputs and internal data and generate
output data.

Fig. 2. Graphical representation of the FB type
design level construct.

 The FB is more than an object since it proceeds
one step further and defines a specific way of
capturing the dynamic behaviour of the object that
represents. It proposes the use of a specific kind of
statechart that is called Execution Control Chart
(ECC) to specify the dynamics of the object. An
ECC consists of EC states, EC transitions and EC
actions, as shown in fig. 3. An EC state may have
zero or more associated EC actions, except from the
initial state that shall have no associated EC actions.
An EC action may have an associated algorithm and
an event that will be issued after the execution of the
algorithm. EC transitions are directed links that
represent the transition of the FB instance from one
state to another. An EC transition has an associated
Boolean expression that may contain event inputs,
data inputs, and internal variables. As soon as this
expression becomes true the EC transition fires.
 An application is defined as a network of
interconnected FB instances that accepts inputs from
the mechanical system, through sensors, and
generates outputs that are sent to the mechanical

system through actuators. Fig. 4 presents the basic
constructs of the 61499 FB model in terms of a semi
formal UML model.

Fig. 3. Execution Control Chart (ECC) of the
PID_SIMPLE Function Block type.

 The great influence of the 1131 on the
definition of the IEC61499 standard can be easily
identified. Even though an attempt was done to
exploit current software engineering practices, the
specification has many disadvantages regarding its
theoretical basis in exploiting current software
engineering concepts and technologies, such as
object orientation and component based
development. This is probably one of the most
important reasons for the many ambiguities that
exist in the specification. Unfortunately there was
no concept evaluation process in the form of a
reference implementation before the acceptance of
the standard [6]. FBRT (www. holobloc.com), the
first prototype implementation, could not be
considered as a reference implementation by the
time the standard was adopted since it violates a lot
of the semantics defined by the specification. Other
implementations were also not used to revisit and
resolve ambiguities in the standard.

Unfortunately even though a lot of papers have
been published on the subject, the number of actual
implementations, even prototypes, is very limited.
There is no mature reference implementation to
demonstrate the applicability and the advantages of
the specification. Several prototype or under
development IDE’s exist to support the development
process. FBDK (www.holobloc.com), CORFU/
Archimedes (http://seg.ece.upatras.gr/seg/dev/iec
61499.htm) [30], and 4DIAC (www.fordiac.org/) are
currently the most known in the community. There
are also several prototype run-time environments

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1599 Issue 9, Volume 8, September 2009

such as FBRT, Archimedes RTSJ-AXE (http://seg.
ece.upatras.gr/mim/RTSJ-AXEpackage.htm), Archi-
medes RTAI-Linux, Forte (http://source forge.net/
projects/fordiac), etc. A small number of example
applications have been developed to demonstrate the
applicability of the specification (see for example
http://seg.ece.upatras .gr/seg/dev/iec61499.htm)

Fig. 4. The IEC 61499 Function Block model.

If we look at the current status regarding the
adoption of IEC 61499 FB model we can see both a
promising and a disappointing view. The promising
view is the Academic view while the disappointing
view is the Industry’s view [6]. It can be stated that
there is a tendency from industry to reject the IEC
61499 standard simply because: a) its learning curve
is perceived as being very steep, and b) there is no
mature reference implementation to demonstrate the
applicability and also the advantages of the new
specification. There are also a number of non-
technical reasons for industrial engineers for not
adopting the standard [31].

4 A Discussion on 1131 and 61499
Features
The following statement/question was raised during
the industry day of ETFA 08 conference that was
devoted to the 1131 and 61499 standards [33]. The
question that was the motivation for this paper is the
following: "I am working for many years with
61499. I know very well the concept behind it but at
this moment I will try to make a question from the
control Engineer’s point of view. Attending the
morning session on 61499 I was able to hear from
the presenters that this standard addresses all the
problems imposed by 1131 and mainly those of

portability, interoperability, distribution and
reconfigurability. Attending the evening session I
was also able to see the presenters to demonstrate
the support of 1131 to portability, interoperability,
distribution and reconfigurability. I was also able to
see the slide of the car composition that was used
from PLCOpen to focus on the support of 1131 to the
component based approach. Even more I
attended with great interest the proposal (from
Codesys) for extending the 1131 to support the OO
paradigm. What I can say from my experience
working with 61499 all these years is that 1131 with
such an extension will be several steps in front of
61499. In fact, I am a little confused about the need
for both standards in the case of the 1131 extension
to OOP. The control Engineer is much more
confused trying to understand what is the way to
follow for the next generation of automation
embedded systems".
In this section the main properties of these standards
are discussed in detail in order to provide answers to
the questions raised by the above position statement.
The presented in [32] object-oriented extension to
the 1131 FB model is not taken in account in this
discussion, since this extension has not yet been
accepted by the 1131 working group. However, it
should be noted that from the presentation of
CoDeSys in [33] it has been clear that with the new
extension the 1131 will provide a much better
support for the OO paradigm than the one provided
by the 61499.

