

Research and Practice of Distributed Test Platform

FENG QINQUN, YUN WENFANG, PENG SHEQIANG
Computer Application Department

Command Communication Academy
Wuhan, Hubei Province, 430010

CHINA

Abstract: - After concise introduction of Software test and its significance, an integration environment of
Distributed Test Platform for software testing is proposed and its two departments, including Test Server and
Test Driver, are described subsequently. The composition of Test Server based on Metadata Service is
presented. The Metadata Service’s element and its runtime principle are described in details. Finally
summarization is listed.

Key-Words: - Software Test, Distributed Test Platform, Test Driver , Test Server, Metadata Service

1 Introduction
Software testing is the important approach to assure
the quality of software and it’s accepted widely as a
"best practice" for software development. There are
already many systematic, integrated and mature test
theory, method and tools, but it either has limited
test scope or is very expensive. It’s difficult for
software developers, project managers and advanced
managers to control and monitor the quality of
software with projects’ complex improvement, and
testing consumes an ever-increasing amount of time
and resources. Although the investment of software
test can be cut down to the lowest level and it can be
delayed, the total capital invested will increase in
the following procedure. Traditional testing meet
the big challenge, so it’s necessary to build
automatic software test platform to maintain
software approach, reduce the cost, and use these
tools to promote software development. In fact, test
platform can find the bug and hidden problem
shortly, and avoid many invalidate or less-effective
test repetition, what’s more, it could support
different operate system.

2 Distributed Test Platform
Distributed Test Platform is different from other test
tools, such as local test, which local testing
involves running test cases on a local computer
system. Because a distributed test case consists of
two or more parts that interact with each other.
Each part of constructed a test packages is processed
on a different system and there are interaction
between the different test case components that sets
distributed testing apart. Typically it is this

interaction between different computer systems that
is under test. All of the test cases processed on all of
the different processors contribute towards a single,
common, result. This is not the same as
simultaneous testing. Because even though
simultaneous testing involves different test case
components being carried out on different
processors, and contributing towards a single result,
there is no interaction between the test cases or the
processors. As noted above it is this interaction that
sets distributed testing apart.

A further challenge that we have to face with
distributed testing is that of platform. For example
tester could run a test case using a Windows client
to access one or more UNIX servers. So our
environment has to be written at a level capable of
working across all of these platforms.

2.1 Architectures
Over the past few years, tools with graphical user
interfaces (GUI) that help programmers quickly
create applications have dramatically improved
programmer productivity. This has increased the
pressure on testers, who are often perceived as
bottlenecks to the delivery of software products.
Testers are being asked to test more and more code
in less and less time. Test automation is one way to
do this, as manual testing is time consuming. As
different versions of software are released, the new
features will have to be tested manually time and
again. But, now there are tools available that help
the testers in the automation of the GUI which
reduce the test time as well as the cost; other test
automation tools support execution of performance
tests.

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 184 Issue 1, Volume 8, January 2009

Many test automation tools provide record and
playback features that allow users to record
interactively user actions and replay it back any
number of times, comparing actual results to those
expected. However, reliance on these features poses
major reliability and maintainability problems. Most
successful automatons use a software engineering
approach, and as such most serious test automation
is undertaken by people with development
experience.

A growing trend in software development is to
use testing frameworks such as the xUnit
frameworks which allow the code to conduct unit
tests to determine whether various sections of the
code are acting as expected under various
circumstances. Test cases describe tests that need to
be run on the program to verify that the program
runs as expected. All three aspects of testing can be
automated.

Another important aspect of test automation is
the idea of partial test automation, or automating
parts but not all of the software testing process. If,
for example, an oracle cannot reasonably be created,
or if fully automated tests would be too difficult to
maintain, then a software tools engineer can instead
create testing tools to help human testers perform
their jobs more efficiently. Testing tools can help
automate tasks such as product installation, test data
creation, GUI interaction, problem detection
(consider parsing or polling agents equipped with
oracles), defect logging, etc., without necessarily
automating tests in an end-to-end fashion.

Test automation is expensive and it is an
addition, not a replacement, to manual testing. It can
be made cost-effective in the longer term though,
especially in regression testing. One way to generate
test cases automatically is model-based testing
where a model of the system is used for test case
generation, but research continues into a variety of
methodologies for doing so.