4.1 Interoperability and Portability
Both models claim to support interoperability and
portability. However, a distinction has to be done
between edit-time and run-time interoperability and
portability. PLCOpen with its XML-based
specification for 1131 provides a good support for
edit-time interoperability and portability but these
properties are not supported for the run-time.
Eventhough 61499 has addressed both issues as far
as the edit-time is concerned, it fails in both for the
run-time. By using the term “interoperability” both
communities, i.e. the 1131 and the 61499, refer to
the edit- time interoperability, that is the ability to
exchange design-time model elements such as FB
types and FB networks between development tools.
This is also the case for the use of the term
“portability”. The run-time interoperability, i.e. the
possibility of several applications running on
different hardware and software infrastructures to
interoperate is not addressed by both standards. This
is also the case for the run-time portability.

4.2 Monolithic vs. Component-based
Approach

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1600 Issue 9, Volume 8, September 2009

The term “run-time component” is used in software
development from 1988 [9]. A component based
application can be considered as a network of run-
time components. The term “network of run-time
components” can be used to refer to the control
application to emphasize that it is not monolithic.
“Network” is, according to Collins Cobuild
dictionary, a system of things which are connected
and which operate together. According to this
definition a network of run-time components is a
system of run-time components which are connected
and which operate together.

Due to the misuse of the term component, the
difference between the monolithic and the
component based approach in both communities is
not clear. The 1131 community adopts the
monolithic approach regarding the binary of the
application. This is also the case for the majority of
the 61499 tools; only a restricted number of tools
support the component-based approach for the
execution of IEC61499-based control applications
[11]. Reconfigurability of the automation system is
greatly depended on this characteristic of the
application. In fact run-time reconfigurability can be
applied only in the component based approach.

The component-based approach has several
advantages compared to the monolithic one. As
stated in [7] “Unfortunately, MathWorks products
tend to generate monolithic code rather than
component-based code. This makes it more difficult
to validate or update the code.” As claimed in [10],
component-based development is “a solution that has
a long tradition of advocates, is recommended by
leading experts, and is quickly gaining support.” In
the same paper it is also stated that: “software
components support modular engineering practices,
just as integrated circuits support modular design of
hardware”, “Component-based development has
exceptional appeal in distributed software
development” and “the nature of components forces
designers and developers to better encapsulate
functionality into cohesive, reasonably well-
documented chunks of software.” The advantages of
the component-based design of control systems are
also discussed in [7].

An application can be considered monolithic or
component based either in the source or the binary
level. According to Szyperski [8], a software
component has to be a unit of deployment and thus it
has to be an executable deliverable for a (virtual)
machine, so no human intervention will be required
for its use. Adopting the above definition of
component, a monolithic application, in the binary
level, is an application that its run-time is a single
piece of executable code. The component-based

application is the application whose run-time is
considered as an aggregation of interconnected
binary (run-time) components.

According to the distribution model described in
[5] “an application or subapplication can be
distributed by allocating its function block instances
to different resources in one or more devices.” The
standard [5] also states that “a function block must
form an atomic unit of distribution.”

From the above and the definition of component
given by Szyperski [8], it is evident that the
objective of the IEC61499 is to move from the
monolithic application approach to the promising
component-based one, even though several
researchers claim that this is not true. The remainder
of this subsection argues on this direction. The run-
time support for composability is one of the
significant contributions of the IEC61499 compared
to the IEC61131 function block model. Design-time
composability is a feature already supported to a
great extend by IEC61131 and widely used by
industrial engineers for many years.

Taking into account that a monolithic application,
in the binary level, is an application that its run-time
is a single piece of executable code and the
following statements of the IEC61499 standard [5]:
1. the definition of the function block as an atomic

unit of distribution (“a function block must form
an atomic unit of distribution”), and

2. the description of the management function
blocks that provide functionality for application
management to “create, initialize, start, stop,
delete, query the existence (…) of data types,
function block types and instances and
connections among function block instances”,

it is more than evident that the IEC61499 favors the
shift from the monolithic application approach to the
promising component-based one. Of course, in this
case the function block is also used as design time
artifact and thus the developer exploits the
advantages imposed by this. The functionality of the
management function blocks to “create, initialize,
start, stop, delete, query the existence (…) of data
types, function block types and instances and
connections among function block instances” [5] can
be exploited only in the case of the component-based
approach when the application’s run-time is
considered as an aggregation of interconnected
binary (run-time) function block instances. This
functionality has no meaning in the case of a
monolithic (in the binary level) application.

The following is the exact statement from the
standard [5] (p. 45) regarding the functionality
provided by the management function blocks.
“Extending the functional requirements for

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1601 Issue 9, Volume 8, September 2009

"application management" in (…) to the distributed
application model of this part of IEC 61499 indicates
that services for management of resources and
applications in IPMCSs should be able to perform
the following functions: 1. In a resource, create,
initialize, start, stop, delete, query the existence and
attributes of, and provide notification of changes in
availability and status of: data types, function block
types and instances, and connections among function
block instances.”

4.3 The Device Centric vs. Application
Centric Approach
The 1131 has no support for distribution and is
mainly used with the device centric approach. At the
time the developer designs the application (2nd phase
in fig. 5) the system layer (network of devices) has
already been developed so he knows in detail the
target of each sub-system and also the channels
information.

According to the application centric approach, the
application is designed before the definition of the
system layer as a network of interconnected devices,
as shown in fig. 6. Device related info, as for
example I/O channels information, is not available to
the developer during the application design time.
Platform Independent modeling that is one of the
core issues of Model Driven Engineering assumes
the application centric approach.

Fig. 5. The device centric approach.

Fig. 6. The application centric approach.

4.4 Distribution Support – the Service
Interface Function Block
To address the distribution problem in the devices
that constitute the run-time environment for the

application, the 61499 standard introduces the
concept of the Service Interface Function Block
(SIFB) as a “function block which provides one or
more services to an application, based on a mapping
of service primitives to the function block's event
inputs, event outputs, data inputs and data outputs.”
In this way, as it is claimed in [20], the standard
defines how data and event connections of the FB
diagram should be implemented. The use of the
SIFB in the design diagram complicates the FB
network diagram, completely destroys location
transparency and makes it dependent on a specific
configuration of the target platform. All the design
alternatives except the one described in [20] adopt
the use of SIFBs in the design level.

A better approach that provides distribution
flexibility and favors location transparency is
described in [20]. According to this, two layers the
mechanical process interface (MPI) layer and the
IPCP layer have been defined to provide a set of
services that have to be provided by the execution
environment and used by the ESS and the devices to
automatically setup and implement both the event
and data connections with the mechanical process
and the other devices where applications components
have assigned. Actually, the MPI provides the
communication infrastructure and the abstraction
required by the control application to interface with
the controlled mechanical process. This approach:

a) simplifies the FB design diagrams,
b) de-couples the FB design diagrams from the

physical architecture, and
c) results in a more flexible reconfiguration

process that is required during the operational
phase.

The SIFBs are used by the standard to implement
the mapping of the application event and data (e.g.
Tank1.highTempAlarm, Tank1.temp) to the
Mechanical Process (MP) parameters (e.g. high
temperature alarm of “Tank1” tank of the MP,
temperature of “Tank1” tank of the MP) that are I/Os
of the control application. This is done by
implementing the SIFBs on top of the “process
interface” as defined in the standard [5, fig. 3]. This
means that the SIFB developer has to implement the
mapping of the events and data of the SIFB to the
corresponding MP parameters using the Application
Programming Interface (API) of the process-
interface layer.

The MPI of the run-time environment is a layer
on top of the process-interface layer (as is used by
the standard). MPI provides a parameterized
functionality to map the events and data of the
application to the corresponding MP parameters
using the services of the process-interface layer. The

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1602 Issue 9, Volume 8, September 2009

MPI is an alternative more flexible way to provide
the same functionality that has to be implemented by
the SIFB developer. The definition of MPI is an
attempt to increase the level of abstraction on which
the application designer is working. With this
abstraction the application designer has to refer to
the MP parameters by their specific abstract
identifiers, which may be names, as for example
Tank1.highTempAlarm, instead of either
implementing the required SIFB for the specific
process-interface or looking for a commercial-of-the-
shelf (COTS) SIFB that satisfies the application
needs and conforms to the target platform. The
configuration of the MPI to provide this layer of
abstraction to the application designer is a job that
should be performed at the device configuration
phase.

Since the MPI is a layer on top of the process-
interface layer, the proposed architecture of the run-
time environment provides to the application
developer the following alternatives:
• Use the MPI layer to interface with the MP and

avoid the use of the SIFBs;
• Use the SIFBs on top of process-interface layer

as is defined by the standard.
Of course an alternative may be to use the

concept of the SIFB on top of the MPI, but this is not
an effective design decision.

As far as the argument used by several
researchers that SIFBs are needed “to have a
consistent description of a system in uniform terms
of function blocks”, we claim that it is more
productive for the developer to work on an upper
layer of abstraction that hides communication
infrastructure details (as is also the case for
processing infrastructure details). Working on an
upper layer of abstraction the designer will
concentrate only on the definition of the application
logic. This approach is adopted in every component
and model driven engineering approach [21] and of
course it is one of the objectives of the presented
framework. Authors in [21] claim that in order “to
facilitate traceability, reuse, and evolution, systems
should be specified as compositions of clearly
separated and separately specified concerns of
interest”. The definition of the MPI layer is
analogous to the middleware layer and allows the
developer to apply vertical separation of concerns
through the use of the platform independent model
(PIM) and the platform specific model (PSM) in the
development process. Following this paradigm the
developer applies separation of concerns by defining
first a MPI-technology independent model of the
application and then a MPI-technology dependent
model. The vertical separation of concerns in the

form of PIM and PSM reduces complexity through
abstraction and the horizontal separation of concern
reduces complexity by describing the system using
manageable system views [22].

The term “separation of concerns” was
introduced by E. W. Dijkstra in [23]. As Reade
claims in [24], the programmer has to do “several
things at the same time, namely, 1. describe what is
to be computed; 2. organise the computation
sequencing into small steps; 3. organise memory
management during the computation.” In today’s
distributed systems one more issue can be added into
the third bullet, i.e., “organize communication
management during the computation”.