Distributed Test Platform is designed to “black-
box test” with two departments: Test Server and
Test Driver. And implementation under test is a
series of applications on different operate system.
Test Server can run test suites on local or remote
targets and schedule test cases (or its package test
suite) automatically and repeatedly, which
organized in xml language and generated
automatically by the Test Scripter. Test reporter
collects the information of test cases, analyze its
results and create a reporter and log, which could be
distributed automatically on the network. The
distributed test platform architecture is displayed in
Fig.1.

Modules of Test Server are made up by Result

Comparator, Test Scripter, Data Generator, Test
Result Reporter, Communication service, Log
service, Display service and Metadata service. Main
modules list in Fig.2

Test Server exchanges data between these tested

objects and itself and drives these tested objects
through the network based communication service
and metadata service. Test Driver transport the test
data accepted from the server to the tested modules
after building the link between Test Server and Test
Driver. One of the powerful features of Test Driver
is its ability of isolate, reusing. This feature allows
user saving considerable time in generating the Test
Driver program and stub code, which often need for
the test.

After a test process is active, Test Server
generates a test case using the Test Scripter, which
can be created by any other text editor in the
appointed format. The test case drives the test data
generator to bring out test data, including input data
and the expected value, which will be transferred to
the Test Driver by communication service through
network. Test Driver located in different operation
system and different location load the tested
modules with the accepted input data and executes

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 185 Issue 1, Volume 8, January 2009

the test procedure. Output data is collected and sent
back to the comparator in the Test Server to finish
the comparison between the output data and the
expected value. The result and vital event will be
written into the database, which will be prepared for
the test record and test reporter.

Ensuring that all of the tests happen on all of the
systems in the correct order is the greatest challenge
in distributed testing. To do this we synchronize the
test cases either automatically, at system determined
points, or user determined points. Synchronization is
the key to distributed testing and is important
enough to merit separate consideration. The
challenge of distributed testing lies both in
synchronization and the administration of the test
process: Configuring the remote systems; generating
the scenario files; and processing the results to
produce meaningful reports. Being able to repeat the
tests consistently, and to select tests for repetition by
result i.e. regression testing. And doing this
repeatedly and across many different platforms,
UNIX, Windows and Linux and so on.

2.2 Test Server and Test Driver
Software test automation involves automating a
manual testing process that uses a formalized testing
procedure. Test automation involves the use of
software in order to control the execution of the
tests, setting up the pre-conditions for the test,
comparisons of the predicted outcomes to the actual
outcomes and many more test reporting functions.

Test Server and Test Driver are designed based
on Black box testing, which is a type of testing in
which the system is considered as a ‘black-box’ and
the testers don’t use their knowledge of internal
structure or code to validate the application against
the specifications. Black box testing is also termed
as ‘behavioral testing’ as it mainly focuses on the
functionality of the system as a whole. However, the
tests can be non-functional as well. The black box
testing method is applicable to all the levels of the
software testing i.e. unit, integration, system,
functional and acceptance testing.

Some of the common black box test design
techniques are: Equivalence Partitioning. In this, the
input domain of a program is divided into classes of
data which can then be used to derive the test cases.

In boundary value analysis technique, the extreme
boundary values are chosen as the systems have a
tendency to fail on the boundary. The extreme
boundary values include minimum, maximum,
typical, just inside/outside and error values.

Some of the advantages associated with black
box testing are: Once the functional specifications
are complete, it is fairly easy to design the test cases.

It is simple to check the contradictions present
between the specifications and the actual system.
Even a non-technical person can perform black box
testing as internal structure knowledge is not
required to carry out the black box testing.
Some of the disadvantages associated with black
box testing are: Writing test cases is a slow process
as it is difficult to identify all the possible inputs in a
limited time.

Black box testing requires the test inputs to be
from large sample space. Since the internal structure
knowledge is not required to carry out the black box
testing, there’s every chance of having some un-
identified paths during the testing which can lead to
degradation in the performance. To conclude, black-
box testing is recommended to test the functionality
of the system as a whole and it comes with its own
set of advantages and disadvantages.

3 Test Case (Test Scripter)
The test script is the combination of a test case, test
procedure, and test data. Initially the term was
derived from the product of work created by
automated regression test tools.