Reade claims in [24] that the programmer should
be able “to concentrate on the first of the three tasks
(describing what is to be computed) without being
distracted by the other two, more administrative,
tasks. Clearly, administration is important but by
separating it from the main task we are likely to get
more reliable results and we can ease the
programming problem by automating much of the
administration. The separation of concerns has other
advantages as well. (…) Furthermore, descriptions
of what is to be computed should be free of such
detailed step-by-step descriptions of how to do it if
they are to be evaluated with different machine
architectures.”

A layered design as the one adopted in [16] is one
way to apply the concept of “separation of concerns”
and have the industrial designer exploit its
advantages.

There is an argument used by the 61499
community on the use of the SIFBs that is stated as
follows: “Communication SIFBs are added at a later
stage of the application development namely at the
mapping stage. This is the stage when application
parts are mapped to the control devices. Therefore a
not mapped IEC 61499 application does not consider
the hardware which is very important for developing
distributed control systems.”

It is clear that the mapping process as described
and implemented by the 61499 is not user friendly,
not effective since it implies the redesign of the
whole Function Block Network (FBN) by
introducing several SIFBs with many new event and
data connections. This process further complicates
the FBN and makes it platform specific. And of
course the developer has to work for any change on
this complicated and platform specific FBN, either
this change concerns the introduction of a new FB
instance or the re-assignment of an FB instance to a
new device (due to a change in the network of
devices).

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1603 Issue 9, Volume 8, September 2009

A much simpler process of mapping can be
obtained adopting a run-time environment that
automatically creates the interconnections between
FB instances that are located on different devices
using the appropriate services of the run-time
environment.

4.5 The Procedural vs. the OO Approach
There is a trend in the 1131 community to consider
the 1131 FB as an object or component using the
argument that it has “a strong encapsulation
concept”. Actually it has a strong encapsulation
concept but this is not enough to classify the 1131
FB as object or component. The function and the
procedure also encapsulate their implementations but
they are not objects. A detailed comparison of 61499
with the procedural approach is given in [18].

As Lewis states in [4] “With the … (FBD)
graphical language, function blocks can be linked by
simply connecting data flow connections between
block inputs and output variables (…). Each function
block (1131) provides a single internal algorithm that
is executed when the function block is invoked.”
Objects accept messages and provide several
operations to handle the various messages that may
accept. According to Booch [19] objects “exist in
time, are changeable, have state, are instantiated, and
can be created, destroyed and shared”

Visual assembly tools, as those that support 1131,
are used to assemble objects, but each one of these
objects represent just a process that has to be
executed on the input data. Moreover, an object
based system should support the implementation of a
system design that is based on the concepts of class
and object. IEC 1131 cannot be used to implement
an object oriented design. The 1131 function block
cannot be used to realize an object type (class) with
name Valve, having attributes and operations, such
as open() and close(), not an object type with name
ElevatorCabin, having operations such as moveUp(),
moveDown(), stop(), etc.

Since the 1131 is considered as procedural
approach while the 61499 object-based, the most
important issue that has to be addressed is to find
ways to make the paradigm shift that is required
easier for the industrial engineer. Industrial engineers
are familiar with the device-centric and procedural
based paradigm that is adopted by current practices
in industrial systems development. These paradigms
are also adopted by the widely used by industry 1131
standard.

It is clear that the 61499 FB model is not only a
new technology in the domain but it imposes a
paradigm shift. The new technology is based on the

application-centric approach and also adopts the
object-oriented approach. This means that a specific
strategy should be defined to make this paradigm
shift easier for industrial engineers. This paradigm
shift is more difficult than the one confronted by the
software community regarding the transition from
the procedural to the object-oriented paradigm. This
is due to the fact that this shift should also be
accompanied by the device-centric paradigm to the
application-centric one.

5 Execution Semantics
Both standards suffer from the absence of well
defined execution semantics. This is one of the most
important reasons that they do not support
portability. In 1131 the normal execution order of
FBs in a FB network is determined by the function
block dependency on the other FBs. The order
“normally runs from left to right because blocks to
the right depend on the output values of the blocks
on the left” [4]. However, when a feedback path is
introduced “the execution order cannot be
determined from the diagram, since the execution of
both blocks depends on an output value of the other
block” [4]. In a complex network it is very difficult,
if not impossible, for a run-time environment to
determine a valid order of execution. “As a
consequence, an important aspect of a function block
network, i.e. the method for defining the execution
order of blocks, is not consistent or portable across
control systems” [4].

5.1 IEC 61499 FB Model Execution
Semantics
The IEC61499 was assumed to address the above
problems of 1131 with the execution semantics of
the FB network using the concept of event and the
event connection. Two main kinds of FB types are
proposed by the standard, the basic FB type and the
composite FB type. The basic function block type
utilizes the ECC to control the execution of its
algorithms. The composite function block type is
composed of a network of interconnected FB
instances and has no ECC, so its execution semantics
are quite different from those of the basic FB type.
 According to the standard [5] the execution of
algorithms in the basic FB instance is “coordinated
by the execution control portion (FB head) of the
FB instance in response to events to its event
inputs.” Fig. 7 presents the time related
characteristics of the execution logic of a basic FB
instance as defined by the standard. t2 is the time
that the event arrives at the event input of the FB
instance and the ECC starts its execution. It is

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1604 Issue 9, Volume 8, September 2009

assumed that at a previous time t1, the required by
the FB instance data in order to process this event
were made available. At t3 the execution control
function notifies the scheduling function to schedule
an algorithm for execution. At t4 the execution
begins and at t5 the algorithm derives the output
data that are associated with the WITH qualifier to
the output event of the corresponding EC action. At
t6 the scheduling function is notified that the
algorithm execution has ended. The scheduling
function invokes at t7 the execution control
function, which signals at t8 the event that is defined
by the corresponding EC action.
 It is evident that the standard assumes the
existence of a scheduling function in the associated
61499 resource. However, for devices with resource
constraints such as IEC-compliant sensors and
actuators a scheduler not only implies a big
overhead but it is actually not required. Moreover,
for devices with no restrictions on resources, it is
claimed in this section that this scheduler is not
actually required, since the thread that executes the
ECC can also execute the algorithms of the
corresponding EC actions. This thread can be either
the thread of the FB instance in the case of an active
FB instance (FB instance with its own thread of
execution) or the thread of the FB container [16] in
which the FB instance was injected.

Fig. 7. Execution model of Basic Function Block [5]

 In the case of assigning the same thread for the
execution of the ECC and algorithms, that is the
case of our execution environments [16][17][26], it
is clear that the ECC cannot react during the
execution of algorithms to the events that occur at
the FB instance’s event inputs. However, this is not
possible even for the case of having two threads,
one for the ECC and one for algorithms, that is the
one proposed by the standard, since according to [5]
“all operations performed from an occurrence of
transition t1 to an occurrence of t2 (see fig. 4) shall
be implemented as a critical region with a lock on
the function block instance.”
 To further examine this problem, the operation
state machine of the ECC presented in fig.8 is used.

S0 represents the idle state, S1 represents the state
of evaluating transitions and S2 the state of
performing the actions. Based on this state machine
the following two scenarios are considered:
1. the event has to be consumed by the FB instance

before the occurrence of the next event to its
event inputs. That is, the transition t2 should
occur before the arrival of the next event,

2. the event may occur when the FB instance is in
one of the states S1 or S2.

Fig. 8. ECC operation state machine [5].

 To satisfy the requirement of the first scenario the
FBN should be scheduled in such a way that the
execution of the FB instance will be terminated
before its deadline that should be before the
appearance of the next event. For the second
scenario, if the loss of the event is permitted by the
nature of the application, the event is simply
ignored, either wise the event is stored so as to be
consumed immediately after the transition t2 to the
S0 state. All the above alternatives may be
supported by the execution environment given the
appropriate notation at the design level. For
example, the control engineer should define, at
design time, for each event the following properties:
‘event loss permitted’ and ‘event consumption
before next event’. The latter property will be
utilized during schedulability analysis of the FBN to
define the deadline of the corresponding FB
instance that has to be met by the scheduler.
 The solution proposed above and implemented in
the context of RTAI-AXE [11] and RTSJ-AXE [17]
execution environments can also implement the
proposed by the standard behaviour, if there is a
need for such behaviour. After the execution of the
ECC the corresponding thread should issue a yield
command to the operating system that will result to
the rescheduling of this thread, which of course in
this time will execute the algorithms of the
associated EC actions. If a different priority for the
algorithm execution is required the proper update of
the thread’s priority is required before the yield
operation.

A different approach is proposed in [27] where
two threads are used for the execution of FB
instance: a) the “event executing” thread, which
handles incoming events and execute the ECC, and
b) the “algorithm executing” thread, which executes
the activated algorithms. This approach was adopted,

S1 S2S0
t1

t2

t3

t4

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1605 Issue 9, Volume 8, September 2009

according to the authors, to allow the acceptance of
events by the FB instances during algorithm
execution. However, this doesn’t really make any
sense if we consider the constraint imposed by the
FB model according to which the new incoming
event(s) should not trigger an ECC transition before
the currently executing FB algorithm/action finishes.
The only advantage of this approach i.e., the ability
to execute FB algorithms and ECC with deferent
priorities can be also obtained in the case of one
thread as it was already stated above.

A detailed discussion on the execution model
semantics including those of the composite FB type
and the FB network can be found in [28].
Implementation model alternatives related to
execution semantics for the FB network are
presented and discussed in [29].