A test case in software engineering is a set of
conditions or variables under which a tester will
determine whether an application or software
system meets specifications. It may take many test
cases to determine that a software program or
system is functioning correctly. Test cases are often
referred to as test scripts. Written test cases are
usually collected into test packages. In order to fully
test that all the requirements of an application are
met, there must be at least one test case for each
requirement unless a requirement has sub-
requirements. In that situation, each sub-
requirement must have at least one test case.

3.1 Test Case and It’s Automatic Running
Test automation is not a panacea for all software
testing challenges; however, it is an important
consideration in every test strategy, along with
organizational readiness, test process maturity, and
expertise in testing tools. We find that many
organizations acquire a testing tool without first

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 186 Issue 1, Volume 8, January 2009

establishing the objectives, how test automation fits
in with manual testing, and how to optimize the
tool’s use given the organization’s test maturity
level. When designing a test automation suite, we
consider its applicability across the IT portfolio, the
need for ongoing maintenance, scalability and
effectiveness of test execution

The major advantage of Automated testing is
that tests may be executed continuously without the
need for a human intervention. Another advantage
over manual testing in that it is easily repeatable,
and thus is favored when doing regression testing. It
is worth considering automating tests if they are to
be executed several times, for example as part of
regression testing.
Disadvantages of automated testing are that
automated tests may be poorly written and can break
during playback. Since most systems are designed
with human interaction in mind, it is good practice
that a human tests the system at some point.
Automated tests can only examine what they have
been programmed to examine. A trained manual
tester can notice that the system under test is
misbehaving without being prompted or directed.
Therefore, when used in regression testing, manual
testers can find new bugs while ensuring that old
bugs do not reappear while an automated test can
only ensure the latter.

One shouldn't fall into the trap of spending more
time automating a test than it would take to simply
execute it manually, unless it is planned to be
executed several times.

The method to generate test cases of software
testing must be operational and high efficient.
During the process of software testing, the
generation of test case is critical and difficult.
Presently, generation of test case is primarily done
manually, relying heavily on testers' experience and
capability. Techniques of generating test cases
automatically is very significant as it can reduce the
time and cost of testing. Test case’s systematic
generation using Test Scripter could be automatic.
The Test Scripter is an application embedded in the
Test Driver. The Scripter is an independent
application, and it’s embedded in the Test Server as
listed in Fig.2. Any text editor can create a script,
the Scripter can compile and check it. Test cases are
serialized by the test script, and these serialized test
cases make up of a test package. The test package
includes the input data, output data and expected
data. What characterizes a formal, written test case
is that there is a known input and an expected output,
which is worked out before the test is executed. The
known input should test a precondition and the
expected output should test a postcondition.

3.2 Scripting Languages
The test case is the description, recorded a test case
or its procedure (or package). It’s a text coded by
XML language and is generated by the Scripter.
such as Perl, Python, Tcl, and Java are very popular
in the programming industry as a whole, as well as
within test organizations, since they facilitate a rapid
development cycle.1 As programming languages,
scripting languages are not intended to directly
solve either reuse or automation. Additionally, they
are not directly targeted at the test environment,
although their generality does not preclude their use
in a test environment. Despite these limitations, we
felt that given the wide popularity of scripting
languages and the almost fanatical devotion of their
proponents, we should examine their potential for
solving our problems.

Although scripting languages are not a direct
solution to reuse or automation, scripting languages
do have some general applicability to the problem of
reuse. To begin with, they are available on a wide
variety of operating systems. They also have large
well-established sets of extensions. Although not
complete from a test perspective, these extensions
would provide a solid base from which to build.
Additionally, some languages (notably Tcl and Java)
provide support for dealing with multiple codepages.

The benefits of scripting languages would
clearly place them in category 3 of our preferences.
Unfortunately, these benefits are only available if
one is willing to standardize on one language
exclusively. As was mentioned earlier, our testers
create tests in many different programming
languages, and it would have been tremendously
difficult to force them to switch to one common
programming language. Even if we could have
convinced all of the testers on our team, we could
never have convinced all the testers in our entire
organization (much less those in other divisions, or
at other sites), with whom we hoped to share our
solution. Therefore, we were unable to rely on
scripting languages for our solution

The following is a part of a test case organized
by xml. It declares an int8 object, generates a group
of normal test data subsequently, which will be sent
to the tested module.

<datatype>
 <classname>Int8</classname>
 <vary> inData </vary>
<method>
 <name> GeneratNormaData() </name >
 <parameters>
<paratype></paratype>
<paraname></paraname>
</ parameters >

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 187 Issue 1, Volume 8, January 2009

</method>
</datatype>

Of course, under special circumstances, there
could be a need to run the test, produce results,
and then a team of experts would evaluate if the
results can be considered as a pass. This
happens often on new products' performance
number determination.

4 Test Data Generator
Test data used by test cases is generated by an
isolated application named Test Data Generator. In
order to easily extend the data generate methods, a
data generating container is designed in Test Server,
which contains some data generating strategies.

4.1 Data Generating Strategy
Performance tests require very large data set.
Preparing proper test data is a core part of “project
test environment setup”. Tester cannot pass the bug
responsibility saying that complete data was not
available for testing. Tester should create test data
additional to the existing standard production data.
Test data set should be ideal in terms of cost and
time. Data Generator is a automatic designing test
data toolbox. Data Generator is designed references
below: 1) No input data: test cases is scheduled on
blank or default data to see whether the proper error
messages are generated or not. 2) Valid data set:
Create it to check if application is functioning as per
requirements and valid input data is properly saved
in database or files. 3) Invalid data set: Prepare
invalid data set to check application behavior for
negative values, alphanumeric string inputs. 4)
Illegal data format: Make one data set of illegal data
format. System should not accept data in invalid or
illegal format. Also check proper error messages are
generated. 5) Boundary Condition data set: Data set
containing out of range data. Identify application
boundary cases and prepare data set that will cover
lower as well as upper boundary conditions. 6) Data
set for performance, load and stress testing: This
data set should be large in volume. This way
creating separate data sets for each test condition
will ensure complete test coverage.

4.2 Test Data Generator
The container is maintainable, reusable and
extendable. Making a good choice of test data is the
key factor of effective test case, the scope of input
parameters is determined after analyzes their values

and types. The input of these tested units is
classified according to the principle of equivalent
class. Every test data represents a set. The normal
value, exception value and boundary value construct
the set of input value. The input data enumerate all
above types of data. Invalidate input data is
eliminated and the clearing of redundant data makes
the test be more efficient.

One good way to design valuable test data is use
the existing sample test data and append new test
case data each time to get same module for testing.
This is the way to build a comprehensive data set.
Test Data Generator can remember all of the tested
data and could repeat it all.

5 Data Comparator
After a test is finished the test result must be
identify its way that the outputs data. This data
doesn't have to be text displayed on the screen, it
could be binary data in the form of a file, network
stream, or other. Test result comparator’s main
function is getting the difference between output
and the expected value, it decides whether the test
case is successful or not. The specific comparator
method is important to the test system except for
these tools operation system provided to check the
result. The principle of comparing is clear when the
test result is of simple data type, while the
comparing principle is complicated as the output
data is of complicated style. The comparing method
container equips the existing comparator, which
overcast static compare and dynamic compare of the
simple data type, users can custom or reinforce their
own comparators.

5.1 Strategy Pattern
In order to aim the dynamic selecting compare
method from the comparing method container, a
strategy pattern is used in the Data Comparator
designed. In computer programming, the strategy
pattern (also known as the policy pattern) is a
particular software design pattern, whereby
algorithms can be selected at runtime. The strategy
pattern is useful for situations where it is necessary
to dynamically swap the algorithms used in an
application. The strategy pattern is intended to
provide a means to define a family of algorithms,
encapsulate each one as an object, and make them
interchangeable. The strategy pattern lets the
algorithms vary independently from clients that use
them.

For the comparing principle is complicated as
the output data is of complicated style, the

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 188 Issue 1, Volume 8, January 2009

comparing method container must be opened and
dynamic to allows tester to switch the algorithm in
using at any time.

The application must be aware of all the

strategies to select the right one for the right
situation. Strategy and Context classes may be
tightly coupled. The Context must supply the
relevant data to the Strategy for implementing the
algorithm and sometimes, all the data passed by the
Context may not be relevant to all the Concrete
Strategies.