5.2 The Sequential Hypothesis Execution
Model

From the above it is clear that there are many
open issues in the execution semantics of 61499 and
this is one of the main reasons for the industry has
not yet adopted the standard. Many assumptions
made last years in the 61499 community in the
process of defining the execution semantics are
questionable, without proof of concept, which could
be either a reference implementation or clear
theoretical basis, and thus create confusion in the
domain. The most important is the one promoted by
OOONEIDA (www.oooneida.org) and defined by
the Workgroup on Execution Models of IEC 61499
Function Block Applications. (http://www.oooneida.
org/standards_development_Compliance_Profile.ht
ml). This model is defined in a form of axiomatic
definition based on a set of 6 postulates. It is called
sequential hypothesis execution model and it has a
great influence on the 61499 community. It is
claimed that the sequential model is expected to be
immediately applicable, implemented in a number of
software tools. This model is disputed in this section
for its correctness and its clear theoretical basis. It is
argued that it greatly complicates the execution of
61499 design specifications and it is criticized for
not been consistent with the real-time domain
concepts of embedded systems.

In [12], the distinction between the instantaneous
occurrence of an event and its handling in not clear.
Authors use arguments as, “So there is no such thing
as "clearing an event" because it is never "set". One
might think of the event as a single pulse on the
transition line…” to form postulate #4 which states
that “Event input of a function block clears after
single ECC transition, regardless of was this event
used in the evaluation or not”. The definition of so

misty postulates can only lead the community to
confusion. Semantics of the UML 2.0 state machine
[13] such as deferred event, completion transitions
and completion events provide very clear answers to
the questions postulate #4 is assumed to address. The
answer for example to the question “How long an
event is alive?” is very clearly given by the
following statement: “An event that does not trigger
any transitions in the current state, will not be
dispatched if its type matches one of the types in the
deferred event set of that state. Instead, it remains in
the event pool while another non-deferred event is
dispatched instead” [13]. There is also an alternative
to allow the designer to define an event in the
triggering expression as non-consumable even for
the case it triggers the transition [14]. This seems to
be the most expressive solution if combined with the
one adopted in [13].

Postulate #5 that is “Output events are issued
immediately after the corresponding action is
completed” has nothing to add to the standard
according to which “The algorithm (if any)
associated with an EC action, and the event (if any)
to be issued on completion of the algorithm, …” The
same is true for postulate #6 that is defined as “If a
function block emits several output events in one
state of ECC, they are emitted sequentially”, since
according to the standard the event of each EC action
is issued on completion of the algorithm and the EC
actions of the current state are executed sequentially.
The authors claim that postulate #6 “implies the
execution model which we further refer to as
“Sequential hypothesis””. They also claim that “Both
these postulates”, i.e. #5 and #6, “imply that there is
no such thing as concurrent execution of function
blocks within a single resource, or pre-emption of
one block by another.” This is an arbitrary and
wrong statement. Actually it should be possible to
execute a FBN either concurrently or not and this has
not to be defined by the standard as stated in [15]
“we believe that it does not accord well to the letter
and the spirit of the standard.” The sequential or
concurrent execution of FB instances has to be
transparent to the control engineer. Concurrency
should be used as a means to meet stringent real-time
constraints that the designer has to specify on the
design model [16].

Postulate #2, which states that “Execution (a
single run) cannot be pre-empted by execution of
another function block (in the same resource).” is
completely arbitrary even though it appears to be a
consequence of the following statement of the
standard “All operations performed from an
occurrence of transition t1 to an occurrence of t2
shall be implemented as a critical region with a lock

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1606 Issue 9, Volume 8, September 2009

on the function block instance.” This last statement
is not valid for the case of active FB instances; it is
legal only for the case of a passive FB instance that
can be executed in the context of two at least
external threads. However, even in this case,
preemption is not allowed only for the threads
competing to run the passive FB instance. Any other
thread may preempt the currently running thread if it
has higher priority or if the time slice of the running
thread has expired. The authors also claim that
“Since (according to #2) FB0 cannot be pre-empted
by FB1, the EO1 needs to be stored.” However, the
handling of events is done by the OS. When an event
is issued, the event is dispatched to the consumer’s
task queue, placing the consumer task to the queue
of the OS that is dedicated for the ready for
execution task. It is the task of the OS scheduler to
decide if the current task (the one that issued the
event) will continue its execution or be preempted by
the consumer of this event task or another task. So, if
FB1 has been assigned at the design time a higher
priority than FB0, as for example is the case when
FB1 closes a control loop of very high priority, FB0
will of course be preempted by FB1.

Postulate #1 is also arbitrary and constrains the
implementations of efficient run-time environments.
It is not valid for the case that the thread that
implements the active FB instance is defined as
periodic as is the case for the Archimedes RTSJ-
AXE [17].

Authors in the context of sequential hypothesis
claim that “It is needed to ensure the processing of
input events will follow the order of their
occurrence” [15]. However, this hypothesis
completely destroys the event based paradigm of
computation. It provides no way of handling higher
priority events generated from highly time constraint
procedures in the mechanical process such as
emergency alarms. This is clear from the statement
of the authors “Queue 2 is not empty and adds the
request of kind r →S to the Queue 1,”. This can only
be partially legal if FB types are used to represent
just functions, but this is not the case for the
IEC61499. And of course, if the order of execution
can be completely defined by the design diagram as
they explain, the question is: what is the reason for
using the entity that they call ‘scheduler’? What
authors describe as ‘Sequential hypothesis’ with all
this described behavior can be supported with more
simple and formal constructs provided by the OSs.