Context and the Strategy classes normally
communicate through the interface specified by the
abstract Strategy base class. Strategy base class
must expose interface for all the required behaviors,
which some concrete Strategy classes might not
implement.

In most cases, the application configures the
Context with the required Strategy object. Therefore,
the application needs to create and maintain two
objects in place of one. Since, the Strategy object is
created by the application in most cases; the Context
has no control on lifetime of the Strategy object.
However, the Context can make a local copy of the
Strategy object. But, this increases the memory
requirement and has a sure performance impact.

Take into consideration that data outputted to a
file may come from a location modifiable by the
user and during the input phase is properly sanitized
and appear harmless, however could cause damage
to other portions of your application trying to read
this file later on.

6 Test Reporter
The test report is the primary work deliverable from
the testing phase. It disseminates the information
from the test execution phase that is needed for
project managers, as well as the stakeholders, to
make further decisions. Anomalies and the final
decomposition of the anomalies are recorded in this
report to ensure the readers know the quality status
of the product under test.

Test reporter can expediently generate test
specification and test report after analyzes the
collecting test logs and test input/output data. It
provides some default test report document

templates, and users can custom their own templates,
or develop specific test record and report according
to test data and these open interfaces.

Test Reporter is organized by xml file type, and
can be published into two formats files: doc and
html. And the Reporter contain the test summary
identifier, objective, summary of testing activity,
variances, testing activities and last but not least, the
important piece of information, defects.

Test summary identifier need to be associated on
each round of testing. In other words, each round of
testing must have a unique identifier to ensure
readability and traceability. Objective -- This is the
objective of each round of testing. Does this round
of testing cater for component testing, system
testing, regression testing, integration testing or
others? Test Summary includes the summary of
testing activity in general. Information detailed here
includes the number of test cases executed, the
scope of testing, the number of defects found with
severity classification, and test environments set up
and used for the testing. Variances explain if there's
a discrepancy between the complete product and the
requirement. Variances can be on the plan,
procedures and test items. Summarize all major
testing milestones such as Test Plan, Test Case
Development, Test Execution and Test Reporting in
this section. Information on resource consumption,
total staffing level and total lapsed time should be
reported as well. Defects are the most essential
section in the report. This is where you report defect
information such as the number of defects found,
defect severity classification, defect density, etc.
Test metrics are important to complement this
section. In general, the test report is important to
make sure readers can make correct conclusions
based on it.

6.1 Test Reporter Analysis
Software test results analysis plays a very important
role in software development. The test process itself
is crucial to the success of new software products. It
is only through efficient system testing that the
quality and safety of an application can be
guaranteed. For software businesses, there is no
excuse for a poor quality. This is the reason why
companies use several testing methods - to perfect
their product before introducing it to the market.

However, it must be noted that the process does
not end with just system testing. A common mistake
is forgetting the analysis of test results. While the
tests find errors in the application, it is the analysis
that interprets that same error. Without the
interpretation, the testing conducted would be

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 189 Issue 1, Volume 8, January 2009

useless. To further explain the reason why failure to
get the analysis is a mistake, let us take the software
interface test.

Though there are many testing methods
available, companies and developers have
considered software interface testing as the most
important system test to ensure the quality of a
program. The interface is composed of sets of
commands, images, messages, and other features
that permit communication between the user and
device. According to developers, the very advantage
of interface testing is in the fact that it is anchored
on the feedback of end users themselves. There are
two characters involved in the process - the user and
moderator. Each of them is assigned their respective
tasks that are vital to the progress of the software
application. First, the user is allowed to use the
program. He or she is then tasked to note down
comments about the program, its individual features
and its general usage as well. These comments
should be on how easy and efficient the program is
when being used. Navigating can also be an area
where the user can issue comments. The more
detailed the comments of the user are, the better.
Likewise, all aspects of the program must be looked
into. Some of these aspects include functionality,
being user-friendly, and the performance of the new
application. The moderator, on the other hand,
conducts the test. It is not necessary for him or her
to communicate with the user. What he or she is
assigned to do is document all the comments of the
user regarding the program. At the end of the testing
period, the moderator is expected to endorse the
feedback made by the user to the developer. Here
analysis starts to play a role. The comments must be
interpreted in such a way that the error in the
program should be given an appropriate solution.