For example, if we consider two consumer FBs
registered to the same event the sequential
hypothesis defines that “This is interpreted as two
connections A→B and A→C, with event A→B
emitted first and A→C the second”[15]. This is at

least an ineffective implementation. An event is
issued once by the producer FB instance and the time
and order of notification of consumer FB instances is
defined by the way that event connections are
implemented. What authors describe as
“APPLICATION IN THE IEC 61499 DESIGN
LOOP” [15] is just an argument from the same
authors to emphasize the completely arbitrary
hypotheses made by the sequential hypothesis
paradigm and its usefulness. However, authors in
[15] arbitrarily claim that “The sequential model is
expected to be immediately applicable, implemented
in a number of software tools.” And also that the
“parallel model also has some benefits, especially for
hybrid and pure hardware implementations.”
disputing in this way all the benefits of the
concurrent paradigm in software engineering.

It should be noted that there is a need for both FB
models, i.e. the 1131 and the 61499, to support the
two distinctly different approaches for the design of
real-time systems, i.e. the event-triggered and the
time triggered. This distinction is made based on the
triggering mechanisms for the start of processing and
communication activities of the real-time
application. According to the event-triggered model,
the processing and communication activities of the
FB model should be initiated whenever a significant
change of state, i.e. an event other than the regular
event of a clock tick is noted. In the time-triggered
approach, all activities are initiated at predetermined
points in time [25].

6 Conclusions
The Function block model has a long history in the
control and automation systems domain. IEC61131
is widely accepted and used in the industry.
However, it implies several limitations in addressing
the demands of today’s complex embedded systems
in this domain. The proposal of the IEC to address
these limitations, i.e. the 61499 FB model, was not
well accepted by the industry. It is assumed to
provide solutions to the limitations of the 1131 and
exploit current practices from software engineering
but this is not the case. It fails in several very
important objectives and does not provide a
promising vehicle for industry to address the
challenges of the next generation embedded
industrial systems. Even more, in the case that the
IEC1131 working group adopt the proposed OO
extension to the 1131, as it is expected, the future of
IEC61499 is questionable.

References:

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1607 Issue 9, Volume 8, September 2009

[1] International Electrotechnical Commission.
IEC International Standard IEC 61131–3:2003,
Programmable Controllers, Part 3:
Programming Languages, 2003.

[2] Oded Maler, “On the programming of
Industrial Computers”, June 4, 1999.

[3] PLCOpen for Effiency in Automation,
http://www.plcopen.org/

[4] R. Lewis, Modelling control system using IEC
61499: Aplying function blocks to distributed
systems, The Institue of Electrical Engineering,
IEE control engineering series; no. 59,2001

[5] International Electro-technical Commission,
(IEC), International Standard IEC61499,
Function Blocks, Part 1 - Part 4, IEC Jan.
2005. (http://www.iec.ch/)

[6] K. Thramboulidis, “IEC61499 Function
Block Model: Facts and Fallacies”, IEEE
Industrial Electronics Magazine (forthcoming).

[7] B. Heck, L. Wills, and G. Vachtevanos,
“Software Technology for Implementing
Reusable, Distributed Control Systems,” IEEE
Control Systems Magazine, Vol.23, Issue 1,
February 2003 Page(s):21-35.

[8] Szyperski, C., Component Technology – What,
Where, and How?, 25th Inter. Conf. On
Software Engineering (ICSE’03).

[9] Matthews, R.S.; Muralidhar, K.H.; Sparks, S.
“MAP 2.1 conformance testing tools”, IEEE
Transactions on Software Engineering, Volume
14, Issue 3, March 1988 Page(s):363 – 374

[10] Repenning, A.; Ioannidou, A.; Payton, M.;
Wenming Ye; Roschelle, J.; Using components
for rapid distributed software development,
IEEE Software, Volume 18, Issue 2, March-
April 2001 Page(s):38 – 45

[11] G. Doukas, K. Thramboulidis, “A Real-Time
Linux Based Framework for Model-Driven
Engineering in Control and Automation” IEEE
Transaction on Industrial Electronics,
(forthcoming).

[12] V. Vyatkin, V. Dubinin, Sequential Axiomatic
Model for Execution of Basic Function Blocks
in IEC61499, 5th IEEE Inter. Conf. on Ind.
Informatics (INDIN 07), July 23-27, 2007,
Vienna, Austria, Volume: 2, Page(s): 1183-
1188

[13] OMG, Unified Modeling Language:
Superstructure, ver. 2.1.1, formal/2007-02-03.

[14] Von der Beek, A comparison of statechart
variants, In Formal Techniques in Real-Time
and Fault-Tolerant Systems, L. de Roever and
J. Vytopil, Eds. Lecture Notes in Computer
Science, vol. 863, Page(s): 128–148.

[15] V. Vyatkin, Victor Dubinin, Carlo Veber, Luca
Ferrarini, Alternatives for Execution Semantics
of IEC61499, 5th IEEE Inter. Conf. on Ind.
Informatics (INDIN 07), July 23-27, 2007,
Vienna, Austria, Vol. 2, Page(s): 1151-1156.

[16] G. Doukas, K. Thramboulidis, “A Real-Time
Linux Execution Environment for Function-
Block Based Distributed Control
Applications”, 3nd IEEE International
Conference on Industrial Informatics, Perth,
Australia, August 2005, (INDIN´05), Page(s):
56-61.

[17] K. Thramboulidis, A. Zoupas, Real-Time Java
in Control and Automation: A Model Driven
Development Approach, 10th IEEE Intern.
Conf. on Emerging Technologies and Factory
Automation, (ETFA’05), Catania, Italy,
September 2005, vol.1, Page(s): 38-46.

[18] K. Thramboulidis, “A model based approach to
address inefficiencies of the IEC61499 function
block model”, 19th Int. Conf. on Software and
Systems Engineering, Dec. 2006, Paris,
Page(s): 9.

[19] G. Booch, “Object Oriented Analysis and
Design”, the Benjamin/Cumming Series,
second edition 1994.

[20] K. Thramboulidis, “IEC 61499 in Factory
Automation”, International Conference on
Industrial Electronics, Technology &
Automation, (CISSE’05 - IETA), Dec. 10-20,
2005, Page(s): 115-123.

[21] V. Kulkarni, S. Reddy, “Separation of
Concerns in Model-Driven Development”,
IEEE Software, Vol. 20, Issue 5, Sept.-Oct.
2003 Page(s):64 – 69

[22] Solberg, A.; Simmonds, D.; Reddy, R.; Ghosh,
S.; France, R.;“Using aspect oriented
techniques to support separation of concerns in
model driven development”, 29th Annual
International Computer Software and
Applications Conference, 2005. COMPSAC
2005. Volume 1, 26-28 July 2005 Page(s):121
- 126 Vol. 2

[23] E.W. Dijkstra, “On the role of scientific
thought”. Selected writing on Computing: A
Personal Perspective, Springer-Verlag, 1982.

[24] C. Reade, Elements of Functional
Programming, Addison-Wesley Longman
Publishing Co., Inc., 1989.

[25] Kopetz, H., Real-Time Systems: Design
Principles for Distributed Embedded
Applications, Kluwer Academic Publischers,
1997.

[26] K. Thramboulidis, D. Perdikis, S. Kantas,
“Model Driven Development of Distributed

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1608 Issue 9, Volume 8, September 2009

Control Applications”, The International
Journal of Advanced Manufacturing
Technology, Volume 33, Numbers 3-4 / June,
2007, Springer-Verlag, Page(s):233-242.

[27] G. Cengic, O. Ljungkrantz, K. Akesson,
“Formal Modeling of Function Block
Applications Running in IEC 61499 Execution
Runtime”, 11th IEEE Intern. Conf. on
Emerging Technologies and Factory Auto-
mation, Sept. 20-22, 2006, Czech Republic.

[28] K. Thramboulidis, G. Doukas, “IEC61499
Execution Model Semantics”, International
Conference on Industrial Electronics,
Technology & Automation, (CISSE-IETA 06),
Dec. 4-14, 2006, Page(s): 223-228.

[29] Doukas, G., K. Thramboulidis,
“Implementation Model Alternatives for IEC
61499 Function Block Networks”, 6th IEEE
Intern. Conf. on Industrial Informatics, July 13-
16, 2008, Daejon, Korea, Page(s): 295-300.

[30] Thramboulidis, K. “Model Integrated
Mechatronics – Towards a new Paradigm in the
Development of Manufacturing Systems”,
IEEE Transactions on Industrial Informatics,
vol. 1, No. 1. February 2005, Page(s): 54-61.

[31] Strömman, M.; Thramboulidis, K.; Sierla, S.;
Papakonstantinou, N.; Koskinen, K.
“Incorporating Industrial Experience to
IEC 61499 Based Development Methodologies
and Toolsets”, Proc. of the 12th IEEE Intern.
Conf. on Emerging Technologies and Factory
Automation (ETFA 2007), Patras, Greece, 25-
28 September, 2007, Page(s): 490-497.

[32] Daniel Witsch, Birgit Vogel-Heuser, “Close
integration between UML and IEC 61131-3:
New possibilities through object-oriented
extensions”, Proc. of the 14th IEEE Intern.
Conf. on Emerging Technologies and Factory
Automation (ETFA 2009), Mallorca, Spain, 22-
22 September, 2009

[33] Industry Day, 13th IEEE Intern. Conf. on
Emerging Technologies and Factory
Automation (ETFA 2008), 15-18 Sept,
Hamburg, Germany, 2008, http://www2.hsu-
hh.de/aut/ETFA_2008/Industry_Day_files/ETF
A%202008%20Industry%20Day.pdf

WSEAS TRANSACTIONS on COMPUTERS Kleanthis Thramboulidis

ISSN: 1109-2750 1609 Issue 9, Volume 8, September 2009