With the example on software interface testing,
developers would definitely need analysis of the test
result so he or she could make the corresponding
revisions based on the feedback of the user.
Remember that the aim of any developer is to
perfect the new software application. This can only
be done with comprehensive testing processes.
Likewise, firms are very keen on improving the
product quality. This is because their possible
earnings from the software would rely so much on
its potential. Thus, companies would require
software test results analysis to be able to ensure
quality and guarantee good returns.

6.2 Bug Trace
Finding the cause of a bug can be one of the most
time-consuming activities in design verification.

This is particularly true in the case of bugs
discovered in the context of a random-simulation-
based methodology, where bug traces, or
counterexamples, may be several hundred thousand
cycles long. So it’s important that the Test Reporter
could record bugs details in it. Both the positive and
negative results of testing can be tracked in order to
provide a clear status to the project manager. As
tests are run, the tester notes which tests passed and
which failed; the failed tests result in documented
defects. As defects are fixed and those fixes
promoted into the test environment, tests are rerun.
Test results tracking can let the tester see at a glance
if previously failed tests now pass, or if previously
passed tests now fail. In addition to tracing test
cases back to requirements, a Baseline Traceability
Matrix is a useful tool to track the status of tests.
Testing can result in different kinds of issues,
including defects, questions, actions and
enhancements (feature requests). All these types of
issues can be tracked in the same way, as long as
there is some way to 'tag' the category.

Defects are logged and monitored from
discovery to resolution (or stagnation). Once defects
have been logged, and depending on the data
captured, statistics can be gathered to track metrics
such as increasing or decreasing defect counts, peak
trouble times in a product's cycle, or volatile
modules. For example, once you've captured details
about a problem, if you see the same problem arise
in production after code fixes, your regression tests
need to be tweaked. Tracking defects arising out of
tests is usually done with some kind of tool

7 Metadata Service
MS is the Metadata Service that that stores
descriptive information about different data format
and provides registration, retrieval, of metadata
elements, metadata schemata, and metadata profiles
of resources. It’s aim of MS is to support different
operate system. MS is a standalone that stores
information about data type. It also allows users to
aggregate the data items into collections MS
provides system-defined as well as user-defined
attributes for logical items and collections. One
distinguishing characteristic of MS is that users can
dynamically define and add metadata attributes. MS
can also provide the names of the user-defined
attributes. As a result, different MS instances can
be created with alternative contents. MS have been
implemented to run on top of standard services. It
provides secure access to the metadata.

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 190 Issue 1, Volume 8, January 2009

MS may be used for storing and accessing metadata
based data access and the particular storage system
where the data resides.

7.1 Construction of MS
In order to adapt the test platform to different
operate system, the data architecture, description
and operations of metadata are defined in an abstract
class, which exhibit a series of Methods, Events and
Properties. The data description in binary module is
independent of operation systems, which result in
the test platform is independent of developing
languages and operation systems. The metadata
service is a part of test platform and they make test
platform run smoothly. And all the other data types
in different operations could be derived from the
abstract class.

The CTType class is the main class for creating
metadata object in runtime. The CTType class is an
abstract class and that represents a type. By using
this class, we could find the type name, the types
used in a module (an assembly may contain one or
more modules), and to see whether a given type is a
value or a reference type, and so on. It also allows
us to query the type's fields, methods, properties,
and events by parsing the corresponding metadata
tables. Serialization mechanism uses creating
metadata object in runtime to determine what fields
a type defines. The serialization formatter then can
obtain the values of these fields and write them into
the byte stream.

Late bindings can be achieved by using creating
metadata object in runtime. For example, in some
applications, we don't know which assembly to load
during compile time, so we ask the user to enter the
assembly name and type during run time and the
application can load assembly. For this purpose, the
CTType class offers three static methods that allow
you to explicitly load an assembly: Load, LoadFrom,
and LoadWithPartialName. These methods are
something similar to the LoadLibrary Win32 API.

C++ object module is derived from simply
object module. Every class will create virtual
functions in a virtual table. The virtual function
address is generated in the compile procedure and
an index is assigned to every virtual function. In the
runtime, the pointer to virtual table is found first and
then the pointer to virtual function according to the
virtual table, so the function is executed by the
function index.

The data type objects are inherited from an
abstract class: CTType, a child class of the CObject
class. The Test Driver could explain all the data
received from the other type operation system

because the data organized in binary module. So,
it’s only need to expand the CTType’s child class
when need to meet the acquirement of adding new
data type.
CTType is designed with series of virtual function
which implement the polymorphs is defined like
below:
class CTType : public CObject
{
 DECLARE_DYNCREATE(CTType)
public:
 static CRuntimeClass* PASCAL
FromName(LPCSTR lpszClassName);
 static void GetValidedTypeList(CStringList
&strTypeList);
 virtual DWORD GetTypeLength() const ;
 virtual BOOL PASCAL
SetFixedValue(CTParameters &tParams);
 virtual BOOL PASCAL
GenerateExpValue(CTParameters &tParams);
 virtual BOOL PASCAL
ToString(CTParameters &tParams);
…
};

7.2 C++Macro Implementation
When write a class in Visual C++, the Design Time
Environment thinks of it as several things, including
a class and a CodeElement. It has base classes, each
of which is also a CodeElement. Your class, its
bases, and even its functions can all be represented
as objects with properties such as Name and Type-
and your macros can manipulate those objects. For
example, an object that represents a class has a
method called AddFunction(), which actually adds
functions to one of your classes, right from the
macro. That's the heart of this macro: a loop that
calls AddFunction() repeatedly to add each function

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 191 Issue 1, Volume 8, January 2009

that's in the interface your class implements. This
generates the code inside your class, and it's quite
fun to see. Some macros used in Distributed Test
Platform are listed below:

DECLARE_CLASSSERVICES Enables objects
of CObject-derived classes to be created
dynamically at run time. The framework uses this
ability to create new objects dynamically. For
example, the new view created when you open a
new document. Document, view, and frame classes
should support dynamic creation because the
framework needs to create them dynamically.

Add the DECLARE_DYNCREATE macro in
the .h module for the class, then include that module
in all .cpp modules that need access to objects of
this class. If DECLARE_DYNCREATE is included
in the class declaration, then
IMPLEMENT_DYNCREATE must be included in
the class implementation.

IMPLEMENT_DYNAMIC Generates the C++
code necessary for a dynamic CObject-derived class
with run-time access to the class name and position
within the hierarchy. Use the
IMPLEMENT_DYNAMIC macro in a .cpp module,
and then link the resulting object code only once.

RUNTIME_CLASS Gets the run-time class
structure from the name of a C++ class.

7.3 Creating Metadata Object in Runtime
The dynamic run of the metadata object is simulated
the c++ module by macro implement. A functions
table including virtual function address and other
information, such as counts of parameters and its
type, is built in the runtime. When it’s ready for run,
it must search in the table from the head for the
enter address by compare function name in the table,
if the target is found and the function is actived by
its index. The function virtual table is listed below
in fig.6

The saving function structure composed of

function name, parameters counts, function pointer
and two pointers to itself like below.
template<class T>
struct CClassService

{
LPCSTR m_lpszServiceName;
int m_nParameters;
unsigned int m_wSchema;
BOOL (PASCAL T::*m_pServicePointer)(void *p);
 static CClassService *m_pFirstService;
 CClassService *m_pNextService;
}
The dynamic steps of metadata object creating is
listed below.

(1) Using macro
DECLARE_CLASSSERVICES in the class define.
The macro add a static vary to saving the
information for the metadata dynamic create.
#define DECLARE_CLASSSERVICES(class_name,
service_name) \
public:\
 static CClassService<class_name>
service##service_name;

(2)Using macro
IMPLEMENT_CLASSSERVICES in the class
implement.
#define
IMPLEMENT_CLASSSERVICES(class_name,servic
e_name, nNum,pfnNew)\
static char _lpsz##service_name[] =
#service_name;\
CClassService<class_name>
class_name::service##service_name = \
{_lpsz##service_name,
nNum,0xFFFF,class_name::service_name,pfnNew};
\
static AFX_SERVICEINIT<class_name> \
 _init##service_name(&class_name::service
##service_name);\
For example, Test Server could create an “Int8”
object in running a test case, and the
“GeneratNormaData” functions define in the test
case will be dynamic executed by searching for its
address in the virtual table.
BOOL (PASCAL CTType::*pF)(void *p) ;
if(((CTType *)pObj)-
>IsKindofServices(strNameOfService))
{
 ((CTType *)pObj)-
>GetFunctionPointer(strNameOfService,pF);
 (((CTType *)pObj)->*pF)(NULL);
}

The vary strNameOfService is read from a test
case.

8 Key Features
Distributed Test Platform is composed with Test
Server and Test Driver based on intranet/internet. It

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 192 Issue 1, Volume 8, January 2009

has some special features. The test platform includes
extensive networking support. Test systems can
network together to share test results and provide
factory line monitoring.

The test platform has a geographically
distributed test development against traditional
setting of a standalone development. This provides
improved collaboration and management of test
assets. Web based development and user
administrative options allows authorized team
members at Site B to view, create or modify test
scripts and data created by Site A team members.
The test platform is designed from the ground up to
manage parallel execution and test cases can run
fully isolated and so they do not crash the executive.

Quality assurance team at each site can manage
all aspects of testing, from initial test case test
development, execution and analysis of test results
from a central server. Distributed environment
allows team members to share assets. The QA teams
can perform functional, performance, web services,
system and regression testing of the web
applications/web sites. its architecture is cost
effective to deploy and manage as it eliminates the
installation and updates on each site. what’s more,
Both parametric and log data are automatically
stored in the database on every test system. A
variety of search and reporting functions work out
of the box.

In short, Distributed Test Platform saves time,
cuts costs, reduces risk and improves quality of test
automation.

9 Conclusion
The software test has the important position in the
whole software development procedure, but it’s so
expensive, labor-intensive, and times consuming
that developer often leaves it out. It’s valuable to
develop an automated test tool which is effective,
reusable and maneuverable. The Distributed Test
Platform is the simplest to understand and to
implement. It’s also the easiest to incorporate with
the other software framework. The Platform has the
advantage of reuse and the reduced maintenance
costs that come with reuse. Distributed Test
Platform has been researched out with its merits. It
generates test case scripted with xml and test data, it
invokes test cases automatically and report the test
result intelligently and automatically in xml or html
format. Moreover, it’s independent of developing
languages and operation systems, and it can be
easily integrated into other software platforms to
promote the implementation of software procedure.

Distributed Test Platform is made up of Test
Driver and Test Server which constructed of Test
Scripter, Data Generator, Comparator and Reporter.
And all its units are supported by Metadata Service,
which includes a series of Methods, Events and
Properties enabling Distributed Test Platform to
accommodate different operation system. The
server can run test suites on local or remote targets
and log progress and results to HTML pages. The
main purpose of Test Server is to act as engine
inside customized test tools. A callback interface for
such framework applications is provided.

Meanwhile, Test Data Generator can’t meet
users’ requirements fully, and the tactics and
methods of data generation need to emend and
strengthen. It has been proved that the test platform
can actually finish most of the Black Box test.

References:
[1] Rovert V. Binder, Testing Object-Oriented

Systems:Models,Patterns, and Tools, 2001
[2] Stanley B.Lippman, C++ Primer, 2006
[3] David Chappell, Understanding .NET, Addison

Wesley Longman, 2002
[4] Kit,Edward. Integrated Effective Test Design

and Automation Software Development，1999
[5] Graham, Dorothy, MarkFewster. Software Test

Automation: Effective Use of Test Execution
Tools. Boston, Mass:Addison Wesley, 2000

[6] http://www.rational.com
[7] http://sourceforge.net/projects/httpunit/
[8] M.S.Lin, M.S.Chang, D.J.Chen, “Distruibuted-

program Reliability Analysis: Complexity and
Efficient Algorithms”, IEEE Transaction on
Reliability, 1999, 48(1):87-95

[9] http://msdn.microsoft.com
[10] Gamma, Erich; Richard Helm, Ralph Johnson,

and John Vlissides (1995). Design Patterns:
Elements of Reusable Object-Oriented
Software. Addison-Wesley. ISBN 0-201-
63361-2.

[11] Larman, Craig (2005). Applying UML and
Patterns. Prentice Hall. ISBN 0-13-148906-2.

WSEAS TRANSACTIONS on COMPUTERS Feng Qinqun, Yun Wenfang, Peng Sheqiang

ISSN: 1109-2750 193 Issue 1, Volume 8, January 2009

